
SOMA: A method for
developing service-oriented
solutions

&

A. Arsanjani

S. Ghosh

A. Allam

T. Abdollah

S. Ganapathy

K. Holley

Service-oriented modeling and architecture (SOMA) has been used to conduct

projects of varying scope in multiple industries worldwide for the past five years. We

report on the usage and structure of the method used to effectively analyze, design,

implement, and deploy service-oriented architecture (SOA) projects as part of a fractal

model of software development. We also assert that the construct of a service and

service modeling, although introduced by SOA, is a software engineering best practice

for which an SOA method aids both SOA usage and adoption. In this paper we present

the latest updates to this method and share some of the lessons learned. The SOMA

method incorporates the key aspects of overall SOA solution design and delivery and is

integrated with existing software development methods through a set of placeholders

for key activity areas, forming what we call solution templates. We also present a fractal

model of software development that can enable the SOMA method to evolve in an

approach that goes beyond the iterative and incremental and instead leverages

method components and patterns in a recursive, self-similar manner opportunistically

at points of variability in the life cycle.

INTRODUCTION
The evolution of software engineering has passed

through various eras, including structured pro-

gramming, analysis, and design and undulated

between data orientation or process orientation until

it finally brought us to the notion of object

orientation,
1,2

where data and process unite to form

the object (class). An object exposes a set of

methods that can be invoked to manipulate under-

lying data structures whose implementations are

hidden from the invoker. Object-oriented (OO)

analysis and design (OOAD) methods abounded
2

in

the early 1990s. Component-based software engi-

neering then advanced the state of the art and built

on the foundation laid by object orientation. The

focus on the unit of deployment as the component

gradually gave way to a protocol of remote

invocation of those components over a distributed

network using hitherto unprecedented consensus

�Copyright 2008 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/08/$5.00 � 2008 IBM

IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008 ARSANJANI ET AL. 377

around standards in this arena. Distributed objects

and remote-object invocation using Object Manage-

ment Group CORBA**, Open Software Foundation

Distributed Computing Environment (DCE), Micro-

soft Component Object Model (COM), and Sun

Java** Remote Method Invocation (RMI) have

continued to mature.

Eventually, within client/server and network-centric

computing environments in which the client knows

about the identity of the server, a higher degree of

separation of concerns emerged in terms of n-tier

Web-based computing (i.e., e-business). This ad-

vanced with the emergence of standards within Web

services under which provider and consumer were

separated by a contract (the interface) and by the

choice of binding (a concrete protocol and data

format specification) that provided flexibility for the

underlying technology protocols to be used. Capa-

bilities that were significant to business and could

be invoked over a network using these standards

heralded the emergence of a service-oriented archi-

tecture (SOA).

Many definitions have been proposed for services.

We have found the ones below to be practical and

useful on actual projects.

From a business perspective, a service is a well-

defined, encapsulated, reusable, business-aligned

capability. A service operation is the elementary part

of a service and specifies the associated inputs,

purpose (function, duty or obligations), and outputs

(artifacts, products, outcomes, or deliverables). A

service is fully defined by a service description, a

published document or artifact that outlines the

overall objective of the service and its inputs,

purpose, outputs, scope, responsibility, governance,

sustainability (provision period, maintenance, and

repair), and qualities of service provisioning.

From an information technology (IT) perspective, a

service is a discoverable, invokable software re-

source that has a service description and interface

and is configurable using policies. The service

description is available for searching, binding, and

invocation by a service consumer. The service

description implementation is realized through a

service provider that delivers quality of service

(QoS) requirements for the service consumer.

With the advent of SOA, the programming principle

that was learned from OO—program to interfaces

rather than implementations
3
—was elevated to the

level of software architecture in which an actual

logical layer is used to describe services.
4,5

It is often

the case that programming concepts evolve into

architectural constructs and then into methods.

Initial efforts to use traditional OOAD methods to

support Web services and SOA found those methods

insufficient to support the challenges and nuances

required by new first-class constructs of service

orientation, namely services, the components im-

plementing those services, the flows of business

processes choreographing those services,
6

and the

information requirements and policies associated

with services. To elaborate, services would be

designated as the logical interface mechanism for

decoupling a service consumer from a service

provider through a standards-based protocol that

allows invocation of distributed software resources

on an as-needed basis. Further description of how

services interact with their underlying realizations

and implementations symbolized in the components

of the application architecture and how they would

be combined and composed in a new notion, termed

choreography or orchestration into business process

flows, required a new set of method constructs. This

does not imply that the only way to leverage

services is through composition and choreography.

Services can also be leveraged by using them at a

variety of levels: for example, services used to

expose legacy functionality, simple services to

provide new functionality, services used to increase

reuse and refactoring in order to reduce the cost of

system maintenance, services used to expose

business-significant capabilities, and composite ser-

vices.
7

Paradigm shift from OO to SOA

The lure of reusability has enticed many companies

to evaluate and adopt SOA as an enabler for wider

transformation initiatives or as an enabler for a

development or systems-integration project. Our

experiences working with hundreds of projects and

executives (business and IT) surface a more refined

objective. In the case of business stakeholders, a

recurrent objective is to have greater flexibility in

response to changing market demands. They there-

fore advocate using SOA tenets to make it possible

to locate and assemble the component parts of new

products and applications rather than having to buy

new, hard-coded solutions or spend precious time

and money with integration.

ARSANJANI ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008378

IT stakeholders, on the other hand, are being asked

by the business to do more for less. Their view is

that if SOA works, it can confer lower development

costs through the ability to reuse common bits of

functionality in multiple applications. This can

result in a greater ease of doing business, more

flexibility, and the enabling of more-direct and

more-customized interaction with partners, suppli-

ers, and consumers.

The change from OOAD to SOA can be seen on a

spectrum: from those who advocate that ‘‘only the

packaging is new’’ to those who believe there is a

significant paradigm shift. We will elaborate the

latter view.

Use-cases are often used to capture functional

requirements of OO systems. A use-case captures a

set of static object interactions that ultimately realize

the use-case. These flows are most often hard-

coded. This does not allow the easy recombination

of functionality. In contrast, a service-case will

identify the reconfigurable choreography of a set of

service operations, each a unit of functionality. This

flow is not hard-coded; instead of endeavoring to

initially identify the objects that will sequence the

interactions, the focus is on the set of business-

aligned IT services that collectively enable the

fulfillment of business goals, and the services can be

recombined in unanticipated service contexts.

Rather than being simply a user interacting with a

system, it can be seen as an ecosystem of providers

and consumers with often interchangeable roles that

leverage the services through policies and new

combinations in ever-changing service-cases.

The notion of a service as previously described

provides an opportunity to increase the flexibility

and reuse of business functionality within an

enterprise and with partners. Our project experi-

ences demonstrate that guidance is required for how

services, components, and flows are identified and

specified in much the same way as was done for

objects in object orientation. Hence, we developed a

service-oriented method in IBM called service-

oriented modeling and architecture (SOMA).
8

SOMA is an end-to-end software development

method for building SOA-based solutions. This SOA

method was harvested from hundreds of successful

experiences and lessons learned from the difficulties

and challenges encountered in early SOA design and

implementation projects. The expanse of these

projects was wide and deep, ranging from diverse

fields such as health care, telecommunications, and

financial services to public-sector implementation

projects. The key objective of harvesting these

experiences was to arrive at a method that consisted

of a set of task-performance roles used to produce

deliverables (work products) using guidance and

best practices from the emerging field of service

orientation. IBM invested in this effort to develop

methods to support the latest software engineering

best practices associated with SOA. Over the past

five years, SOMA has inspired such SOA terminol-

ogy and concepts as service-oriented modeling,

service identification, multiple complementary ser-

vice identification techniques (including harvesting

services from business processes), business use

cases, usage of business-driven imperatives to

identify services, and separation of the identifica-

tion, specification, and design and realization of

services.

SOMA is a software development life-cycle method

invented and initially developed in IBM for design-

ing and building SOA-based solutions. This method

defines key techniques and provides prescriptive

tasks and detailed normative guidance for analysis,

design, implementation, testing, and deployment of

services, components, flows, information, and

policies needed to successfully design and build a

robust and reusable SOA solution in an enterprise.

The latest release of the method (v.3.1) has major

additions and enhancements from the previous

release
8

(v.2.x), based on feedback from clients,

practitioners, and the industry at large.

In this paper, we provide a description of the

method illustrated by two case studies: one concise

and one more elaborate. We introduce the core

concepts and key activities of SOMA and use a case

study drawn from real-life client experiences to

illustrate its key activities. Subsequently, we explore

the latest enhancements and features that have been

inspired by real-world project experiences calling for

these features.

Our first case study is concise and demonstrates the

value derived from using the capabilities defined

within SOMA that focus on the solution of key

business problems. We use a pattern format to

convey this case study. The next case study is more

IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008 ARSANJANI ET AL. 379

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

elaborate and demonstrates the major phases,

activities, and sample outputs.

Telecommunications: A short case study

Context: The case study is based on a telecommu-

nications company that we will fictitiously name

Good Telecom. The company decided to focus on a

service-order creation process to create new services

for an SOA project. They wanted to ensure that the

service plans and service features would be offered

consistently across the various channels: point of

sale, Web, and customer service representatives.

The business logic and rules were maintained in

their mainframe computer. The channels were

allowed to override the price plans offered by the

back-end systems. This often led to a situation in

which a user could get certain features or price plans

at a better discount from one channel compared

with the other. The company quickly realized that

this is not a good business practice and made it

business goal to provide consistent services across

all channels.

Problem: To address the business goal of providing

consistent service across channels while creating

new service orders. Discussions with the client

subject-matter experts and detailed analysis of the

relevant systems and IT environment revealed the

following challenges and opportunities:

� Duplicate logic had a negative impact on mainte-

nance and support costs.
� Multiple calls to back-end systems resulted in

expensive mainframe CPU-cycle consumption and

had a negative impact on network traffic.
� An inflexible design and architecture could not

support variations—for example, varying features

by region.
� Performance was degraded by unstructured code,

duplicate code, and code that was not required—

that is, it did not support any specific business

function.

Solution: To address these problems, the following

SOMA capability patterns, also known as techniques

(reusable parts of a larger method) were applied:

� Service identification: Decompose the service-

order creation process to identify services.
� Service specification: Develop service-interface and

message specifications, service dependencies,

service interactions, the component model, and

identify reusable patterns.
� Existing asset analysis: Conduct detailed analysis

of COBOL (Common Business Oriented Language)

modules and copybooks. This was needed to

develop an approach to either consolidate or

refactor the code.
� Service refactoring and rationalization: Determine

service granularity and apply a defined set of

criteria called a service litmus test (SLT) to

determine which candidate services are appropri-

ate to expose—that is, to publish using Web

Services Description Language (WSDL).
� Technical feasibility exploration: Identify potential

viable solutions to various problems, such as the

conversational nature of the service request when

the front-end systems have to interact with back-

end systems several times in order to service the

request. Multiple fine-grained transactions to

fulfill a service request have an impact on the

service performance and hence user experience.

Consequences: The application of the above capa-

bility patterns helped in developing a solution to

resolve the challenges:

� Duplicate logic was addressed by analyzing

existing assets to develop refactoring approaches

and by creating common reusable components.
� The problem of multiple calls to back-end systems

was addressed by refactoring logic into appropri-

ate SOA layers, by adding mediation logic in the

integration layer and business logic in the service-

component layer, and by caching.
� The inflexible design and architecture was recti-

fied by refactoring the code and by creating

common reusable components.
� Performance was improved by all of the above.

Case study: XYZ Financial Services
The XYZ Financial Services case study is a com-

posite of real-world experiences with multiline

financial institutions. We use it to describe SOMA

concepts and the key activities of the method that

are recommended to identify, specify, realize,

implement, and deploy services as prescribed by the

SOMA method.

XYZ Financial Services, Inc., (XFS) has two major

lines of business: insurance and investment. Its

market analysis had revealed that the aging of baby

boomers and their changing needs in their retire-

ARSANJANI ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008380

ment years presented unprecedented opportunities

and challenges for financial institutions such as

theirs.

The analysis by XFS had revealed that as the baby

boomers advanced toward retirement age, their

investment strategies were becoming more conser-

vative and risk-averse, such as shifting a portion of

their retirement savings from stocks and securities

to savings accounts and certificates of deposits

(CDs) in more-traditional, regulated markets that are

insured by the Federal Deposit Insurance Corpora-

tion in the United States. The demise of defined

pension plans and the trend toward defined contri-

bution plans by most employers in the U.S. were

further amplifying this trend. XFS also realized that

no-interest or low-interest-bearing checking and

saving accounts were increasingly becoming an

important source of revenue, and CDs were pro-

viding a long-term source of funds.

XFS wanted to capitalize on these trends by

designing market products and services that would

attract and retain these customers. Thus, XFS set a

goal of diversifying its business by providing

banking services and relatively low-risk products

such as saving accounts, CDs, money market

accounts, and value-added online banking services

(e.g., online bill payment, fund transfer, ability to

view detailed account transactions and activity, e-

statements, and check ordering). They selected the

SOMA method as the means to accomplish this goal.

OVERVIEW OF THE SOMA METHOD

As a software development life-cycle method for

developing SOA-based solutions, or any solution

using service-oriented principles, SOMA defines key

techniques and describes the roles on a SOA project

and a work breakdown structure (WBS). The WBS

includes tasks, the input and output work products

for tasks, and the prescriptive guidance needed for

detailed analysis, design, implementation, and

deployment of services, components, and flows

needed to build a robust and reusable SOA

environment. The SOMA method includes the seven

major phases shown in Figure 1. The fractal phases

contain capabilities that can be leveraged as needed

in different sequences. (Fractal is used semi-meta-

phorically: We apply method capabilities in a self-

similar manner within varying scopes. SOMA has a

fractal software development life cycle because

SOMA applies method components—capability pat-

terns—in a self-similar manner recursively in small

release or iteration cycles, focusing on addressing

technical risk and delivering software valued by the

business.) Realization, for example is leveraged in

all phases. No rigid sequencing is implied. In a

fractal model, phases will consist of capabilities that

may be used by other phases. Governance serves as

the context and background for the service-oriented

life cycle. SOMA provides support for and linkages

to the two main aspects of governance: design-time

and runtime governance.
9

Fractal model for service-oriented software

development

It is important to note that SOMA phases are not

linear. They are applied in a risk-driven, iterative,

and incremental approach using a nuance peculiar

to the SOA life cycle. The life cycle of an SOA project

uses a fractal approach that is a combination of two

key principles. The first principle of fractal software

development is the application of method tasks to

self-similar scope: that is, tasks are done in a similar

way in larger or smaller boundary scopes (whether

enterprise-wide, line-of-business, or single project

initiatives). The notion of similarity indicates that

the application of principles is similar but not

identical, meaning that as we approach larger

scopes, even though the same tasks apply, the

additional work needed has to evolve in order to

take into account factors that arise from the larger

scope. Thus, the SOA method can be applied to SOA

solution development at the level of projects, lines

of business, between business lines, enterprise-

wide, and between business partners.

The SOMA method is also fractal in nature, even in a

given scope. SOMA is composed of capability

patterns representing techniques applied in the

method. Many of these capability patterns are

executed in all phases in SOMA with different

degrees of elaboration and precision. For one

example, we make exposure decisions based on the

information we know about the services during

identification and then we elaborate and refine the

exposure decisions in the specification phase when

we know more about the nonfunctional require-

ments of the services. A second example is that we

analyze the existing assets in the identification

phase to identify systems and system functions that

can be leveraged to realize the services, but we

expand further on that analysis in the specification

IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008 ARSANJANI ET AL. 381

phase to identify existing components and objects

and their operations that we can reuse to realize the

services. And as a third example, we initially model

dependencies among services when we define the

service portfolio but we further elaborate the

dependencies of services with components and

physical systems when we identify components and

make decisions to realize the services. In addition,

we apply similar principles in successive levels of

detail to elaborate the SOA reference architecture as

we progress in the SOMA life cycle.

The second principle of fractal software develop-

ment is successive iteration. The concepts of

iterative and incremental development life cycles

have existed for a long time. They focus on

prioritization and mitigation of risk factors in order

to ensure the product quality of the solution. This

has its roots in the spiral model of software

development by Boehm.
10

Successive iteration is

connected with the notion of service evolution and

implies a focus on not only the risks associated with

the implementation, but also with the dependencies

associated with the service portfolio as services

evolve through the life cycle. The notion of service

dependencies on other services, and potentially

other dependencies on actual back-end systems,

databases, and components, must be called out.

Thus, in SOMA, a prioritization of the service model

is conducted and based on a service-dependency

diagram and takes into account the risk factors

involved in the IT aspects of the architecture. A

subset of services is prioritized for the next

implementation release in which technical feasibil-

ity is planned for, measured, and exercised within a

proof-of-concept prototype.

Over time, functionality or business capabilities that

were not selected for service exposure may get

Figure 1
SOMA phases—a fractal model of software development

Deployment,
monitoring, and
management
Packaging and
provisioning,
process and
performance
monitoring, and
management

Implementation
build/assembly:
Construction,
generation, assembly,
integration
Testing:
 Unit, integration,
 UAT

Runtime governance,
monitoring and management

Design-time
governance

Solution
management
Hybrid solution
type selection,
method adoption and
integration, project
management,
enterprise
architecture

Realization
Decisions,
solution templates
and patterns,
detailed SOA
reference
architecture,
technical feasibility
prototyping

Business
modeling and
transformation
Business architecture
and models,
SOA maturity, and
transformation
roadmaps

Specification
of services,
components,
flows and
information

Identification
Identifying
services,
components, flows
and information

ARSANJANI ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008382

identified in a later iteration, when they are

reassessed using the SOMA SLTs, and a determina-

tion is made whether they should be exposed as

services in this release or implemented in a

traditional manner.

The flow shown in Figure 2 is a sequential depiction

of the overall fractal flow at a high level. Whereas

Figure 1 depicts the capability patterns and fractal

nature of the SOMA method, Figure 2 illustrates a

typical process flow of an engagement executing the

SOMA method. In this paper we focus primarily on

the identification, specification, and realization

phases. In the following sections, for lack of space,

we do not discuss the details of the roles; we do

discuss activities, tasks, some work products, and

some guidance concerning tasks. Collectively this

constitutes the method.

Business modeling and transformation

In this phase, the business is modeled, simulated,

and optimized, and a focal area for transformation is

identified that will drive a series of subsequent

projects using the set of phases shown in Figure 2

and discussed in the following sections. Note that

this phase is not strictly required but is highly

recommended.

Solution management

SOA solutions are hybrid in nature and typically

include multiple solution types. This is because

services identified and specified during the early

phases in SOMA can be realized in subsequent

phases of SOMA by different scenarios, such as

custom development, legacy integration and trans-

formation, and package application integration.

SOMA is designed to support the hybrid nature of

SOA solutions and it prescribes specific activities

and guidance to implement each of the above

solution types. In the SOMA method, the method

content common to all SOA solution types is

separated from the variable method content that is

dependent on specific solution types. The variable

method content—tasks, work products, roles, and

guidance—specific to each of the solution types is

defined and externalized as a method template

called a solution template. At the beginning of an

engagement and subsequently when realization

decisions for the services are made, we typically

discover and select the solution types needed to

Conduct goal-service
modeling

Figure 2
SOMA life-cycle high-level flow

Business
modeling and
transformation
0 Define

business
architecture
and business
models

Solution
management

Initiate project
management
activities

Conduct
method
adoption
workshop

Select solution
templates and
patterns

• Customize
 delivery method

Identification

4

Business domains
and processes in

scope

6

Service
model

Service
model

• Functional
 area
• Process
• Information
• Rules
• Variations

7

• SLT

5

Refactor and
rationalize services

1

2

3

Deployment,
Monitoring, and
Management
19

20

21 Monitor and
manage
processes
and
performance

Deploy
services

Execute
user-
acceptance
test

Implementation

16

17

18

Construct,
generate and
assemble
services

Execute
unit test

Execute
integration
and system
test

Realization

12

13

14

15

Refine and
detail
components

Establish
realization
decisions

Perform
technical
feasibility
exploration

Detail SOA
solution
stack layers

Specification

Specify
services

Analyze
subsystems

Specify
components

Refactor and
rationalize
services

• Composition
• Flows
• Operations
• Messages
• NFRs

8

9

10

11

Decompose
domains

Analyze
existing
assets

IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008 ARSANJANI ET AL. 383

build an SOA solution for a client. The activities and

tasks from the selected solution templates are

inserted into predefined extension points in the

SOMA method to provide a comprehensive process

to execute for the engagement.

In the case of XFS, the existing customer relation-

ship management (CRM) system is used to access

customer information from the customer database.

Hence, the solution template for package application

integration was selected. This solution template

provides prescriptive tasks necessary to integrate

with packaged applications such as, in this case, a

CRM system from SAP AG.

Identification phase

The identification phase pertains to the identifica-

tion of the three fundamental constructs of SOA:

services, components, and flows. Our experience

indicates that it is a best practice to utilize a set of

complementary service identification techniques.

Relying on a single technique tends to create an

incomplete set of services. This introduces infor-

mation entropy early in the development life cycle,

often to be remedied at greater cost later in the

service life cycle as it entails greater efforts of

service refactoring. Additionally, this often leads to

the failure to identify service dependencies early on,

which impacts release planning and, ultimately,

project delivery.

We conduct an initial pass of service identification

techniques to identify the candidate services. Upon

further assessment, we perform service refactoring

and rationalization opportunistically, which in-

cludes the essential task of filtering out those

business capabilities that will be exposed as services

within the scope of the project. The latter assess-

ment includes the SLT technique.

The recommendation is to start by aligning services

with business goals, a step we call goal-service

modeling (GSM). This aligns IT execution with

business drivers, imperatives, and objectives as well

as monitoring and managing the scope of further

business-process modeling and existing asset anal-

ysis.

SOMA identification is a process of identifying

candidate services and creating a service portfolio of

business-aligned IT services that collectively support

the business processes and goals of the organiza-

tion. It is done through the process of assessing

existing functionality to see if it can be placed in the

service model, and by determining missing IT

capabilities that will be needed to support the

alignment of business strategy, goals, and processes.

Thus, multiple complimentary techniques are in-

troduced during SOMA identification to identify

candidate services as well as components and flows.

In this paper, we primarily focus on service

identification rather than component and business-

process flow identification, although the latter is

also mentioned.

Services are initially designated as candidate during

identification because all identified business capa-

bilities and functionalities will not have to be

exposed as services nor will funding be available to

cover them all. Furthermore, only the relevant

subset of candidate services will become exposed

services, and thus participate in a given release. The

entire service portfolio will often have to be

staggered over several releases. Thus, services

designated as exposed will still be implemented,

albeit not as Web services but as functionality

implemented in the ordinary course of software

development, such as methods on the component or

mapped to application program interfaces (APIs) or

transactions of the back-end legacy system. When

and if business prioritization of needs is able to

make a strong case, some of those unexposed

services will be reevaluated using the service

refactoring and rationalization activity and may

make their way back into the service portfolio over

the lifetime of another release.

Three main service identification techniques

Service identification follows three main comple-

mentary techniques: GSM, domain decomposition,

and existing asset analysis. GSM uses an approach

that is predicated on business challenges and

opportunities, corporate strategy, and business

goals. Domain decomposition—which comprises

multiple service identification techniques of its

own—uses a top-down analysis technique that is

focused on business process modeling, rules,

information, and variation-oriented analysis. Asset

analysis addresses the fact that an organization

typically will have acquired more than a quarter of a

century of legacy systems and applications that are

integrated and enhanced and whose ongoing sup-

port requires a significant amount of funding. One of

ARSANJANI ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008384

the main value drivers of SOA is to leverage existing

resources and redirect them in new ways to support

business needs. This bottom-up approach takes a

look at the existing application portfolio and other

assets and standards that may be used in identifying

good candidates for service exposure.

GSM combines the top-down and bottom-up ap-

proaches and pulls them together into alignment.

Over the course of the project and over the course of

several projects, which may be guided by enterprise

architecture, all services should be traceable back to

a business goal that originates in the goal-service

model.

Component and service flow identification tech-

niques

Domain decomposition includes an activity called

functional area analysis that provides a structural

partitioning of the business domains into distinct

business functional areas. This provides a natural

means of identifying components later in the life

cycle. Process decomposition and process modeling,

also parts of domain decomposition, provide the

opportunity to not only identify services but the

service flows that will be used to orchestrate them.

Variation-oriented analysis and design (VOAD)

provides a means to capture variations in business

processes, both structural variations (such as

information and component variations) and varia-

tions in business rules and policies. Thus, VOAD

identifies commonality and externalizes variations
11

that will play a significant role in reducing the

impact of potential future changes to service

portfolio components and processes.

Therefore, SOMA identification provides us with the

techniques (activities, roles, work products, and

guidance) to derive appropriate service abstractions

at the right level of granularity from business

requirements, business processes, existing systems

and applications, business goals, and anticipated

potential variation types. It accomplishes this by

making use of complementary identification tech-

niques in combination.

GSM maintains the alignment of services with

business goals and refines the subsequent scope of

business processes being evaluated as well as

existing systems and assets. It accomplishes this

alignment by ensuring that the scope of transfor-

mation is appropriately constrained to only those

processes and existing resources that are absolutely

essential to the solution of the problem, thus saving

time and energy within the overall life cycle.

Goal-service modeling

In GSM, a generalized statement of business goals

relevant to the scope of the project is decomposed

into subgoals that must be met in order for the

higher-level goals to be met. This hierarchical

decomposition then leads to a set of actionable goals

which lead to identifying the services that will help

in fulfilling the subgoals. It is also important to

identify key performance indicators (KPIs) to

provide an objective basis for evaluating the degree

to which the goal has been achieved. KPIs and

metrics identified during this process are used to

measure, monitor, and quantify the success of the

SOA solution in fulfilling business needs subsequent

to the building and deployment of services in the

service model.

In the XFS case study, the highest-level goal,

determined by the client, was to attract and retain

customers from the baby-boomer generation in the

investment and insurance lines of business by

offering them banking services that are enabled

through multiple channels such as online, self-

service portals, and interactive voice response

systems (see Table 1).

GSM helped define the scope of the client engage-

ment and to identify parts of the business that

needed transformation and change to achieve the

high-level goals. By using business goals, it played a

very important role in identifying which business

processes should be focused on, resulting in the

identification of those services that would have the

greatest business impact. This also provides trace-

ability between business goals and services. The

number of candidate services identified during

process decomposition can be quite high. However,

through GSM and business-process decomposition,

the set of candidate services that meets business

goals greatly refines the scope of the service

orientation. The service portfolio from GSM consists

of those listed in the Services column of Table 1.

Domain decomposition

This technique focuses on top-down analysis of

business domains and business process modeling to

IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008 ARSANJANI ET AL. 385

identify services, components, and flows. We

analyze both static and dynamic views of the

business including information, rules, and varia-

tions.

The business domain is partitioned into coarse-

grained functional areas to arrive at a static view of

its underlying structure. The key elements of a

functional area are the business functions it is

responsible for, the business entities that participate

in fulfilling those responsibilities, and the associated

policies and rules. The process of information

analysis begins with the identification of business

entities. Further partitioning is performed to arrive

at set of loosely coupled subsystems as logical IT

boundaries for carrying business functionalities. The

domains and their functional areas are initial

connections to governance under SOA; they will be

the owners of the services.

The results of domain decomposition in our case

study are shown in Table 2. We focused on the

account services and customer management do-

mains for analysis in accordance with the scope

defined by the goal-service model.

A dynamic view of an enterprise is reflected in its

business processes. Typically, processes are identi-

fied and a process hierarchy is developed for a

business domain to initiate the process modeling

and decomposition. A subset of business processes

traceable to relevant business goals requires more

detailed process modeling and decomposition to

gain further insight into the interactions of the

selected set of business processes. The objective of

process modeling is to define to-be representations

of business processes by taking into account as-is

process models, best practices, industry and refer-

ence models, the goal-service model, and process

optimization for the purpose of identifying services

and their composition and flows. Reference to

industry models is recommended in order to adopt

de facto standards and leverage existing assets—

which is a corresponding capability pattern within

SOMA. The process, subprocess, and process

activities are then considered as candidate services

with some filtering criteria.

In our case study, a process hierarchy was first

developed for the Manage Account business pro-

cess, and further process decomposition of Open

Table 1 Goal-service model for the case study

Goal and Subgoals KPIs Metrics Services

1. Attract and retain
customers

Increase number of customers
using banking products and
services by 2% of the total
customer base in the
insurance and investment
lines of business

1.1 Enable banking products
and services through
channels such as self-service
portals and interactive voice
response systems

Increase number of customers
using banking products and
services

1.1.1 Enable banking products
such as checking, savings,
money market accounts,
CDs online

Increase number of customers
using banking products

Number of accounts opened
in banking products such
as checking, savings, money
market accounts, CDs

� Open account
� Close account
� Get banking customer

report

1.1.1.1 Enable banking services
such as bill payment, fund
transfers, check status, and
check reorders via
self-service portal or IVR
(integrated voice response)

Increase number of customers
using banking services

Number of banking services
through various channels

Number of transactions
initiated by various
channels

� Make payment
� Transfer funds
� Get account summary
� Get account activities
� Order checks
� Get check status
� Get statement
� Get payment history

ARSANJANI ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008386

Account and Make Payment subprocesses was

performed to identify candidate services (see

Table 3). Processes and activities from process

decomposition are added to the service model. Some

of these services are also identified during GSM, and

hence can validate the service model.

Information flows through all three constructs of

SOA, namely, service, component, and flows. A

common business glossary is essential so that

everyone in the enterprise can learn to speak the

same terminology, to define a consistent way to

express the business in terms of information, and to

ensure that terms mean the same for all parties.

Business entities identified during functional area

analysis and data flow in the business processes (if

available) are the two key inputs to information

analysis. In addition, existing client information

models and industry models—such as IBM Infor-

mation Framework (IFW), IBM Insurance Applica-

tion Architecture (IAA), ACORD** (Association for

Cooperative Operations Research and Development)

standards for the insurance industry, and TF Forum

Enhanced Telecom Operations Map** (eTOM)—are

also potential inputs. Information life-cycle methods

(create, retrieve, update, and delete) for each of the

key entities might be considered as candidate

information services. In addition, we analyze the

existing information systems and data sources and,

depending on the disparity in the same kinds of

information from multiple data sources, we identify

additional services to provide a consistent view of

the data for the enterprise. The life cycles of

business entities are analyzed for further candidate

services. In the case study, the key business entities

that were identified are: customer, account, product,

transaction, and statement.

The life-cycle methods for these significant business

entities are added as candidate services to the

service portfolio. At XFS there was a need to support

marketing and outreach programs to educate their

existing customers from the insurance and invest-

ment lines of business about the new banking

products and services. A candidate information

service was identified that would make it possible to

search the customer base by factors such as location

and net assets. As result of information analysis, the

following services were added to the service

portfolio: Get Customer, Update Customer, Delete

Customer, Create Account, Get Account, Update

Account, Delete Account, Create Transaction, Get

Transaction, Update Transaction, Delete Transac-

tion, and Search Customer.

Rules and policies drive day-to-day business in the

financial services sector. Rule and policy analysis is

essential when a large number of rules are involved

within the scope. Rules are typically recorded during

process modeling. In rules and policy analysis, we

collect all instances of rules, categorize the rules into

rule types, and identify candidate rule services

based on rule types.

Variation-oriented analysis (VOA) identifies com-

monalities and variations in the process, structure,

data, and rules.
12

VOA is a necessary part of service

modeling to ensure reusability and robustness of

service design. Structural variations for XFS were

the following:

Table 2 Functional areas and subsystems

Domains Functional Areas Subsystems

Account service Customer accounting Account management

Financial transaction processing

Billing and payment

Collection recovery

Customer management Customer profile Customer profile

Credit administration

Contact and event history

Boldface type: Domains and functional areas crucial to realize the business goal and corporate strategy

IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008 ARSANJANI ET AL. 387

� Customer Type: Preferred Plus, Preferred, or

Regular.
� Account Type: Checking, Savings, or CD.
� Transaction Type: Deposit, Withdraw, Transfer, or

Payment.

Process variations are identified to handle recurring

versus one-time payment requests. Additional pro-

cess activity to schedule the next payment is

performed for recurring payment requests. Hence,

Schedule Next Payment is added to the service

portfolio as a candidate service.

Existing asset analysis

In this activity, the SOA architect conducts a high-

level analysis of existing systems, application

services, and other assets available to the project.

The purpose is to identify such assets as systems,

packages, and legacy functionality that are capable

of supporting the realization of services that meet

business needs. The focus is on existing assets that

play a role in business processes and functions. We

initially perform a coarse-grained mapping of

business processes and process activities to the

portfolio of existing applications and application

interfaces. Later in the specification, we perform a

more fine-grained mapping, including message

specification.

In practice, we tend to look at available system

functions provided by existing assets, which leads to

business functions that are then designated as

candidate services. (We have found that it is better

to refrain from adding all existing fine-grained

system functions as candidate services; only the

ones that provide business value to the enterprise

should be added, and they can be identified using

the SLT.) The reason to conduct an existing asset

analysis and apply this technique is twofold:

namely, to identify candidate services and to take

inventory of existing assets and identify the ones

that could be leveraged to realize the candidate

services in the service portfolio. We focus primarily

on existing systems that will help attain the goals

and subgoals identified in the goal-service model or

provide functionality for the business-process ac-

tivities that are in the scope. (Note that a service

registry is searched for available services as existing

assets.)

The existing system at XFS was a SAP CRM

application. The following existing business func-

tions were identified as a result of examining the

relevant APIs, and were thus added to the service

portfolio as candidate services: Change Address,

Add Alternate Address, Change Contact Informa-

tion, Search Customer, and Retrieve Customer Info.

The comprehensive service model for the case study

after applying all the complementary techniques for

service identification is shown in Table 4.

Service refactoring and rationalization

This activity consists of three parts: refactoring of

services, the service litmus tests, and rationaliza-

tion. Services in the services hierarchy are refac-

tored in such a way that lower-level services that

have some kind of logical affinity are grouped

together under a higher-level service. Subsequently,

Table 3 Process decomposition

1. Manage Accounts 1. Manage Accounts

1.1. Open Account 1.1. Open Account

1.2. Process Transactions 1.1.1. Verify Customer
Info

1.2.1. Get Balance 1.1.2. Check Credit
Rating

1.2.2. Deposit Funds 1.1.3. Create Account

1.2.3. Withdraw Funds 1.1.4. Notify Customer

1.2.4. Transfer Funds 1.2. Process Transactions

1.2.5. Make Payment 1.2.1. Get Balance

1.3. Close Account 1.2.2. Deposit Funds

1.2.3. Withdraw Funds

1.2.4. Transfer Funds

1.2.5. Make Payment

1.2.5.1. Get Payees

1.2.5.2. Add Payee

1.2.5.3. Submit

Payment

1.2.5.3.1. Validate

Payment

1.2.5.3.2. Process

Payment

1.3. Close Account

Boldface type: Performed further process decomposition of Open Account and

Make Payment

ARSANJANI ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008388

the SLTs are applied to the set of candidate services

to yield a set of exposed services. The services that

have failed the SLTs will still be implemented as

ordinary functionality within, for example, Sun

Enterprise JavaBeans** or mapped to back-end

legacy systems, but will not be exposed as Web

services. Note that not all services will be imple-

mented in WSDL, but may be deferred to a later

release for this form of implementation. The

functionality will most likely still be required and

will continue to be implemented by traditional

means, but within the context and principles

outlined by SOA. A release plan will include

dependencies between services, components, flows,

information, and rules. Rationalization consists of a

review of the service model with the business

stakeholders to verify the continued relevance of the

services that have been selected for exposure and

subsequently planned for and funded to be built in

the next release.

We categorize or group services by functional areas

to define a service hierarchy and we maintain

parent-child relationships between services in the

hierarchy, later to be used in separating out services

and operations.

Table 4 Service portfolio and hierarchy after

applying all complimentary identification tech-

niques

Customer Accounting

1. Manage Account

1.1. Open Account

1.1.1. Verify Customer Info

1.1.2. Check Credit Rating

1.1.3. Create Account

1.1.4. Notify Customer

1.2. Process Transactions

1.2.1. Get Balance

1.2.2. Deposit Funds

1.2.3. Withdraw Funds

1.2.4. Transfer Funds

1.2.5. Make Payment

1.2.5.1. Get Payees

1.2.5.2. Add Payee

1.2.5.3. Submit Payment

1.2.5.3.1. Validate Payment

1.2.5.3.2. Process Payment

1.2.5.3.2. Schedule Next Payment

1.3. Close Account

1.4. Order Checks

1.5. Get Statement

2. Maintain Account

2.1. Create Account

2.2. Update Account

2.3. Delete Account

3. Get Account

3.1. Get Account Summary

4. Maintain Transaction

4.1. Create Transaction

4.2. Update Transaction

4.3. Delete Transaction

5. Get Transaction

5.1. Get Check Status

5.2. Get Account Activities

5.3. Get Payment History

Customer Profile

6. Get Customer

6.1. Search Customer

6.2. Retrieve Customer Info

7. Maintain Customer

7.1. Create Customer

7.2. Update Customer

7.3. Delete Customer

7.4. Change Address

7.5. Add Alternate Address

7.6. Change Contact Information

8. Create Customer Report

8.1. Get Banking Customer Report

IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008 ARSANJANI ET AL. 389

For XFS, we reviewed the service granularity based

on the functional affinity and cohesiveness of the

services. We then refactored, refined, and grouped

the service portfolio in a hierarchy using the two

functional areas, namely, customer accounting and

customer profile (Table 4).

The combined application of technical feasibility

exploration and service refactoring and rationaliza-

tion accelerates SOA projects and helps in focusing

development efforts and resources and in alleviating

risk.

Specification phase

In the SOMA specification phase, the SOA is

designed. High-level design as well as significant

parts of the detailed design of service components is

completed in this phase. During the specification

phase, we leverage the existing assets and further

elaborate the services, flows, and components from

the identification phase in an iterative and incre-

mental fashion to help reach the realization deci-

sion. The service model is further elaborated in

terms of service dependencies, flows and composi-

tion, events, rules and policies, operations, mes-

sages, nonfunctional requirements, and state

management decisions.

We perform two foundational and preparatory

activities before we elaborate and specify the

services, flows, and subsystems (component

boundaries): first, we elaborate and specify infor-

mation models, and second, perform further fine-

grained analysis and specification of existing assets.

Business entities and their high-level structure and

relationships (entity relationship diagrams are rele-

vant to the service scope) are identified during the

identification phase. We elaborate the conceptual

data model into a logical data model to populate the

attributes to be implemented, which must be

defined in terms of their domains or logical data

types (e.g., character, number, date, and picture).

In doing specification, we also focus on the design of

service messages which include input, output, and

error messages. In order to eliminate multiple data

transformations in the service layer, a best practice

is to use a common message model that is accepted

by the enterprise. The model defines the message

flow in the services layer. In the canonical message

model, we select the message format (e.g., Extensi-

ble Markup Language or fixed-length record) and we

define the set of types, elements, and attributes

representing the business entities and their business

attributes. The message types are used as building

blocks for input, output, and error messages for the

services.

Refactoring of existing assets and code in prepara-

tion for making decisions about how to realize a

given service (e.g., with the back-end legacy

application) must be given careful thought and

preparation. We analyze the system interfaces and

the input and output parameters of the existing

systems and perform a fine-grained mapping of the

service to a specific legacy application transaction or

batch process. The mapping provides a potential set

of realization decisions for the SOA. The leveraging

of existing assets through refactoring and mapping

to services is a key aspect of service orientation. For

example, we need to identify duplicate, unstruc-

tured, and unused code before we can rationalize

and encapsulate the functionality to be exposed as a

shared service across channels and consumers.

Service specification

Service specification is the core of the service

modeling activity and focuses on elaborating the

detailed design of the services. The dependencies of

services on other services, components, or applica-

tions, the composition of services, and the flow

among services together define the realization and

choreography of services to enable business func-

tions and processes. Service operations are invoked

to execute a business function in an IT implemen-

tation and hence are a key addition in the service

model. Service operations are designated based on

service granularity, functional affinity, and cohe-

siveness of services in the service hierarchy. When

identifying service operations, we look only for

services in the service hierarchy that are to be

exposed (i.e., those that passed the SLTs). After

service operations are identified, the service hierar-

chy will contain services that will not be exposed as

well as services and their operations that will be

exposed. All service operations map to operation in

WSDL during IT implementation. Exposed services

and service operations are mapped into IT imple-

mentation as one of following three scenarios, as

illustrated in Figure 3:

1. Service operations of an unexposed service

2. Both service and its service operation are exposed

ARSANJANI ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008390

3. Both service and it service operations are exposed

but the parent of the exposed service is a

functional area in the service hierarchy

Service operations are typically described in busi-

ness use cases where requirements are gathered. We

advocate the use of service-cases (see the section

‘‘Paradigm shift from OO to SOA’’ above for more

detail) as an alternative. We specify the nonfunc-

tional requirements affecting the quality of service

(QoS) (e.g., cost of transaction, performance,

availability, and security) for the service and its

operations. The nonfunctional requirements will be

used to commit resources for service components

that offer the services and to fund the realization

and maintenance of service components that will

ensure the delivery of the QoS over time.

We develop a service context diagram depicting the

service ecosystem for a group of related services

illustrating service consumers and service providers

and indicate the flow of messages between services

and the various underlying systems that implement

them. We describe the input, output, and error

messages for a service operation based on a

canonical message model defined earlier. We also

map parameters of service operations to the

parameters of existing asset interfaces so service

operations can be realized by leveraging those

interfaces. We identify the fit gap, specify how to

bridge the gap, and realize the gap using extension,

configuration, and customization in order to lever-

age existing assets.

Although services in SOA are stateless, state

management decisions ensure that the entities acted

upon during the service invocation are at the right

transactional state. We also document invocation

and messaging styles, such as one-way and request-

response, for the services. In a one-way message

exchange pattern, the sender gives a best effort to

WSDL

Service name

Port type name

Operation name

Figure 3
Service model mapping into IT implementation as WSDL using three different scenarios, noted in the
red numbered boxes

Scenario 2a

Scenario 1

Business/consulting

Scenario 3b

WSDL

Service name

Port type name

Operation name

WSDL

Service name

Port type name

Operation name

Scenario 2b

1

2

3

IT implementation IT implementation

WSDL

Service name

Port type name

Operation name

Operation name

Scenario 3a

WSDL

Service name

Port type name

Operation name

Functional area

Service

Service

Service operation
exposed

Service operation

Service

Service operation

Service

Service operation

exposed

exposed

exposed

exposed

exposed

IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008 ARSANJANI ET AL. 391

move a message from a source location to the

destination. In a request-response message ex-

change pattern, a client asks a service provider a

question and then receives the answer to the

question, which may be a fault or exception.

Subsystem analysis

Subsystems signify logical IT boundaries for busi-

ness functionality. Subsystems are identified by

functional decomposition of functional areas. Func-

tional areas and the subsystems that exist in those

functional areas are refined into coarse-grained

service components that are each responsible for a

functional aspect of the subsystem. A major output

of this task is a subsystem dependency diagram that

shows the dependencies of all subsystems and their

interfaces to one another and identifies underlying

existing assets. We typically apply OOAD within the

confine of subsystems to better partition object

graphs with fewer dependencies, as shown in

Figure 4 for XFS. This is in contrast to using OOAD

for the entire system and building traditionally

larger and more unwieldy object associations.

Component specification

During component specification we explore the use

of patterns that can help us to structure service

components into a set of functional components

(supporting business capabilities) and we look for

the technical components responsible for providing

auxiliary support from the perspective of technology

and infrastructure. As we perform OOAD within a

subsystem, we are able to specify the service

components that realize the subsystems. We model

the static and dynamic behavior of service compo-

nents by defining service component interfaces,

developing component diagrams, identifying de-

pendencies on functional and technical components,

and determining the internal flows of the compo-

nents. We select such patterns as the enterprise

component pattern
13

to represent the inner structure

of components for each of the service components

and, depending on the complexity and function of

the service components, all or a subset of the

enterprise component pattern is used to generate the

component specification, as shown in Figure 5 for

XFS.

Realization phase

We validate realization decisions by performing

technical feasibility exploration that seeks to exer-

cise the architectural decisions and highest project

risk factors through extensible prototypes designed

and developed early on.

Figure 4
Composition of a financial transaction processing subsystem

<<Subsystem>>
Financial transaction processing

<<Service component>>
Financial transaction processing

<<Functional component>>
Payment processing

<<Functional component>>
Account

<<Technical component>>
Rule engine

<<Functional component>>
Customer

<<Technical component>>
Reporting engine

<<Functional component>>
Transaction

<<Service component>>
Financial transaction reporting

ARSANJANI ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008392

Selection and instantiation of patterns is funda-

mental to successful and repeatable SOA deploy-

ment. We select corresponding pattern categories to

handle several problem domains including infor-

mation service patterns for information realiza-

tion,
14

enterprise service bus (ESB) patterns for

integration scenarios,
15

and rule patterns
16

for rule

realization.

Technical feasibility exploration and realization

decisions

Technical feasibility exploration is a way of assess-

ing, planning, and implementing key prototypes that

exercise the architectural constructs outlined in the

realization decisions and that have the highest

potential of impact and risk to the nonfunctional

(operational) requirements of the SOA-based solu-

tion. In technical feasibility exploration, we plan for

risk factors and technical challenges focusing on

nonfunctional requirements. One key task in reali-

zation is to detail and instantiate the SOA reference

architecture. It is recommended that technical

feasibility exploration be conducted for each of the

service interaction patterns chosen in the solution

based on layers of the SOA reference architecture.

Technical feasibility exploration designates interac-

tion patterns that are selected based on several

factors, including the maturity of the organization

adopting SOMA and its underlying technological

infrastructure.

SOA reference architecture layers

In SOMA, as we discover the key elements and

produce work products, we gradually populate a

reference architecture that provides a snapshot view

of our SOA. This view facilitates communication

and provides a representation of progress and

evolution of the SOA in one high-level diagram.

Multiple detailed work products support this high-

level view.

The layers of the SOA reference architecture
4,5

are

thus instantiated (Figure 6) as we go through the

SOMA 3.1 phases. The reference architecture pro-

vides a dashboard view of the artifacts that are

produced and where we are in the SOMA 3.1

process. It can be used to cover all aspects of SOA

development including the governance.

Implementation and deployment, monitoring,

and management phases

In the implementation phase, we construct, gener-

ate, and assemble service, functional, and technical

components that realize services, components, and

flows. We create necessary wrappers or other

mechanism by which an existing component can

Figure 5
Account management service component specification using the enterprise component pattern (static view)

<<Service component>>
Account management

<<Functional component>>
Account

<<Technical component>>
Rule engine

<<Functional component>>
Customer

<<Mediator>>
Account manager

<<Service component>>
Authorization service

openAccount
getBalance

<<Functional component>>
Transaction

IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008 ARSANJANI ET AL. 393

participate in realizing a service. In some cases,

existing assets are refactored and refined so that

they can be used to realize a service. We perform

unit, integration, and system testing for services,

components, and flows.

SOMA uses a variety of solution templates that

include support for custom development, packaged

application integration, legacy integration and

transformation, ESB design and use, and composite

business services. The implementation phase is

extended by activities and tasks from these solution

templates for different solution types in the overall

solution. Depending on the solution types, addi-

tional activities and tasks from the corresponding

solution templates are executed to create and update

the necessary artifacts.

In the deployment, monitoring, and management

phase, we focus on packaging, provisioning, exe-

cuting user-acceptance testing, and deployment of

services in the production environment. As in the

implementation phase, the deployment phase is also

extended by activities and tasks from solution

templates for different solution types in the overall

solution. In addition, SOMA provides support of

G
ov

er
na

nc
e

Q
oS

 la
ye

r
(S

ec
ur

it
y,

 m
an

ag
em

en
t,

an
d

m
on

it
or

in
g

in
fr

as
tr

uc
tu

re
 s

er
vi

ce
s)

In
te

gr
at

io
n

(E
n

te
rp

ri
se

 s
er

vi
ce

 b
u

s)
JM

S

Ev
en

t
m

an
ag

em
en

t

Re
po

rt
in

g
en

gi
ne

Au
di

tin
g

Au
th

or
iz

at
io

n
se

rv
ic

e

D
at

a
m

ed
ia

tio
n

Re
gi

st
ry

Pr
ot

oc
ol

m
ed

ia
tio

n

C
ac

hi
ng

fr
am

ew
or

k
D

at
a

ar
ch

it
ec

tu
re

(M
et

ad
at

a,
 a

nd
 b

u
si

ne
ss

 in
te

lli
ge

nc
e)

Operational systems

Retrieve customer information
Search customer
Create customer
Update customer

Candidate
services

Service components

Account
manage-
ment

Customer
profile

Account

Financial
transaction
reporting

Transaction Payment
processing

Existing
assets

Financial
transaction
processing

CRM

Technical
components

Services

Atomic and composite

O
pe

n
ac

co
un

t

G
et

ba
la

nc
e

D
ep

os
it

fu
nd

s

G
et

pa

ye
es

Va
lid

at
e

pa
ym

en
t

Ad
d

pa
ye

es

Pr
oc

es
s

pa
ym

en
t

W
ith

dr
aw

fu
nd

s

Tr
an

sf
er

fu
nd

s

Make payment

Business process

Consumers

Composition; choreography

Submit payment

Goal service
modeling Flows

Process
decomposition

IVR Web CSR

Figure 6
Instantiation of the SOA reference architecture for the case study

Se
rv

ic
e

pr
ov

id
er

Se
rv

ic
e

co
ns

um
er

Id
en

ti
fic

at
io

n
Sp

ec
ifi

ca
ti

on
R

ea
liz

at
io

n

Service
components

Functional
components

Customer

ARSANJANI ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008394

monitoring and management of business processes

and performance monitoring in the production

environment as part of this phase. SOMA also

provides linkages to runtime monitoring and man-

agement aspects, as in system, infrastructure, and

network management.

These later two phases of SOMA—implementation

and deployment, monitoring and management—are

outside the scope of this paper.

CONCLUSION
We have provided a synopsis of the key concepts,

activities, and tasks pertaining to a service-oriented

software engineering life-cycle method. We have

shown how to conduct service-oriented modeling to

build an SOA by using the IBM SOMA method. This

method has been developed over hundreds of

projects around the world in multiple industries.

SOMA provides a software engineering method for

building end-to-end SOA solutions. We have out-

lined the salient activities and tasks of SOA and

service-oriented modeling based on five years of

multi-industry experience.

A motivation for SOMA, gleaned from hundreds of

architecture, design, and technical reviews of client

projects, suggests that application architectures tend

to be brittle and inflexible (for a variety of reasons

which are beyond the scope of this paper).

However, what we learned is that the construct of a

service can be used to further realize proper

separation of concerns, resulting in IT architectures

that are easier to maintain and costs that are lower.

We know there is no single easy solution,
5

but at the

same time we have learned that IT organizations can

incrementally move IT architectures to reflect

increased loose coupling and to make technology

better represent how the business works and allow

the business to respond to change on its terms.

SOMA provides the detailed guidance for making

this goal achievable.

SOMA has a rich WBS that comprises activities,

tasks, and corresponding inputs and outputs. Scopes

for the enterprise can scale down to the simple

project testing of new Web services. It can be

configured to be leaner (SOMA Agile), to support

projects focused solely on integration or testing Web

services, or it can be configured to a more rigorous

method supporting business- or enterprise-wide

transformations (SOMA Complete). SOMA can be

used to support identification and prioritization of

high-priority services or it can be used to develop an

application or system adopting SOA.

Any project that adopts object orientation and

component-based development as part of its soft-

ware engineering practices should adopt the con-

struct of a service and its corresponding

identification, specification, and realization tech-

niques as a software engineering best practice.

Whether or not the service is exposed to external

partners is simply an architectural or business

decision; however, the service construct promotes

improved and recombinant separation of concerns

of components and objects in a manner that is not

presently done with other approaches.

SOA-based solutions will benefit from using the

prescriptive guidance provided as part of SOMA.

SOMA has a fractal life-cycle model that is used in

successive iterations of service releases, which

makes it possible for solutions to evolve beyond the

more traditional iterative and incremental changes.

ACKNOWLEDGMENTS
Many people at IBM worldwide have contributed to

the ideas and concepts represented in SOMA, and

they are too numerous to identify individually, but

we are appreciative of all of them. SOMA would not

have been possible without the contributions of our

esteemed colleagues.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc, Sun Microsystems, Inc., ACORD
Corporation, or TeleManagement Forum Corporation in the
United States, other countries, or both.

CITED REFERENCES
1. D. L. Parnas, ‘‘On the Criteria to be Used in Decomposing

Systems into Modules,’’ Communications of the ACM 15,
No. 12, 1053–1058 (1972).

2. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley, Boston
(1999).

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software
Architecture, Addison-Wesley Professional, Boston
(1995).

4. A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam, and K.
Channabasavaiah, ‘‘S3: A Service-Oriented Reference
Architecture,’’ IEEE IT Professional 9, No. 3, 10–17
(2007).

5. A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam, and K.
Channabasavaiah, ‘‘Design an SOA Solution Using a
Reference Architecture,’’ IBM developerWorks, IBM

IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008 ARSANJANI ET AL. 395

Corporation (2007), http://www.ibm.com/
developerworks/library/ar-archtemp/.

6. O. Zimmerman, P. Krogdahl, and C. Gee, ‘‘Elements of
Service-Oriented Analysis and Design,’’ IBM developer-
Works, IBM Corporation (2004), http://www.ibm.com/
developerworks/library/ws-soad1/.

7. A. Arsanjani and K. Holley, ‘‘The Service Integration
Maturity Model: Achieving Flexibility in the Transfor-
mation to SOA,’’ Proceedings of the IEEE International
Conference on Services Computing, Chicago (2006),
pp. 515.

8. A. Arsanjani, ‘‘Service-oriented Modeling and Architec-
ture: How to Identify, Specify and Realize Services for
Your SOA,’’ IBM developerWorks, IBM Corporation
(2004), http://www.ibm.com/developerworks/library/
ws-soa-design1/.

9. R. Varadan, K. Channabasavaiah, S. Simpson, K. Holley,
and A. Allam, ‘‘Increasing Business Flexibility and SOA
Adoption Through Effective SOA Governance,’’ IBM
Systems Journal 47, No. 3, 473–488 (2008, this issue).

10. B. W. Boehm, ‘‘A Spiral Model of Software Development
and Enhancement,’’ IEEE Computer 21, No. 5, 61–72
(1988).

11. L. Bass, P. Clements, and R. Kazman, Software Architec-
ture in Practice, Addison-Wesley Professional, Boston
(1998).

12. L.-J. Zhang, A. Arsanjani, A. Allam, D. Lu, and Y.-M.
Chee, Proceedings of the IEEE International Conference on
Services Computing,‘‘Variation-Oriented Analysis for SOA
Solution Design,’’ Salt Lake City, UT, (2007),
pp. 560–568.

13. K. Levi and A. Arsanjani, ‘‘A Goal-driven Approach to
Enterprise Component Identification and Specification,’’
Communications of the ACM 45, No. 10, 45–52 (2002).

14. G. Sauter, B. Mathews, M. Selvage, and E. Lane,
‘‘Information Service Patterns, Part 1: Data Federation
Pattern,’’ IBM developerWorks, IBM Corporation (2006),
http://www-128.ibm.com/developerworks/
webservices/library/ws-soa-infoserv1/.

15. M. Keen, O. Adinolfi, S. Hemmings, A. Humphreys, H.
Kanthi, and A. Nottingham, ‘‘Patterns: SOA with an
Enterprise Service Bus in WebSphere Application Server
V6,’’ IBM Redbooks (2005), http://www.redbooks.ibm.
com/abstracts/sg246494.html.

16. A. Arsanjani, ‘‘Rule Object 2001: A Pattern Language for
Adaptive and Scalable Business Rule Construction,’’
Proceedings of the 8th Conference on Pattern Languages of
Programs, Monticello, IL (2001), http://jerry.cs.uiuc.
edu/;plop/plop2001/accepted_submissions/PLoP2001/
AArsanjani1/PLoP2001_AArsanjani1_0.pdf.

Accepted for publication February 7, 2008.

Ali Arsanjani
IBM Global Business Services, 625 32nd Avenue SW, Suite 130,
Cedar Rapids, IA 52404 (arsanjan@us.ibm.com). Dr. Arsanjani
is an IBM Distinguished Engineer and Chief Technical
Officer, Emerging SOA Technologies, supporting larger IBM
clients in complex, distributed projects. He leads the 6000-
member IBM SOA Community of Practice and is a member of
the IEEE and the IBM Academy of Technology. He received a
Ph.D. degree in computer science and engineering from
DeMontfort University, U.K.

Shuvanker Ghosh
IBM Global Business Services, 3031 N. Rocky Point Drive West,
Tampa, FL 33607 (sghosh@us.ibm.com). Mr. Ghosh is a
member of the SOA and Web Services Center of Excellence,
supporting IBM clients in financial services and health care.
He is a member of the IBM SOMA team. His interests include
SOA, industry models, assets and solution, component-based
development, and distributed computing. He received a B.S.
degree in mechanical engineering from the Indian Institute of
Technology (IIT), India, and an M.S. degree in mechanical
engineering from the University of Maryland at College Park.

Abdul Allam
IBM Global Business Services, 3100 Smoketree Court, Raleigh,
NC 27604 (allam@us.ibm.com). Mr. Allam is a certified
executive IT architect in application development practice. He
has published several papers on SOA and SOA reference
architecture for IBM developerWorks and IEEE publications.
His current focus is developing SOA estimation models, SOA
reference architecture, and context-aware services. He holds
an M.S. degree in systems science and an M.B.A. degree, both
from the University of Ottawa.

Tina Abdollah
IBM Global Business Services, 100 N. Sepulveda Boulevard, El
Segundo, CA 90245 (abdollah@us.ibm.com). Ms. Abdollah is
a certified executive IT architect in the Enterprise and
Architecture Technology practice. She is a member of the SOA
and Web Services Center of Excellence and SOMA and SOA
acceleration teams. She was awarded the 2007 EA&T Best
Efforts Award, the 2007 National Women of Color Technology
All-Stars Award, and an IBM developerWorks Author Award.
She received a B.S. degree in economics from the National
Cheng-chi University of the Republic of China, a B.S. degree in
computer information science from Santa Monica College, and
an M.S. degree in library and information science from the
University of California at Los Angeles.

Sella Ganapathy
IBM Global Business Services, 4400 N. 1st Street, Suite 100, San
Jose, CA 95134 (sellag@us.ibm.com). Mr. Ganapathy is a
senior IT architect and senior certified IT specialist and a
member of the IBM SOMA team. His interest is in developing
and deploying the SOMA method for implementing SOAs. He
also has expertise in enterprise application integration. He
received an M.S. degree in industrial engineering from the Dr.
Ambedkar Institute of Productivity, India, and a B.S. degree in
chemical engineering from Annamalai University, India.

Kerrie Holley
IBM Global Business Services, 425 Market Street, San
Francisco, CA 94105 (klholley@us.ibm.com). Mr. Holley is an
IBM Fellow. He is the chief technical officer (CTO) of the IBM
SOA CoE and a member of the IBM Academy of Technology.
His responsibilities include technical leadership for SOA
projects, architecture and design, technical oversight,
enterprise architecture design, and IT strategy. As CTO, he is
responsible for IBM SOA delivery methods and related tools.
His focus is on helping customers realize the sustained
benefits of applying SOA. As an IBM Fellow, he helps define
IBM SOA strategy and direction. He has a B.A. degree in
mathematics from DePaul University and a J.D. degree in law
from the DePaul School of Law. &

ARSANJANI ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 3, 2008396

Published online August 6, 2008.

