
Ad Hoc Networks 13 (2014) 535–548
Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
Clustering in Vehicular Ad Hoc Networks using Affinity
Propagation
1570-8705/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.adhoc.2013.10.005

⇑ Corresponding author. Tel.: +1 647 710 7598.
E-mail addresses: behnam@comm.utoronto.ca (B. Hassanabadi),

c.shea@utoronto.ca (C. Shea), lzhang@comm.utoronto.ca (L. Zhang),
valaee@comm.utoronto.ca (S. Valaee).
B. Hassanabadi ⇑, C. Shea, L. Zhang, S. Valaee
Electrical and Computer Engineering Department, University of Toronto, Toronto, ON M5S 2E4, Canada
a r t i c l e i n f o

Article history:
Received 8 July 2012
Received in revised form 29 September 2013
Accepted 8 October 2013
Available online 20 October 2013

Keywords:
Ad Hoc Networks
Vehicular networks
Clustering
Affinity Propagation
a b s t r a c t

The need for an effective clustering algorithm for Vehicular Ad Hoc Networks (VANETs) is
motivated by the recent research in cluster-based MAC and routing schemes. VANETs are
highly dynamic and have harsh channel conditions, thus a suitable clustering algorithm
must be robust to channel error and must consider node mobility during cluster formation.
This work presents a novel, mobility-based clustering scheme for Vehicular Ad hoc Net-
works, which forms clusters using the Affinity Propagation algorithm in a distributed man-
ner. This proposed algorithm considers node mobility during cluster formation and
produces clusters with high stability. Cluster performance was measured in terms of aver-
age clusterhead duration, average cluster member duration, average rate of clusterhead
change, and average number of clusters. The proposed algorithm is also robust to channel
error and exhibits reasonable overhead. Simulation results confirm the superior perfor-
mance, when compared to other mobility-based clustering techniques.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Vehicular Ad Hoc Networks (VANETs) are an emerging
field of research that will help improve road safety, naviga-
tion, and congestion. VANETs will enhance driver safety
and reduce traffic deaths and injuries by implementing
collision avoidance and warning systems. In addition, VA-
NETs will enable the dissemination of traffic and road con-
dition. This will aid in navigation and relieve traffic
congestion by providing a driver with live routes that avoid
road hazards and bottleneck areas. The vast sensor net-
work that VANETs will create, is inciting countless other
applications, and making VANETs a hot topic in ad hoc net-
working today.

The VANET environment contains many challenges for
communication, many of which can be addressed by a
clustered network. As highlighted in [1], VANETs suffer
from high mobility and high node-density, which lead to
channel congestion and the hidden terminal problem. VA-
NETs have a highly-mobile environment with a rapidly
changing network topology. Clustering the vehicles into
groups of similar mobility will reduce the relative mobility
between communicating neighbor nodes, and simplify
routing. VANETs demand a high frequency of broadcast
messages to keep the surrounding vehicles updated on po-
sition and safety information. These broadcasts lead to the
‘‘broadcast storm problem’’ [2], which describes the result-
ing congestion in the network. Both [2,3] recommend a
clustered topology to effectively alleviate this congestion.
In addition, both delay-sensitive (e.g. safety messages)
and delay-tolerant (e.g. road/weather information) data
will need to be transmitted, necessitating Quality-of-Ser-
vice (QoS) requirements. Clustering the network will aid
in supporting these QoS requirements as shown in [4].

There has been much research on cluster-based VANETs
in the recent literature, most of which has been focused on
developing cluster-based MAC protocols, as in [5–11] and
cluster-based routing protocols, as in [12,13]. In [6,11],
the clusterhead (CH) takes on a managerial role and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2013.10.005&domain=pdf
http://dx.doi.org/10.1016/j.adhoc.2013.10.005
mailto:behnam@comm.utoronto.ca
mailto:c.shea@utoronto.ca
mailto:lzhang@comm.utoronto.ca
mailto:valaee@comm.utoronto.ca
http://dx.doi.org/10.1016/j.adhoc.2013.10.005
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

536 B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548
facilitates intra-cluster communication by providing a
TDMA schedule to its cluster members. In [11], adjacent
clusters are assigned different CDMA codes to avoid inter-
ference between clusters. The work in [11] shows a sub-
stantial reduction in probability of message delivery
failure, when compared to traditional 802.11 MAC.

By introducing clustering we create a hierarchy in the
network. The communication can be divided into cluster
member to clusterhead and clusterhead to clusterhead
communications. By allocating different channels to differ-
ent clusters, the effect of interference and hidden node ter-
minals can be reduced. Using clustering, a local
infrastructure-based network is formed in which a cluster-
head acts as an access point for cluster members. The clus-
terhead can then coordinate the transmissions in order to
reduce packet collisions and to maximize the throughput.

The recent research in cluster-based MAC and routing
protocols for VANETs motivates the need for an effective
VANET clustering scheme. The clustering algorithms sug-
gested in this research have low complexity and take
advantage of node mobility more effectively. For highly-
mobile networks, mobility must be considered during the
clustering process in order to ensure cluster stability. Since
the clusters provide the foundation for cluster-based MAC
and routing schemes, cluster stability is vital for achieving
reliable communication.

In addition to stability, an effective clustering algorithm
must be robust to the harsh channel conditions present in
the VANET environment. As discussed in [1], VANETs have
unreliable radio channel characteristics. The high mobility
of the environment and numerous reflective obstacles lead
to shadowing and multipath fading. It is thus important to
evaluate the robustness of the algorithm when channel er-
ror is present.

In this paper, we propose a distributed mobility-based
clustering algorithm for VANETs called APROVE. The pro-
posed algorithm possesses excellent cluster stability,
where stability is defined by long clusterhead duration,
long cluster member duration, and low rate of clusterhead
change. In addition, our algorithm is robust to channel er-
ror and exhibits a reasonable overhead. We achieve this
algorithm by utilizing Affinity Propagation (AP) [14]. Our
clustering scheme uses vehicles’ position (provided by
GPS) and velocity information to form clusters with low
relative mobility between the clusterheads and their clus-
ter members.

An earlier version of APROVE was first introduced in
[15]. In [15] we presented a preliminary version of the
algorithm with basic simulation results where we com-
pared the clustering performance with MOBIC [16], a
well stablished clustering algorithm in mobile ad hoc
networks. In this work, we propose a revised version
of APROVE to improve and extend the our work as
follows:

� Asynchronous APROVE is proposed. There is no syn-
chronization overhead which is an obvious advantage
particularly when there is congestion.
� An aggregated message passing algorithm is proposed

in which responsibility and availability messages are
aggregated into a single HELLO message.
� A cluster head contention subroutine is introduced to
reduce the number of clusters being produced.
� Analysis of overhead, convergence, and channel error is

presented. Furthermore, new simulation results are
added to observe the effect of channel error and to char-
acterize the overhead.
� In addition to MOBIC, performance comparisons are

made with two recent clustering algorithms for vehicu-
lar networks: Aggregate Local Mobility (ALM) clustering
[17] and Position-based Prioritized Clustering (PPC)
[18].

The rest of this paper is organized as follows. Section 2
discusses the related work in VANET and MANET cluster-
ing. Section 3 presents the Affinity Propagation algorithm.
Section 4 introduces the APROVE clustering algorithm, and
the algorithm’s operation is analysed and discussed in Sec-
tion 5. Section 6 presents the simulation results, and finally
Section 7 concludes the paper.
2. Related work

Much of the recent VANET research discussing
cluster-based MACs and routing schemes, also present a
low-maintenance clustering algorithm. Each of these algo-
rithms works essentially the same way, whereby nodes
periodically transmit HELLO beacons to indicate their pres-
ent state. States can be one of the following: Undecided,
Clusterhead, Cluster Member, and sometimes Gateway.
An undecided node will join the first CH that it hears a
HELLO beacon from (or join all CHs if Gateway nodes are
allowed). If the node does not hear from a CH within a gi-
ven time period, it will become a CH itself. In addition, pro-
tocols are introduced to deal with colliding clusters, which
occurs when two clusterheads come within range of one
another. During a cluster collision, one clusterhead decides
to give up its status to the other. This technique is used by
[11,13] without regard for mobility. In [6], mobility is ad-
dressed during cluster collision, whereby the winning clus-
terhead is the one with both lower relative mobility and
closer proximity to its members. Alternatively, [10] ad-
dresses mobility by first classifying nodes into speed
groups, such that nodes will only join a clusterhead of sim-
ilar velocity.

The above clustering techniques offer low complexity,
but in the highly mobile VANET environment, they are
lacking in cluster stability. The algorithms do not have a
proactive approach to cluster stability, in that they make
no attempt to select a stable CH during initial clusterhead
election. Node mobility must be taken into consideration
in order to achieve stability, however many of the pro-
posed techniques ignore it. Mobility is considered in [6]
as a reactive measure, in that it is only considered after
two clusters collide. The use of cluster speed groups in
[10] may improve stability, but the large variations in the
predefined speed groups (e.g. 60–110 km/h) will still allow
high relative mobility inside the clusters.

In order to achieve the necessary cluster stability,
mobility should play an integral role in initial cluster for-
mation. A well-known and effective mobility-based

B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548 537
clustering technique for ad hoc networks is MOBIC [16],
which is an extension of the Lowest-ID algorithm [19]. In
Lowest-ID, each node is assigned a unique ID, and the node
with the lowest ID in its two-hop neighborhood is elected
to be the clusterhead. In MOBIC, an aggregate local mobil-
ity metric is the basis for cluster formation instead of node
ID. This metric considers a node’s relative mobility to each
of its neighbors, and the node with the lowest local mobil-
ity is elected as the clusterhead. The relative mobility from
one node to its neighbor is estimated by comparing the re-
ceived power of two consecutive messages from the neigh-
boring node. Clusterhead re-election only occurs when two
clusterheads move within range of one another for a cer-
tain contention interval. When a cluster member moves
out of range of its clusterhead, it joins any current cluster-
head in its neighborhood, or forms a new cluster.

A refinement of MOBIC called Aggregate Local Mobility
(ALM) clustering was proposed in ALM [17]. In ALM, nodes
are assumed to be GPS-enabled and use the piggybacked
position information of their neighbors to calculate their
relative mobility metrics. When a cluster member moves
out of range of all existing clusterheads, it will go to and re-
main in the undecided state for a period of time. It will be-
come its own clusterhead only if no other clusterheads
come into range while it is undecided.

Another approach is called Position-based Prioritized
Clustering (PPC) [18], in which each node is assumed to
use an on-board navigation system. Using the destination
location, desired driving speed and traffic information,
the node estimates the time a node will travel on a given
road and the average velocity for that duration. The PPC
algorithm uses the latter two factors in calculating a node’s
priority in becoming a clusterhead. It favors nodes with
high travel times, but assesses a heavy penalty to nodes
whose actual velocity deviates from its average velocity.
3. Affinity Propagation

The clustering discussed thus far is from an ad hoc net-
working perspective. Clustering is also used in scientific
data analysis, where it is designed to process and detect
patterns in data. Data clustering is a static, one-shot pro-
cess that searches data for a set of centers, or exemplars,
which best describe the data. In this context, clustering
aims to minimize the distance between each data point
and its assigned exemplar, where distance could be Euclid-
ean distance, or any other application-specific function. A
revolutionary new technique for data clustering is the
Affinity Propagation (AP) algorithm [14], which has been
shown to produce clusters in much less time, and with
much less error than traditional techniques (such as K-
means clustering [20]). Here, clustering error refers to
the application-specific distance between each data point
and its assigned exemplar. In Affinity Propagation, data
points pass messages to one another, which describe the
current affinity that one data point has for choosing an-
other data point as its exemplar.

This algorithm takes an input function of similarities,
s(i, j), where s(i, j) reflects how well suited data point j is
to be the exemplar of data point i. Affinity Propagation
aims to maximize the similarity s(i, j) for every data point
i and its chosen exemplar j, therefore an application requir-
ing a minimization (e.g. Euclidean distance) should have a
negative similarity function. Each node i also has a self-
similarity, s(i, i), which influences the number of exemplars
that are identified. Individual data points that are initial-
ized with a larger self-similarity are more likely to become
exemplars. If all the data points are initialized with the
same constant self-similarity, then all data points are
equally likely to become exemplars. By increasing and
decreasing this common self-similarity input, the number
of clusters produced is increased and decreased
respectively.

There are two types of messages passed in this tech-
nique. The responsibility, r(i, j), is sent from i to candidate
exemplar j and indicates how well suited j is to be i’s exem-
plar, taking into account competing potential exemplars.
The availability, a(i, j), is sent from candidate exemplar j
back to i, and indicates j’s desire to be an exemplar for i
based on supporting feedback from other data points.
The self-responsibility, r(i, i) and self-availability, a(i, i), both
reflect accumulated evidence that i is an exemplar.

The update formulas for responsibility and availability
are stated below:

rði; jÞ sði; jÞ � max
j0s:t:j0–j

aði; j0Þ þ sði; j0Þ
� �

ð1Þ

aði; jÞ
i–j
 min 0; rðj; jÞ þ

X
8i0Rfi;jg

max 0; rði0; jÞ
� �

8<
:

9=
; ð2Þ

aðj; jÞ
X

i0s:t:i0–j

max 0; rði0; jÞ
� �

ð3Þ

In (1), the responsibility of the candidate exemplar j for
node i is updated by the similarity of the two nodes minus
the maximum of the addition of the similarity and availabil-
ity of other potential exemplars for node i. The maximum
term quantifies how well the best candidate exemplar is sui-
ted to be the cluster head for node i. In (2) the availability of
candidate exemplar j for node i is related to the self respon-
sibility of node j and the responsibility of the candidate
exemplar j for other nodes. Using the minimum function
the availability is forced to be a positive number. The more
node j is collectively responsible for other neighbors and it-
self, the more it will be available for node i as an exemplar.
Similar to (2), in (3), the self-availability of node j is related
to its responsibility for other nodes.

Responsibility and availability message updates must be
damped to avoid numerical oscillations that will prevent the
algorithm from converging. This is done by updating new
messages as follows: mk = bmk + amk�1, where a + b = 1
and a and b are damping factors between 0 and 1 and mk

is the responsibility or availability message. In Affinity Prop-
agation, the exemplar of each node i is found as follows:

exemplari ¼ arg max
j
faði; jÞ þ rði; jÞg ð4Þ

In (4), the exemplar for node i is defined to be the node
with the maximum collective availability and responsibil-
ity for node i.

538 B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548
The algorithm may be terminated once exemplar deci-
sions become constant for some number of iterations,
implying that the algorithm has converged. Another useful
feature of the algorithm is the ability to determine when a
specific data point has converged to exemplar status in its
given cluster. When a data point’s self-responsibility plus
self-availability becomes positive, that data point has be-
come the exemplar.

4. Proposed VANET clustering scheme

The proposed clustering technique uses the fundamen-
tal idea of Affinity Propagation from a communications
perspective and in a distributed manner. We call this algo-
rithm, Affinity PROpagation for VEhiclar networks
(APROVE). In our algorithm, each node in the network
transmits the responsibility and availability messages to
its neighbors, and then makes a decision on clustering
independently. This results, in a distributed algorithm,
where every node is only clustering with those in its
one-hop neighborhood.

4.1. Similarity function

We design a similarity function for our algorithm that is
tailored to the VANET environment and produces stable
clusters. Our similarity function, shown below in (5), is a
combination of the negative Euclidean distance between
node positions now and the negative Euclidean distance
between node positions in the future. This is a simple
way to consider both node position and node mobility in
cluster creation.

sði; jÞ ¼ � xi � xj

�� ��þ kx0i � x0jk
� �

ð5Þ

xi ¼
xi

yi

� �
; x0i ¼

xi þ vx;isf

yi þ vy;isf

� �

where xi is a vector of node i’s current position, and x0i is a
vector of node i’s predicted future position. The function
predicts each node i’s future position in sf seconds from
now, based on node i’s current velocity vx,i in the x direc-
tion and velocity vy,i in the y direction. The Future Prediction
Period, sf, can be tuned for different types of mobility.

The similarity function, s(i, j) represents the log-likeli-
hood that node j is the clusterhead of node i, and the
self-similarity (input preference), s(i, i), represents the prior
probability that node i is a clusterhead. The self-similari-
ties are tuned to the mobility scenario during simulations,
such that a minimum number of clusters is produced for a
given vehicle broadcast range. We assign the same self-
similarity to all vehicles, which gives them an equal likeli-
hood of becoming the clusterhead. However, it is possible
to assign certain vehicles (such as large trucks) a higher
preference, which will make them more likely to become
the clusterhead.

4.2. Message updating and the neighbor list

The APROVE messages are broadcast periodically with a
period of TH, where time is denoted by k = TH � {0, 1, 2, . . .}
seconds. The responsibility and availability messages asso-
ciated with the current time interval are defined as ri,j(k)
and aj,i(k) respectively. The messages associated with the
previous time interval are defined as ri,j(k � 1) and aj,i(-
k � 1). Each node, i, will have its current transmitted mes-
sages at time k, however it will not always have its current
received messages (due to delay, message error, or colli-
sion). Node i stores each of the neighbor’s last received
messages, along with other pertinent information, in a
neighbor list. For notation purposes, a message transmitted
from i to j at time k is denoted, ri,j(k), whereas the last re-
ceived message at i from j is denoted r(i, j).

4.2.1. The neighbor list
Every node i will maintain a neighbor list, Ni, which has

a neighbor list entry, Ni
j, for every neighbor j. Each neigh-

bor list entry, Ni
j contains the following fields:
(x,y)j:
 position vector of node j

(vx,vy)j:
 velocity vector of node j

s(i, j):
 similarity for i and j

r(j, i):
 last responsibility received from j

r(i, j):
 last responsibility transmitted to j

a(i, j):
 last availability received from j

a(j, i):
 last availability transmitted to j

CHcnvg,j:
 log-odds of clusterhead convergence for j

CHj:
 clusterhead status flag for node j

texpire:
 time that node j expires
Note that the r(i, j) and a(j, i) entries are equivalent to r (-
i,j

k � 1) and aj,i(k � 1), respectively. Node i should compute its
transmitted responsibility and availability messages, and
then store them in the neighbor list at the end of every time
interval, k, for use in the succeeding time interval, k + 1. Each
node i should also maintain a self-entry, Ni

i.

4.2.2. APROVE message update rules
The availability and responsibility messages for

APROVE are based on Affinity Propagation. The message
update rules are as follows:

ri;jðkÞ ¼ a si;jðkÞ �max
j0–j

ai;j0 ðkÞ þ si;j0 ðkÞ
� �� �

þ b ri;jðk� 1Þ

ð6Þ

aj;iðkÞ
j–i
¼ a min 0; ri;iðkÞ þ

X
j0–j;i

max 0; rj0 ;iðkÞ
� �

8<
:

9=
;

þ b aj;iðk� 1Þ ð7Þ

aj;jðkÞ ¼ a
X
j0–i

maxf0; rj;iðkÞg þ b ai;iðk� 1Þ ð8Þ

where a + b = 1. The a and b factors provide damping on
the message updates, which prevents oscillation in affinity
propagation.

4.3. APROVE message passing

In this section we present an ‘‘aggregated’’ message
passing procedure for the APROVE algorithm, where all

B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548 539
APROVE related messages are broadcast in the same HEL-

LO beacon. This approach improves the overhead of the
‘‘segregated’’ message passing procedure presented in
[15], where availability and responsibility messages were
broadcast separately.

Each node i will periodically broadcast a HELLO beacon
containing all of the necessary information for the APROVE
algorithm. The hello beacon broadcast period, TH, was set
to 1 s in our simulations. The HELLO packet for node i con-
tains its: ID, position, velocity, current clusterhead status,
responsibility and availability for each of i’s neighboring
nodes, and current clusterhead convergence status. Node
i will calculate its responsibility for each neighbor j, ri,j(k),
using (6) and its availability for each neighbor j, aj,i(k),
using (7). These values are damped with the previous
transmitted responsibility and availability messages with
a damping factor of 0.5. Node i then stores ri,j(k) and aj,i(k)
in the responsibility array, Ri, and availability array, Ai,
respectively. These values are stored at the next available
array index, n. The node ID associated with the nth element
of the responsibility and availability arrays is stored in the
index array, Ii, at the same index n. This index array maps
the array indices to their associated node IDs. Next, the
self-responsibility and self-availability are calculated with
(6) and (8) respectively. The responsibility, availability,
and index arrays are broadcast in the HELLO broadcast
beacon.

The HELLO packet also includes the CHcnvg,i value,
where CHcnvg,i(k) = rii(k) + aii(k). Due to the nature of the
affinity propagation algorithm, a node’s self-responsibil-
ity plus self-availability gives the log-odd probability that
it will become a clusterhead. A positive CHcnvg,i value
indicates that node i has become the best clusterhead
amongst its neighbors, and has thus converged to clus-
terhead status. For every iteration of the algorithm, each
node i updates its CHcnvg,i value accordingly and broad-
casts it to its neighbors in the HELLO beacon. This value
indicates to i’s neighbor nodes whether or not they
should consider i as a potential clusterhead. The com-
plete HELLO broadcast procedure is outlined in Proce-
dure 1.

Procedure 1. Broadcast of HELLO Beacons

For every k = TH � {0, 1, 2, . . .} seconds, each node i will:
1. Calculate responsibility, ri,j(k) for each neighbor j
using (6), (a = b = 0.5).
2. Calculate availability, aj,i(k) for each neighbor j
using (7), (a = b = 0.5).
3. Store responsibility for neighbor j, in
responsibility array: Ri[n] = ri,j(k)
4. Store availability for neighbor j, in availability
array: Ai[n] = aj,i(k)
5. Store the ID of j in the index array: Ii[n] = j
6. Update CH convergence values:

CHcnvg(k) = ri,i(k) + ai,i(k)
7. Update CHj for each neighbor j
8. Broadcast HELLO beacon:
hj, (x,y)j, (vx,vy)j,CHj(k),Ri,Ai, Ii,CHcnvg(k)i
Upon reception of a HELLO beacon from node j, node i
will calculate its current similarity with j, si,j(k), using (5)
and update the position, velocity and similarity fields in
its neighbor list entry for j. A node only considers neigh-
bors moving in the same direction, and ignores broadcasts
from traffic in the opposite direction. Node i then searches
for its ID in the index array, Ij. If found, it will read its spe-
cific responsibility and availability messages from the Rj

and Aj arrays. These messages are stored in the received
message fields, r(j, i) or a(i, j) of j’s neighbor list entry, Nj

i.
Node i will also update the CHj and CHcnvg,j fields in j’s
neighbor list entry. This routine is summarized in Proce-
dure 2.
Procedure 2. Reception of HELLO Beacons
Upon reception of a HELLO packet from node j, node i
will:
1. Check if j is traveling in the same direction. If
false, do nothing.
2. Else, calculate its similarity with j,si,j(k).
3. Search for its ID in the Ij index array. If found,
Ij[n] = i, read the appropriate responsibility and
availability messages at Rj[n] and Aj[n].
4. Receive and store CHcnvg,j value.

5. Add/update j’s neighbor list entry, Nj
i:

hj, (x,y)j, (vx,vy)j,s(i, j), CHj,a(i, j),r(j, i), texpire,CHcnvg,ji

There are some important notes regarding the passing
of availability and responsibility messages. First, the mes-
sages are not reset once cluster decisions are made, which
gives memory to the algorithm and provides preference to
previous clusterheads. This feedback results in less fre-
quent cluster changes. Second, the message passing does
not have to be fully synchronous. Assuming no channel er-
ror or collisions, if every node broadcasts messages with a
period of TH, no matter when the messages are transmitted,
the received messages and thus neighbor list entries, will
be at most one TH old. A vehicle’s change in mobility and
position over one TH is small, thus the algorithm’s perfor-
mance will not be effected. If channel error is introduced,
the neighbor list entries will become outdated, leading to
performance degradation. The effects of channel error are
discussed in Section 5.4. Although synchronization is not
required for the message passing in APROVE, it may be re-
quired when making clusterhead decisions, as discussed in
the next section.
4.4. Clusterhead selection and maintenance

In this section, we introduce two different procedures
for the selection and maintenance of clusterheads. The first
APROVE method uses a Clustering Interval time, CI, where-
by all nodes make their clusterhead decisions every CI sec-
onds. This method requires some synchronization amongst
nodes, such that the cluster decisions are all made in the
same time period. The second method does not require a

540 B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548
clustering interval, which allows it to operate completely
asynchronously. For the rest of this paper, the first method
is denoted APROVE and the second method is denoted
Asynchronous APROVE.

The clusterhead decision and maintenance procedures
discussed in this section, involve several different cluster-
head flags and fields. To avoid confusion amongst them,
these various fields are summarized in Table 1.

4.4.1. APROVE
In this first method, clustering decisions are made peri-

odically with a period of CI called the Clustering Interval.
Note that the TH message period must be small enough
to allow the algorithm to converge within a CI period. Pre-
liminary simulations show that a neighborhood of 40
nodes can always converge in under 10 iterations. There-
fore a TH of 1s, requires a minimum CI of 10 s.

Every CI, if node i’s CHcnvg,i > 0, then node i becomes a
clusterhead: myCHi = i. Otherwise, node i finds its cluster-
head as follows:

8 Nj
i 2 Ni : CHcnvg;j > 0;

myCHi ¼ arg max
j
faði; jÞ þ rði; jÞg ð9Þ

Node i chooses its neighbor with the maximum received
availability plus transmitted responsibility, but it only con-
siders its neighbors with CHcnvg,j > 0. A positive CHcnvg,j,
indicates node j will become a clusterhead. Therefore, by
selecting its clusterhead amongst neighbors with
CHcnvg,j > 0, node i will be ensured a valid clusterhead. Clus-
terhead selection is summarized in Procedure 3.

Procedure 3. Clusterhead Selection in APROVE
Every CI seconds, node i will check the following:
1. if CHcnvg,i > 0

then myCHi = i

2. else for all Nj
i 2 Ni : CHcnvg;j > 0 do

myCHi = arg maxj{ai,j(k) + ri,j(k)}

if CHcnvg;j < 0;8Nj
i 2 Ni

then myCHi = i

In between clustering iterations of CI, we perform clus-
ter maintenance to ensure the ongoing validity of each
node’s current clusterhead. Every TCM (the period of cluster
maintenance), node i purges its neighbor list of old entries
by checking the texpire fields. Next, node i checks the status
of its clusterhead. If myCHi = j, and node j was purged or is
Table 1
A summary of the different clusterhead fields.

Field Name Description

CHcnvg,i Clusterhead Convergence
Value (Log-Odds)

Indicates the log-odds that node i h
clusterhead when the next clusteri

CHi Current Clusterhead Status
Flag

Indicates if node i is currently a clu

myCHi Current Clusterhead Indicates the index of node i’s curr
not currently a clusterhead, CHj = 0, then node i’s cluster-
head has been lost. If the clusterhead has been lost, node
i chooses one of its neighbors that is currently a cluster-
head as follows:

8 Nj
i 2 Ni : CHj ¼ 1;

myCHi ¼ arg max
j
faði; jÞ þ rði; jÞg ð10Þ

The CHcnvg,j flag is not used here, since it indicates the po-
tential clusterheads for the next round, not the current
clusterheads. If node i cannot find another neighbor that
is currently a clusterhead, it becomes its own clusterhead.

To avoid excess clusterheads being created in between
cluster decision intervals, a clusterhead contention subrou-
tine is performed during cluster maintenance. Clusterhead
contention occurs when two clusterheads come within
range of one another for more than the Cluster Contention
Time, CCT. The CCT allows for temporary clusterhead con-
tention, which occurs with passing clusterheads. During
clusterhead contention, CHcnvg,i is used to determine the
winning clusterhead. For example, if clusterhead j comes
within range of clusterhead i for more than the Cluster
Contention Time, node i compares CHcnvg,i with CHcnvg,j. If
CHcnvg,i < CHcnvg,j, then i relinquishes its clusterhead status,
otherwise it remains unchanged. If i has to relinquish its
clusterhead status, then it will choose a new clusterhead
using (10). The cluster members that used to belong to i
will see that i has reset its CH status flag, CHi = 0, which
will cause them to make new clusterhead decisions as well.
Cluster maintenance is summarized in Procedure 4.

Procedure 4. Cluster Maintenance in APROVE

Every TCM seconds, node i will check the following:

1. if current_time >texpire,j for any Nj
i 2 Ni

then Purge Nj
i from neighbor list

2. if myCHi = j and (CHj = 0 or Nj
i expired)

then lostCH = 1

3. if CHi = 1 and CHj = 1 for any Nj
i 2 Ni for more

than CTO seconds
and CHcnvg,i < CHcnvg,j

then lostCH = 1
4. if lostCH = 1 then

for all Nj
i 2 Ni : CHj ¼ 1 do

myCHi = arg maxj{ai,j(k) + ri,j(k)}

else if CHj ¼ 0;8Nj
i 2 Ni

then myCHi = i
as converged to clusterhead status. If CHcnvg,i > 0, node i will become a
ng decisions are made
sterhead. 1: true, 0: false

ent clusterhead. If myCHi = j, node j is the clusterhead of i

B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548 541
4.4.2. Asynchronous APROVE
The main limitation of the previous APROVE method, is
the synchronization that is required amongst the cluster-
ing intervals, CI. We now present a second method called
Asynchronous APROVE, which eliminates the clustering
interval and thus eliminates the synchronization require-
ment. Instead of CI controlling when clusterhead decisions
are made, node i’s CHcnvg,i value indicates when i should as-
sume or relinquish clusterhead status. If node i is without a
clusterhead, and its CHcnvg,i > 0, then node i will become a
clusterhead. If node i has no clusterhead, and its
CHcnvg,i < 0, then it will choose the best current clusterhead
in its neighbor list as in (10). In the event that no current
clusterheads are found, node i becomes its own cluster-
head. The clusterhead contention subroutine is also used.
When two clusterheads come within range of one another
for more than CCT, the clusterhead with the lesser CHcnvg

value relinquishes its CH status. The final difference be-
tween this method and the previous method, involves
the hand-over of clusterhead status. If a node i belongs to
clusterhead j, but over time CHcnvg,i becomes greater than
CHcnvg,j, then it can be inferred that node i is taking over
the clusterhead role. In this case, node i drops node j as
its CH and becomes its own clusterhead. Shortly after, clus-
ter contention will occur, and node j will relinquish its
clusterhead role. The clusterhead selection and mainte-
nance for asynchronous APROVE is summarized in Proce-
dure 5.

Procedure 5. Clusterhead Selection and Maintenance in
Asynchronous APROVE

Every TCM seconds, node i will check the following:

1. if current_time >texpire,j for any Nj
i 2 Ni

then Purge Nj
i from neighbor list

2. if myCHi = j and (CHj = 0 or Nj
i expired)

then lostCH = 1

3. if CHi = 1 and CHj = 1 for any Nj
i 2 Ni for more

than CTO seconds
and CHcnvg,i < CHcnvg,j

then lostCH = 1
4. if myCHi = j and CHcnvg,i > CHcnvg,j

then lostCH = 1
5. if lostCH = 1 then

if CHcnvg,i > 0
then myCHi = i

else for all Nj
i 2 Ni : CHj ¼ 1 do

myCHi = arg maxj{ai,j(k) + ri,j(k)}

else if CHj ¼ 0;8Nj
i 2 Ni

then myCHi = i
5. Analysis of APROVE

In this section we provide some insight into the oper-
ation of the APROVE algorithm. APROVE’s parameter set-
tings are discussed including: Clustering Interval, CI, and
Future Prediction Period, sf. The overhead of APROVE is
shown to be reasonable by comparing APROVE’s overhead
to the overhead of MOBIC. In addition, the convergence of
APROVE is discussed in terms of both coherency of clus-
terhead decisions, and oscillation during message up-
dates. Finally, the behavior of APROVE in the presence of
channel error is discussed, and APROVE’s robustness is
argued.
5.1. Parameter selection

The first APROVE formulation uses a Clustering Inter-
val, CI. The CI parameter determines how often nodes
elect a new clusterhead based on the affinity propagation
messages being passed in the background. When CI is in-
creased, the clusterhead duration will also naturally in-
crease, since clusterhead decisions are being made at a
lesser rate. However, with a long CI, clusterheads elected
at the beginning of the interval may no longer be desir-
able clusterheads at the end. This results in cluster mem-
bers drifting away from their current clusterheads and
selecting new clusterheads during the cluster mainte-
nance phase. In [15], we reported that an increasing num-
ber of clusters are being formed with an increasing CI.
This was caused by nodes losing their clusterheads and
forming new temporary clusterheads during the cluster
maintenance phase. In this work, we have solved this is-
sue by introducing the clusterhead contention subroutine
during cluster maintenance, which insures that within a
given broadcast range, only one clusterhead is ever
present.

With the addition of the clusterhead contention proce-
dure in APROVE with clustering interval, it is reasoned that
increased cluster stability and cluster performance will be
achieved with a longer CI. In fact, the asynchronous
APROVE method is essentially APROVE with an infinite
clustering interval, along with some small adjustments to
simplify clusterhead hand-over.

APROVE’s second parameter is the Future Prediction
Period, sf, used in the similarity function (5). Future Predic-
tion Period is used by the similarity function to predict the
future position of a vehicle given the current velocity. To
select a specific sf is to assume that individual vehicles will
remain at a relatively constant speed for sf seconds. Thus,
this parameter should be tuned to the network’s mobility
pattern. The sf parameter is dependent on both the vari-
ance in speed per individual vehicle and the variance in
speed from one vehicle to another. As the variance in speed
per individual vehicle increases, the sf should be decreased,
since the vehicle’s speed is becoming less constant. On the
other hand, as the variance in speed from one vehicle to
another is increased, the velocity of individual cars should
play a larger role in clustering, thus the sf should be in-
creased. The proper value for sf is scenario dependent
and can be found by empirical studies, as illustrated in
the simulations.
5.2. Overhead analysis

In this section, we present the overhead for APROVE
with aggregated message passing and compare it to the

542 B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548
overhead of MOBIC. Each APROVE HELLO beacon includes
the IP and MAC headers, the position and velocity informa-
tion, the clusterhead status and convergence flags, and the
responsibility, availability, and index arrays. Each position,
velocity, responsibility, and availability value is assumed to
occupy 4 bytes. In computing, a single precision float occu-
pies 4 bytes, which gives a suitable precision for this appli-
cation. APROVE’s overhead includes 20 and 58 bytes for the
IP and MAC headers respectively, 4 bytes for each of the x
and y positions, 4 bytes for each of the vx and vy velocities,
1 byte for the CH flag, 4 bytes for the CHcnvg value, and
4 bytes for each member of the availability, responsibility,
and index arrays. Since these arrays are exactly as long as
the neighbor list, we need 12 bytes for each member of the
neighbor list.

The compared clustering algorithm, MOBIC, has a
broadcast beacon similar to APROVE’s HELLO beacon. MO-
BIC’s broadcast beacon includes the IP and MAC headers,
the node’s current status (CH, CM, or Undecided), the
node’s aggregate mobility metric, and the index and status
of each of the neighbors. The current status uses 1 byte, the
mobility metric uses 8 bytes, and 5 bytes are used for each
member of the neighbor list (4 bytes for the neighbor in-
dex, and 1 byte for the neighbor status).

The size of the APROVE and MOBIC beacons are summa-
rized below in (11) and (12) respectively.

sizeAPR ¼ IP HDR LENþMAC HDR LENþ POS

þ VELþ CH INFOþ 12Nsize

¼ 20þ 58þ 8þ 8þ 5þ 12Nsize

¼ 99þ 12Nsize ð11Þ
sizeMOB ¼ IP HDR LENþMAC HDR LENþ CH STAT

þMOBILITY þ 5Nsize

¼ 20þ 58þ 1þ 8þ 5Nsize ¼ 88þ 5Nsize ð12Þ

where Nsize is neighbor list size.
The size of the HELLO beacons, for both APROVE and

MOBIC, increases as a function of neighbor list size.
Although it is apparent from (11) and (12) that APROVE’s
HELLO beacon is both larger and increasing at a greater
rate than MOBIC’s, it is not concluded that APROVE’s over-
head is greater. In the APROVE algorithm, each node peri-
odically broadcasts a HELLO beacon with a period of 1 s.
In MOBIC, however, nodes make both periodic broadcasts
every 1 s, and event-based broadcasts. The event-based
broadcasts occur every time a node decides to change its
status to either clusterhead or cluster member. This occurs
in both cluster formation and cluster contention (when
two clusters come within range and contend for the role
of CH). These additional event-based broadcasts increase
MOBIC’s overhead. In low to moderate density networks
where the neighbor list size is reasonable, APROVE will
have a lower overhead than MOBIC. In high-density net-
works, if the neighbor list size becomes large enough,
APROVE will have a higher overhead than MOBIC. A plot
comparing the overhead of the two algorithms is found
in Section 6.
5.3. Convergence analysis

In this section, we present and discuss two definitions
of convergence for APROVE. The first refers to the conver-
gence of the underlying affinity propagation algorithm to
non-oscillating states. The second definition is the conver-
gence of APROVE to coherent clusterhead states. Cluster-
head decisions are coherent if all nodes selected as
clusterheads, are actually clusterheads.

5.3.1. Convergence of APROVE to non-oscillating states
Affinity propagation is derived on a loopy factor graph

[21]. Several sufficient conditions for the convergence of
loopy sum-product algorithm were presented in [22,23].
Unfortunately, affinity propagation does not satisfy these
conditions, and convergence cannot be guaranteed. When
affinity propagation fails to converge, oscillations occur in
the beliefs, which can be interpreted as a too-large step-
size in gradient-descent minimization [24]. These oscilla-
tions can be solved by damping responsibility and avail-
ability messages [14], as performed in (6)–(8).

Another cause of oscillation in affinity propagation is
the presence of degenerate cases. Degeneracies lead to
multiple minima, which prevent convergence of the algo-
rithm. Frey and Dueck [14] suggest adding a small jitter
to the similarities to prevent these degenerate scenarios.
APROVE does not suffer from degeneracies, because of its
time-varying similarity function. The variations in the sim-
ilarities caused by the dynamic topology, adds a built-in
noise, which prevents oscillations caused by degeneracies.

5.3.2. Convergence of APROVE to coherent clusterhead states
The second type of convergence applicable to APROVE,

is convergence to coherent clusterhead states. For exam-
ple, if node i chooses node j to be its clusterhead at time
k, node j must become a clusterhead at time k. In APROVE,
coherency is ensured by introducing the CHcnvg,i message,
where a CHcnvg,i > 0 indicates to other nodes that node i will
become a clusterhead on i’s next clustering decision. In
addition, CHcnvg,i is used to resolve clustering contention,
such that the clusterhead with the higher CHcnvg value
wins.

At every iteration, node i updates its convergence mes-
sage as follows: CHcnvg,i = r(i, i) + a(i, i). Thus to ensure
coherent clusterhead decisions, we must justify that
r(i, i) + a(i, i) > 0 implies convergence to clusterhead status.
The derivations of Affinity Propagation presented in
[21,25] show that r(i, i) + a(i, i) gives the posterior log-odds
that node i is a clusterhead.

Therefore, a node i can determine if it is a clusterhead
by using a threshold of 0 as follows:

if aði; iÞ þ rði; iÞ > 0 then; i is a CH ð13Þ

Using a threshold of 0 is equivalent to making the Maxi-
mum A Posteriori (MAP) estimation for the clusterheads:

log
Pðci ¼ iÞ
Pðci – iÞ

	

> 0

) Pðci ¼ iÞ > Pðci – iÞ
) Pðci ¼ iÞ > Pðci ¼ j;8j – iÞ

B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548 543
where the above probabilities are posterior probabilities. It
is apparent from the above discussion that a higher CHcnvg

value gives a higher posterior probability of P(ci = i), which
implies there is greater evidence supporting node i as a
clusterhead. The posterior probability of node i is depen-
dent on the number of positive likelihoods being propa-
gated from the neighboring nodes. The more nodes that
would like to choose node i as their clusterhead, the higher
the posterior probability for node i. As a result, CHcnvg nat-
urally takes into consideration the number of nodes a clus-
terhead has. The use of CHcnvg in clusterhead contention is
justified, since the winning clusterhead will have a higher
posterior probability of clusterhead status, and will also
have more cluster members.
5.4. Robustness to channel error

A VANET clustering algorithm must be able to with-
stand channel error due to the harsh channel characteris-
tics of the VANET environment. The APROVE algorithm’s
robust nature makes it suitable for error prone communi-
cation. APROVE’s messages are updated often and contain
memory from the previous iterations. As a result, the mes-
sage update process is gradual and the loss of one iteration
does not have any adverse effects. When a message is lost,
the algorithm is able to use the last received iteration,
which dampens the negative impact of error on clustering
performance. Of course as the channel error increases and
messages become more outdated, the algorithm’s perfor-
mance will begin to degrade. To further improve perfor-
mance in severe channel error, a more reliable MAC
(such as [9]) can be used to increase the message reception
probability.

In cases of severe channel error, convergence of the
underlying affinity propagation algorithm may not be
achieved, and nodes are forced to become their own tem-
porary clusterheads. However, the clusterhead contention
protocol will cluster these nodes using the current CHcnvg

values. In a given broadcast range, the node i with the
highest CHcnvg,i value (highest posterior log-odds) will be-
come the clusterhead, even if that node was unable to con-
verge to clusterhead status in the high channel error
(CHcnvg,i < 0).
6. Simulations

The APROVE algorithm was implemented in NS2, which
has been highly validated by the networking research com-
munity. The NS2 simulations used the 802.11 MAC and the
914 MHz Lucent WaveLAN DSSS network card with a radio
range of 250 m. The MOBIC code was taken from a legacy
version of NS2 provided by [16]. The implementation of
the PPC and ALM algorithms were done in NS2 according
to the specifications in [18,17]. For all of the APROVE sim-
ulations, TH = TCM = 1 s. The self-similarities and sf parame-
ters were tuned to the VANET scenario with simulations.
These simulations gave optimal parameter settings of:
self-similarity = �2000 and sf = 30 s, which were used in
all remaining simulations. The simulations were per-
formed on a highway scenario with 100 vehicles. Each sim-
ulation ran for 500 s, however only the last 200 s were
used for performance metric calculations. This was to en-
sure that the duration metrics (clusterhead and cluster
member duration) had reached a steady state before mea-
surements were made. The simulations were run on 8 un-
ique mobility traces and the performance results were
averaged.

6.1. Traffic scenarios

Realistic traffic models for the VANET scenario were
generated using the MOVE (MObility model generator for
VEhicular networks) tool [26]. MOVE is built on top of
the open source micro-traffic simulator, SUMO [27]. The
MOVE tool outputs realistic NS2 traffic traces, which were
then used in the NS2 simulations.

Our proposed algorithm will not cluster vehicles
moving in opposite directions. PPC does not make explicit
provisions for bi-directional traffic and is designed for one-
direction traffic. MOBIC and ALM will cluster vehicles mov-
ing in opposite directions. However, platoons passing each
other in opposite directions will cause their clusters to
merge and then reform, which degrades cluster stability
and incurs more overhead. Our traffic scenario was de-
signed in order to provide a fair comparison of APROVE
and the other algorithms without any modifications. A
rectangular looped 3-lane highway was chosen for the
simulations’ traffic scenario. The rectangular loop is 3 km
long and 300 m wide, and the three lanes travel around
the loop in a single direction. The rectangular loop was de-
signed to be wider than the 250 m broadcast range, so that
clustering could not occur amongst vehicles moving in
opposite directions for any of the algorithms.

The vehicles were given different maximum speeds to
provide a realistic highway scenario. Random maximum
speeds can be assigned to the vehicles by giving SUMO a
probability distribution. Eight unique traces were generated
for each of the average maximum speed groups of 11.1, 22.2,
33.3, and 44.4 m/s (40, 80, 120, and 140 km/h). For each
speed group, speed distributions were assigned to enable
40% of the vehicles to travel at the average speed, 20% of
the vehicles to travel at ±10 km/h and 10% of the vehicles
to travel at ±20 km/h. The vehicles enter the scenario
sequentially, one second apart. In our simulations, all vehi-
cles have a length of 5 m, an acceleration rate of 0.8 m/s2,
and a deceleration rate of 4.5 m/s2. A minimum gap of
2.5 m is maintained between vehicles in the same lane,
and vehicles are allowed to change lanes to pass each other.

6.2. Clustering performance metrics

We evaluate the cluster stability and overall perfor-
mance of both APROVE and MOBIC using the metrics listed
below.

1. Average Clusterhead Duration The average length of
time that a node remains a clusterhead, once it has been
elected.

2. Average Cluster Member Duration The average length
of time that a node remains a cluster member of a spe-
cific clusterhead.

544 B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548
3. Average Rate of Clusterhead Change The overall aver-
age number of clusterhead changes per second.

4. Average Number of Clusters The average number of
clusters that are present at any given time in the
algorithm.

6.3. Overhead performance

The overhead performance of APROVE and the other
algorithms is compared in Fig. 1. Specifically, the amount
of information transmitted in the HELLO beacons. We do
not observe any significant gap in terms of the overhead
between these algorithms. Time synchronization was as-
sumed in the simulation. Since the synchronization mech-
anism is out of the scope of this work, it was not
implemented in the simulation. Thus, the overhead de-
picted in Fig. 1 does not include the synchronization over-
head. Therefore, synchronous and asynchronous APROVE
are represented in a single curve since the two methods
transmit the same packet periodically and only differ in
their clustering decisions.

6.4. Mobility performance

The clustering performance of APROVE and Asynchro-
nous APROVE were evaluated against MOBIC, PPC and
ALM by sweeping over node mobility. All algorithms were
run on mobility traces with the following average maxi-
mum speeds: 11.1, 22.2, 33.3 and 44.4 m/s. Each data point
presented was run eight unique times and averaged. The
performance results are displayed in Fig. 2. In our simula-
tions results, CM and CH stand for Cluster Head and Cluster
Member respectively.

From Fig. 2d we can see that all of the clustering
algorithms are relatively robust to changes in the average
10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

Velocity (m/s)

A
ve

ra
ge

 O
ve

rh
ea

d
(K

B
ps

)

APROVE
MOBIC
PPC
ALM

Fig. 1. A comparison of average overhead performance for APROVE,
MOBIC, PPC and ALM as a function of velocity. The overhead counts the
HELLO clustering beacons for the entire network and is measured in
KBytes/s. The average maximum vehicle velocities spanned are: 11.1,
22.2, 33.3, and 44.4 m/s.
maximum speed in terms of those metrics. This is the de-
sired outcome as all of the algorithms aim to account for
the mobility of the network. The only significant difference
is in the average rate of clusterhead change for the PPC
algorithm, as shown in Fig. 2. Unlike the other simulated
algorithms, PPC does not rely on an aggregate measure of
network mobility but rather each vehicle’s deviation from
its predicted average speed. That the former metric typi-
cally changes at a slower rate than the latter could explain
PPC’s poor performance and stability in Fig. 2. In the same
figure, we can see the gain of ALM over the original MOBIC,
which can be attributed to its deferral of new clusterhead
creation when a member loses its clusterhead.

In all the metrics shown in Fig. 2, the clustering perfor-
mance of both APROVE formulations exceed that of the
other algorithms, in forming fewer, more stable, and longer
lasting clusters. In the case of APROVE, it is evident that an
increasing CI leads to an increase in cluster stability. It is
also noted that the Asynchronous APROVE formulation
has comparable clustering performance to APROVE with
a large clustering interval. In Fig. 2b and c, the performance
of Asynchronous APROVE surpasses APROVE for all cluster-
ing interval settings.

The choice of synchronous or asynchronous APROVE
depends on the metric of interest. As can be seen in
Fig. 2, for some metrics asynchronous APROVE performs
better (Average Cluster Member Duration and Average
Rate of Cluster Head change) while for other metrics (Aver-
age Cluster Head Duration and Average Number of Clus-
ters) the synchronized version (with optimized CI) is
superior.

6.5. Performance with channel error

APROVE, Asynchronous APROVE, MOBIC, PPC and ALM
were also simulated in poor channel conditions to evaluate
the robustness of the algorithms. Simulations were per-
formed with varying degrees of channel error present,
and the performance was evaluated using the same four
metrics described earlier.

Channel error was produced using a uniform error mod-
el with the following probabilities of error: 0, 0.1, 0.2, 0.4,
and 0.6. We used the same mobility traces of Section 6.4
with the average maximum speed of 33.3 m/s. A uniform
error model was used instead of the more realistic Naka-
gami model, which assumes that reception probability de-
creases as the distance of propagation increases. By using a
uniform error model, the simulations overestimate chan-
nel error.

The simulation results for APROVE, Asynchronous
APROVE, and the other algorithms with channel error pres-
ent are shown in Fig. 3. Since APROVE is an iterative algo-
rithm which require multiple rounds of message-passing
to converge, one may expect that it is more sensitive to
channel errors than the other algorithms which simply rely
on updates to nodes’ neighbor table. However, we can see
from the figures in Fig. 3 that the APROVE algorithms out-
performs the others despite the increasing channel error.

For neighbor table-based algorithms like MOBIC, suc-
cessive channel errors leads to an erroneous deletion of a
neighbor’s entry from the table. When the deleted

15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Velocity (m/s)

A
vg

. C
H

 D
ur

at
io

n
(s

)

APROVE, CI = 30
APROVE, CI = 60
APROVE, CI = 120
APROVE, CI = 150
Asynchronous
 APROVE
MOBIC
PPC
ALM

(a)

15 20 25 30 35 40

10

20

30

40

50

60

70

80

Velocity (m/s)

A
vg

. C
M

 D
ur

at
io

n
(s

)

APROVE, CI = 30
APROVE, CI = 60
APROVE, CI = 120
APROVE, CI = 150
Asynchronous APROVE
MOBIC
PPC
ALM

(b)

15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Velocity (m/s)

A
vg

. R
at

e
of

 C
H

 C
ha

ng
e

(C
H

 C
ha

ng
es

/s
ec

)

APROVE, CI = 30
APROVE, CI = 60
APROVE, CI = 120
APROVE, CI = 150
Asynchronous APROVE
MOBIC
PPC
ALM

(c)

15 20 25 30 35 40
14

15

16

17

18

19

20

Velocity (m/s)

A
vg

. N
um

be
r o

f C
lu

st
er

s

APROVE, CI = 30
APROVE, CI = 60
APROVE, CI = 120
APROVE, CI = 150
Asynchronous APROVE
MOBIC
PPC
ALM

(d)
Fig. 2. The impact of velocity on clustering performance, comparing APROVE, Asynchronous APROVE, MOBIC, PPC, and ALM. APROVE with Clustering
Interval is plotted with CI = 30, 60, 120, and 150 s. Both APROVE formulations have sf = 30 s. (a) The average Cluster Head (CH) duration. (b) The average
Cluster Member (CM) duration. (c) The average rate of Cluster Head (CH) change. (d) The average number of clusters.

B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548 545
neighbor is node’s clusterhead, the node becomes its own
clusterhead which increases the rate of change and the
number of clusterheads and decreases the cluster member
duration. ALM introduces an intermediate undecided state
in this case, which can be seen in its improvement over
MOBIC. Although APROVE also suffers from this, its cluster-
ing mechanism does not depend on the neighbor table di-
rectly. Instead, an APROVE node uses the availability and
responsibility values calculated using network information
transmitted from all of its neighbors. This provides a level
of robustness to the APROVE algorithm at the cost of a lar-
ger broadcast packet.

From Fig. 3a and b we see that APROVE’s clusterhead
and cluster member durations are only significantly for
channel error probabilities exceeding 0.2. When channel
error is greater than 0.2, we see the expected performance
deterioration in the clusterhead and cluster member dura-
tions for APROVE. However, even for an error probability of
0.6, the APROVE algorithms maintains a reasonable level of
performance whereas the durations of MOBIC, PPC and
ALM become negligible with very little error.

In Fig. 3c it is observed that the average rate of cluster-
head change increases rapidly for MOBIC and PPC, at a low-
er rate for ALM, and stays reasonable for both APROVE
formulations. In Fig. 3d, all algorithms produce an increas-
ing number of clusters with increasing channel error. We
note that ALM yields an improvement over MOBIC and
PPC. However, the number of clusters generated by both
APROVE formulations is much less than that of the others,
even in high channel error conditions. As with the mobility

0 0.1 0.2 0.3 0.4 0.5

10

20

30

40

50

60

70

Probability of Channel Error

A
vg

. C
H

 D
ur

at
io

n
(s

)

APROVE, CI = 30
APROVE, CI = 60
APROVE, CI = 120
APROVE, CI = 150
Asynchronous APROVE
MOBIC
PPC
ALM

(a)

0 0.1 0.2 0.3 0.4 0.5

10

20

30

40

50

60

70

Probability of Channel Error

A
vg

. C
M

 D
ur

at
io

n
(s

)

APROVE, CI = 30
APROVE, CI = 60
APROVE, CI = 120
APROVE, CI = 150
Asynchronous APROVE
MOBIC
PPC
ALM

(b)

0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

Probability of Channel Error

A
vg

. R
at

e
of

 C
H

 C
ha

ng
e

(C
H

 C
ha

ng
es

/s
ec

)

APROVE, CI = 30
APROVE, CI = 60
APROVE, CI = 120
APROVE, CI = 150
Asynchronous APROVE
MOBIC
PPC
ALM

(c)

0 0.1 0.2 0.3 0.4 0.5

20

25

30

35

40

Probability of Channel Error

A
vg

. N
um

be
r o

f C
lu

st
er

s
APROVE, CI = 30
APROVE, CI = 60
APROVE, CI = 120
APROVE, CI = 150
Asynchronous APROVE
MOBIC
PPC
ALM

(d)
Fig. 3. The impact of channel error on clustering performance, comparing APROVE, Asynchronous APROVE, MOBIC, PPC and ALM. APROVE with Clustering
Interval is plotted with CI = 30, 60, 120, and 150 s. Both APROVE formulations have sf = 30 s. (a) The average clusterhead duration. (b) The average cluster
member duration. (c) The average rate of clusterhead change. (d) The average number of clusters.

546 B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548
performance study, the performance of Asynchronous
APROVE is very similar to the performance of APROVE with
a long CI. Fig. 3b shows that in terms of average cluster
member duration, Asynchronous APROVE has the best
performance.

7. Conclusion

Motivated by the much needed research in cluster-
based MACs and routing schemes for VANETs, we have
proposed a novel and stable mobility-based clustering
algorithm called APROVE. Our algorithm distributively
elects clusterheads by using affinity propagation from a
communications perspective. The algorithm finds clusters
that minimize both the relative mobility and the distance
from each clusterhead to its cluster members. The clusters
created are stable and exhibit long average cluster member
duration, long average clusterhead duration, and low aver-
age rate of clusterhead change. APROVE is robust to chan-
nel error, and it exhibits reasonable overhead.

Two different formulations of APROVE were pro-
posed, denoted: APROVE and Asynchronous APROVE.
APROVE used a clustering interval parameter, which re-
quired synchronization, whereas Asynchronous APROVE
operated completely asynchronously. Both formulations
used clusterhead contention during cluster maintenance,
which reduced the number of clusters that were formed.
Simulations showed that Asynchronous APROVE’s clus-
tering performance was comparable to, if not better
than, APROVE’s performance. Asynchronous APROVE’s
excellent clustering performance, robustness to error,
and simple asynchronous operation, make it a viable
algorithm for clustering in VANET’s dynamic and harsh
environment.

B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548 547
References

[1] M. Torrent-Moreno, M. Killat, H. Hartenstein, The challenges of
robust inter-vehicle communications, in: 62nd Vehicular Technology
Conference, 2005, VTC-2005-Fall, vol. 1, IEEE, 2005, pp. 319–323,
doi:http://dx.doi.org/10.1109/VETECF.2005.1557524.

[2] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, J.-P. Sheu, The broadcast storm
problem in a mobile ad hoc network, in: MobiCom ’99: Proceedings
of the 5th Annual ACM/IEEE International Conference on Mobile
Computing and Networking, ACM, New York, NY, USA, 1999, pp.
151–162. doi:http://doi.acm.org/10.1145/313451.313525.

[3] W. Chen, S. Cai, Ad hoc peer-to-peer network architecture for vehicle
safety communications, IEEE Communications Magazine 43 (4)
(2005) 100–107, http://dx.doi.org/10.1109/MCOM.2005.1421912.

[4] R. Ramanathan, M. Steenstrup, Hierarchically-organized, multihop
mobile wireless networks for quality-of-service support, Mobile
Networks and Applications 3 (1) (1998) 101–119.

[5] L. Bononi, M. Di Felice, A cross layered MAC and clustering scheme
for efficient broadcast in VANETs, in: IEEE Internatonal Conference
on Mobile Adhoc and Sensor Systems, 2007. MASS 2007, 2007, pp. 1–
8, doi:http://dx.doi.org/10.1109/MOBHOC.2007.4428735.

[6] Y. Gunter, B. Wiegel, H. Grossmann, Cluster-based medium access
scheme for VANETs, Intelligent Transportation Systems Conference,
2007, ITSC 2007, IEEE, 2007, pp. 343–348, doi:http://dx.doi.org/
10.1109/ITSC.2007.4357651.

[7] Z. Rawashdeh, S. Mahmud, Media access technique for cluster-based
vehicular ad hoc networks, in: 68th Vehicular Technology
Conference, 2008, VTC 2008-Fall, IEEE, 2008, pp. 1–5, doi:http://
dx.doi.org/10.1109/VETECF.2008.448.

[8] F. Farnoud, S. Valaee, Repetition-based broadcast in vehicular ad hoc
networks in Rician channel with capture, in: INFOCOM 2009. in: The
28th Conference on Computer Communications, IEEE, 2008, pp. 1–6,
doi:http://dx.doi.org/10.1109/INFOCOM.2008.4544661.

[9] B. Hassanabadi, L. Zhang, S. Valaee, Index coded repetition-based
MAC in vehicular ad-hoc networks, in: 6th IEEE Consumer
Communications and Networking Conference, 2009, CCNC 2009,
2009, pp. 1–6, doi:http://dx.doi.org/10.1109/CCNC.2009.4784947.

[10] O. Kayis, T. Acarman, Clustering formation for inter-vehicle
communication, in: IEEE Intelligent Transportation Systems
Conference, 2007, ITSC 2007, 2007, pp. 636–641, doi:http://
dx.doi.org/10.1109/ITSC.2007.4357779.

[11] H. Su, X. Zhang, Clustering-based multichannel MAC protocols for
QoS provisionings over vehicular ad hoc networks, IEEE Transactions
on Vehicular Technology 56 (6) (2007) 3309–3323, http://
dx.doi.org/10.1109/TVT.2007.907233.

[12] B. Wiegel, Y. Gunter, H. Grossmann, Cross-layer design for packet
routing in vehicular ad hoc networks, in: IEEE 66th Vehicular
Technology Conference, 2007, VTC-2007 Fall 2007, 2007, pp. 2169–
2173, doi:http://dx.doi.org/10.1109/VETECF.2007.455.

[13] R.E.R.A. Santos, N. Seed, Inter vehicular data exchange between fast
moving road traffic using ad-hoc cluster based location algorithm
and 802.11b direct sequence spread spectrum radio, in:
PostGraduate Networking Conference.

[14] B.J. Frey, D. Dueck, Clustering by passing messages between data
points, Science 315 (2007) 972–976.

[15] C. Shea, B. Hassanabadi, S. Valaee, Mobility-based clustering in
VANETs using affinity propagation, in: Globecom 2009, 2009.

[16] P. Basu, N. Khan, T. Little, A mobility based metric for clustering in
mobile ad hoc networks, in: 2001 International Conference on
Distributed Computing Systems Workshop, 2001, pp. 413–418,
doi:http://dx.doi.org/10.1109/CDCS.2001.918738.

[17] E. Souza, I. Nikolaidis, P. Gburzynski, A new aggregate local mobility
(alm) clustering algorithm for vanets, in: 2010 IEEE International
Conference on Communications (ICC), 2010, pp. 1–5, doi:http://
dx.doi.org/10.1109/ICC.2010.5501789.

[18] Z. Wang, L. Liu, M. Zhou, N. Ansari, A position-based clustering
technique for ad hoc intervehicle communication, IEEE Transactions on
Systems, Man, and Cybernetics Part C: Applications and Reviews 38 (2)
(2008) 201–208, http://dx.doi.org/10.1109/TSMCC.2007.913917.

[19] C. Lin, M. Gerla, Adaptive clustering for mobile wireless networks,
IEEE Journal on Selected Areas in Communications 15 (7) (1997)
1265–1275, http://dx.doi.org/10.1109/49.622910.

[20] J.B. MacQueen, Some methods for classification and analysis of
multivariate observations, in: L.M.L. Cam, J. Neyman (Eds.),
Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, University of California Press, 1967,
pp. 281–297.

[21] D. Dueck, Affinity Propagation: Clustering Data by Passing Messages,
Ph.D. thesis, University of Toronto, 2007.

[22] A.T. Ihler, J.W. Fischer III, A.S. Willsky, Loopy belief propagation:
convergence and effects of message errors, Journal of Machine
Learning Research 6 (2005) 905–936.

[23] J. Mooij, H. Kappen, Sufficient conditions for convergence of the
sum-product algorithm, IEEE Transactions on Information Theory 53
(12) (2007) 4422–4437, http://dx.doi.org/10.1109/TIT.2007.909166.

[24] T. Heskes, Stable fixed points of loopy belief propagation are local
minima of the Bethe free energy, in: S.T.S. Becker, K. Obermayer
(Eds.), Advances in Neural Information Processing Systems, vol. 15,
MIT Press, 2003, pp. 343–350.

[25] I.E. Givoni, B.J. Frey, A binary variable model for affinity propagation,
Neural Computation 21 (6) (2009) 1589–1600. doi:http://dx.doi.org/
10.1162/neco.2009.05-08-785.

[26] F. Karnadi, Z.H. Mo, K. chan Lan, Rapid generation of realistic
mobility models for VANET, in: Wireless Communications and
Networking Conference, 2007, WCNC 2007, IEEE, 2007, pp. 2506–
2511, doi:http://dx.doi.org/10.1109/WCNC.2007.467.

[27] M. Behrisch, L. Bieker, J. Erdmann, D. Krajzewicz, Sumo – simulation
of urban mobility: an overview, in: SIMUL 2011, The Third
International Conference on Advances in System Simulation,
Barcelona, Spain, 2011.

Behnam Hassanabadi received the Ph.D.
degree in electrical and computer engineering
from University of Toronto, Toronto, Canada,
in 2013. His research interests are in the areas
of wireless networking, network coding, and
medium access control design.
Christine Shea received her B.A.Sc. degree in
Electrical Engineering from Queen’s Univer-
sity, Kingston, Canada, in 2007. She received
her M.A.Sc. degree in Electrical Engineering
from the University of Toronto, Toronto,
Canada, in 2009. Her M.A.Sc. Research was
completed in the Communications Group at
the Edward S. Rogers Sr. Department of Elec-
trical and Computer Engineering, at the Uni-
versity of Toronto. Her research interests
include vehicular ad hoc networks and belief
propagation with emphasis on the design and

analysis of clustering algorithms for MAC and Routing protocols. She is a
member of the Vehicular Communications Research Group in the Wire-
less and Internet Research Laboratory.
Le Zhang received the B.A.Sc. degree in com-
puter engineering from the University of
Waterloo, Waterloo, ON, Canada, and the
M.A.Sc. degree in electrical engineering from
the University of Toronto, Toronto, ON, Can-
ada, in 2007 and 2010, respectively. He is
currently a Ph.D. candidate at the University
of Toronto. His research interests include
congestion control, multi-hop forwarding and
MAC protocols for vehicular networks.

http://dx.doi.org/10.1109/VETECF.2005.1557524
http://doi.acm.org/10.1145/313451.313525
http://dx.doi.org/10.1109/MCOM.2005.1421912
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0015
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0015
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0015
http://dx.doi.org/10.1109/MOBHOC.2007.4428735
http://dx.doi.org/10.1109/ITSC.2007.4357651
http://dx.doi.org/10.1109/ITSC.2007.4357651
http://dx.doi.org/10.1109/VETECF.2008.448
http://dx.doi.org/10.1109/VETECF.2008.448
http://dx.doi.org/10.1109/INFOCOM.2008.4544661
http://dx.doi.org/10.1109/CCNC.2009.4784947
http://dx.doi.org/10.1109/ITSC.2007.4357779
http://dx.doi.org/10.1109/ITSC.2007.4357779
http://dx.doi.org/10.1109/TVT.2007.907233
http://dx.doi.org/10.1109/TVT.2007.907233
http://dx.doi.org/10.1109/VETECF.2007.455
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0025
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0025
http://dx.doi.org/10.1109/CDCS.2001.918738
http://dx.doi.org/10.1109/ICC.2010.5501789
http://dx.doi.org/10.1109/ICC.2010.5501789
http://dx.doi.org/10.1109/TSMCC.2007.913917
http://dx.doi.org/10.1109/49.622910
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0040
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0040
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0040
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0040
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0040
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0040
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0040
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0040
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0045
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0045
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0045
http://dx.doi.org/10.1109/TIT.2007.909166
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0055
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0055
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0055
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0055
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0055
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0055
http://refhub.elsevier.com/S1570-8705(13)00227-8/h0055
http://dx.doi.org/10.1162/neco.2009.05-08-785
http://dx.doi.org/10.1162/neco.2009.05-08-785
http://dx.doi.org/10.1109/WCNC.2007.467

548 B. Hassanabadi et al. / Ad Hoc Networks 13 (2014) 535–548
Shahrokh Valaee (S ’88, M ’00, SM ’02)
received the Ph.D. degree in electrical engi-
neering from McGill University in Canada.
Currently he is a Professor and the Associate
Chair for Undergraduate Studies and holds the
Nortel Institute junior chair of Computer
Networks in the Edward S. Rogers Sr.
Department of Electrical and Computer Engi-
neering at the University of Toronto. He is the
founder and the Director of the Wireless and
Internet Research Laboratory (WIRLab) at the
University of Toronto.

Prof. Valaee is an Editor of IEEE Transactions on Wireless Communica-
tions, and an Associate Editor of IEEE Signal Processing Letters. He was the
Technical Program Co-Chair and the Local Organizing Chair of the IEEE
PIMRC 2011, and the Co-Chair for Wireless Communications Symposium
of IEEE GLOBECOM 2006. He has served as a guest editor for several
journals including IEEE Wireless Communications Magazine, Wiley
Journal on Wireless Communications and Mobile Computing, EURASIP
Journal on Advances in Signal Processing, and International Journal of
Wireless Information Networks. His current research interests are in
wireless vehicular and sensor networks, location estimation and cellular
networks.

	Clustering in Vehicular Ad Hoc Networks using Affinity Propagation
	1 Introduction
	2 Related work
	3 Affinity Propagation
	4 Proposed VANET clustering scheme
	4.1 Similarity function
	4.2 Message updating and the neighbor list
	4.2.1 The neighbor list
	4.2.2 APROVE message update rules

	4.3 APROVE message passing
	4.4 Clusterhead selection and maintenance
	4.4.1 APROVE
	4.4.2 Asynchronous APROVE

	5 Analysis of APROVE
	5.1 Parameter selection
	5.2 Overhead analysis
	5.3 Convergence analysis
	5.3.1 Convergence of APROVE to non-oscillating states
	5.3.2 Convergence of APROVE to coherent clusterhead states

	5.4 Robustness to channel error

	6 Simulations
	6.1 Traffic scenarios
	6.2 Clustering performance metrics
	6.3 Overhead performance
	6.4 Mobility performance
	6.5 Performance with channel error

	7 Conclusion
	References

