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Transient stability constrained optimal power flow (TSCOPF) is becoming an effective tool for many
problems in power systems since it simultaneously considers economy and dynamic stability of system
operations. It is increasingly important because modern power systems tend to operate closer to the sta-
bility boundaries due to the rapid increase of electricity demand and the deregulation in power sector.
TSCOPF is, however, a nonlinear optimization problem with both algebraic and differential equations
which is difficult to solve even for small power network. In order to solve the TSCOPF problem efficiently,
a relatively new optimization technique, named as krill herd algorithm (KHA), is employed in this paper.
KHA simulates the herding behavior of krill swarms in response to specific biological and environmental
processes to solve multi-dimensional, linear and nonlinear problems with appreciable efficiency. To
accelerate the convergence speed and to improve the simulation results, opposition based learning
(OBL) is also incorporated in the basic KHA method. The simulation results, obtained by the basic KHA
method and the proposed oppositional KHA (OKHA) algorithm, are compared to those obtained by using
some other recently developed methods available in the literature. In this paper, case studies conducted
on 10 generator New England 39-bus system and 17 generator 162-bus system indicate that the
proposed OKHA approach is much more, computationally, efficient than the other reported popular
state-of-the-art algorithms including the basic KHA and the proposed method is found to be a promising
tool to solve the TSCOPF problem of power systems.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

The systematic interconnection of power systems that took
place in the second half of the twentieth century was an attempt
to strengthen the networks and to facilitate the transmission of
electricity. This effort has brought new operational challenges that
could not be faced by power engineers unless the state of the
network was properly monitored in real-time [1]. The modern
deregulated environment has driven utilities around the world to
operate their power systems closer to their stability boundary for
better use of transmission networks. The optimal power flow
(OPF) has been an important tool in power system operation for
the past four decades. The concept of OPF was first introduced by
Carpentier [2]. It is a very powerful tool to find out an accurate
balance between economics and security. The main goal of the
OPF problem is to determine the optimal operating state of the
power system by optimizing a particular objective function while
satisfying certain specified physical and operating constraints [3].
For secured and economical operation of power system, it is
required to be stable under some severe disturbances, i.e. system
operation must satisfy transient stability constraints.

OPF is a nonlinear, non-convex, large-scale, static optimization
problem with both continuous and discrete control variables [4].
The careful and intelligent scheduling of the generating units can
not only reduce the operating cost significantly but also assure
higher reliability and security of power system. Many successful
techniques [5–9] have been developed in the intervening decades
that focus on overcoming the limitations of OPF study in terms
of flexibility and reliability for practical applications. In case of con-
ventional OPF formulation, transient stability constraints are not
considered. The operating point of the system often fails to main-
tain transient stability, when subjected to a credible contingency.
The ordinary OPF problems have been, extensively, studied in
[10]. Several conventional optimization techniques have been
applied to solve the OPF problem, such as linear programming,
interior point method (IPM) and Newton method [11]. But as the
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power industry is growing faster and moves into a competitive
environment, transient stability is becoming an important factor
to be considered while dealing with OPF study [12].

Transient stability constrained OPF (TSCOPF) is, however, a
nonlinear optimization problem with both algebraic and differen-
tial equations in the time domain. It considers optimal and stable
operations simultaneously. As a special requirement of the system,
the initial or feasible operating point should withstand the distur-
bance and can move to a new stable equilibrium state after the
clearance of the fault without disturbing the equality and the
inequality constraints. Due to huge dimension of TSCOPF problem
(especially, for system dealing with detailed machine models), it is
really a tough exercise to deal with this type of problem. For a
given power system configuration, although the number of possi-
ble contingencies are numerous, there are few critical contingen-
cies that may cause instability. After analyzing and filtration, the
major contingency is selected and the TSCOPF procedure is applied
to find out the optimal operating point.

Various optimization techniques have been evolved in the last
two decades to solve the TSCOPF problem. An improved genetic
algorithm (GA) was proposed by Chan et al. [13] to solve
multi-contingency TSCOPF problem where generator rotor angle
constraints were additionally considered. An IPM method was
introduced by Xia et al. [14] to efficiently perform the TSCOPF.
But, in case of large scale TSCOPF problem, IPM suffers from the
curse of dimensionality, unacceptable memory consumption and
enough computational time [14]. To overcome these drawbacks,
a new approach (called as reduced space IPM (RSIPM)) was intro-
duced in [15] to reduce the memory usage as well as CPU time.
In order to improve further the computational efficiency, an
enhanced numerical discretization method was proposed in [16]
where truncation error of specific numerical integration algorithm
was considered and discretization occurs in inequality constraints
instead of equality constraints that has enabled to reduce the
prime dual linear systems dimension to 50% from more than 80–
90%. Afterward, Pizano-Martinez et al. have proposed an efficient
and practical approach in [17] to reduce the huge dimension of
the TSCOPF problem where the sets of dynamic and transient sta-
bility constraints were reduced to one single stability constraint
and this method was implemented, efficiently, on WSCC
3-machine 9-bus system and the Mexican 46-machine 190-bus
system. For achieving more effective and flexible computation of
TSCOPF, combination of classical deterministic programming tech-
nique and evolutionary algorithm was introduced by Xu et al. [18].
Geng and Jiang have proposed two-level parallel decomposition
approach [19] based on the RSIPM method to solve TSCOPF prob-
lem. Moreover, in the recent past, various other nature-inspired
optimization algorithms have been also designed and applied to
solve the TSCOPF problem of power system. These include evolu-
tionary programming [20], particle swarm optimization (PSO)
[21,22], differential evolution (DE) [23], GA [24], etc.

However, this paper represents a new bio-inspired swarm intel-
ligence algorithm, called krill herd algorithm (KHA) (proposed by
Gandomi and Alavi [25]), to solve TSCOPF problem of power sys-
tem. The main motive of using this technique is to show that the
clustering may be also applied to the natural intelligent tech-
niques. Clustering also shows the swarm behavior and, thus, it is
used with the nature inspired algorithms to help for finding the
food for the krill individuals. For determining the time dependent
position of an individual krill, three important actions are consid-
ered in [25]. These are (a) motion induced by other krills, (b) forag-
ing activity and (c) random diffusion.

Recently, KHA methodology is becoming very much popular in
different fields of research interests like, structural optimization
problem [26], portfolio optimization problem [27], numerical
optimization problem [28], phase stability and phase equilibrium
calculations [29], production scheduling problem [30], optimum
design of truss structures [31] and so on. Moreover, a few new vari-
ant of KHA have been also proposed by the researchers such as
opposition based KHA with cauchy mutation and position clamp-
ing [32], biogeography based optimization (BBO) embedded with
KHA [33], and quantum-behaved PSO based KHA [34]. Also, vari-
ants of KHA like simulated annealing (SA) based KHA [35], chaotic
PSO based KHA [36], harmony search algorithm (HSA) based KHA
[37], GA based KHA incorporating stud selection and crossover
operator [38], DE based KHA [39] and cuckoo search based KHA
[40] have been proposed in the literature for global numerical
optimization problem.

Moreover, to accelerate the convergence rate and to improve
the simulation results, oppositional based learning (OBL) [41] is
integrated in this paper with the conventional KHA technique.
The main idea behind the OBL is the simultaneous consideration
of an estimate and its corresponding opposite estimate in order
to achieve a better approximation for the current candidate solu-
tion. So, OBL is proved to be an effective technique to improve
the performance of various basic optimization approaches like
PSO [42], ant colony optimization (ACO) [43], BBO [44], HSA
[45–47], gravitational search algorithm (GSA) [48] and bat
algorithm [49].

In this article, the concept of OBL is embedded with the basic
KHA technique (termed as OKHA) for achieving improved response
and better convergence characteristics. Two test power systems
(i.e. 10 generator New England 39-bus system and 17 generator
162-bus system) are chosen in this work to solve the TSCOPF prob-
lem of power system. A single objective function i.e. quadratic fuel
cost (without considering valve point effect) is considered here.
The results obtained from the proposed OKHA method are
compared with other three algorithms (viz. GSA, BBO and KHA)
reported in the recent state-of-the-art literature.

The rest of this paper is organized as follows: ‘Problem formu-
lation’ Section analyzes the mathematical problem formulation
part of OPF problem. Basic aspects of transient stability analysis
are assessed in Section ‘Transient stability assessment’. Section,
‘Algorithms employed’ describes about the basic attributes of some
algorithms like GSA, BBO, KHA and OKHA. ‘OKHA applied to
TSCOPF problem’ Section elaborates the implementation part of
the proposed OKHA for TSCOPF problem. Simulation results and
discussion part are elucidated in ‘Simulation results and discus-
sion’ part while ‘Conclusion’ Section draws the conclusion of the
present work.
Problem formulation

The main goal of the OPF problem is to minimize the total fuel
cost while satisfying all the equality and the inequality constraints.
Mathematically, OPF problem may be represented as

Min f ðuÞ ð1Þ
subject to :
gðuÞ ¼ 0
hðuÞ 6 0

�
ð2Þ

The objective function may be written as [23]

f ðuÞ ¼ CT ¼
XNG

x¼1

ðaxP2
Gx

þ bxPGx þ cxÞ ð3Þ

where CT is the total generating cost, ax, bx, cx are the fuel cost
coefficients of the generator x, PGx is the active power generation
of the unit x, NG is the total number of generator buses.
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Constraints

The OPF problem has two categories of constraints (viz. the
equality constraint and the inequality constraint). These two types
of constraints are, sequentially, described below.

Equality constraints
The following power flow equations form the equality

constraints:

PGx � PDx �
XNB

y¼1

VxVyðGxy cos dxy þ Bxy sin dxyÞ ¼ 0

QGx � QDx �
XNB

y¼1

VxVyðGxy sin dxy � Bxy cos dxyÞ ¼ 0

8>>>>><
>>>>>:

ð4Þ

where Vx, Vy are the voltages of the buses x and y, respectively,
PGx ;QGx are the active and the reactive power, respectively, of the
generator x, PDx ;QDx are the active and the reactive power demand
at bus x, Gxy, Bxy, dxy, respectively, are the conductance, the
susceptance and the phase difference of voltage, between buses x
and y and NB is the number of buses.

Inequality constraints
These constraints represent the system operating limits as

follow:

(i) Generator constraints

Generator voltage, active power outputs and reactive power
outputs of bus x should lie between their respective lower and
upper limits, as follows:

Vmin
Gx

6 VGx 6 Vmax
Gx

; x ¼ 1;2; . . . ;NG

Pmin
Gx

6 PGx 6 Pmax
Gx

; x ¼ 1;2; . . . ;NG

Qmin
Gx

6 QGx 6 Qmax
Gx

; x ¼ 1;2; . . . ;NG

9>>=
>>; ð5Þ

where Vmin
Gx

;Vmax
Gx

are the minimum and the maximum generator

voltage, respectively, of bus x, Pmin
Gx

; Pmax
Gx

are the minimum and the
maximum active power output, respectively, of bus x and

Qmin
Gx

;Qmax
Gx

are the minimum and the maximum reactive power
output, respectively, of bus x.

(ii) Transformer constraints
Transformer tap settings are bounded by their respective upper

and lower limits as:

Tmin
x 6 Tx 6 Tmax

x ; x ¼ 1;2; . . . ;NT ð6Þ

where Tmin
x ; Tmax

x are the minimum and the maximum tap setting
limits, respectively, of transformer x and NT is the number of
regulating transformers.

(iii) Shunt compensator constraints
Reactive power injections at buses are restricted by their

respective maximum and minimum limits as:

Qmin
Cx

6 QCx 6 Qmax
Cx

; x ¼ 1;2; . . . ;NC ð7Þ

where Qmin
Cx

;Qmax
Cx

are the minimum and the maximum VAR injection
limits, respectively, of the shunt compensator x and NC is the
number of shunt compensators.

(iv) Security constraints
These include transmission line loadings and voltages at load

buses as follows:
Vmin
Lx 6 VLx 6 Vmax

Lx ; x ¼ 1;2; . . . ;NL ð8Þ

SLx 6 Smax
Lx ; x ¼ 1;2; . . . ;NTL ð9Þ

where Vmin
Lx ;Vmax

Lx are the minimum and the maximum load voltage,
respectively, of load bus x, SLx ; S

max
Lx are the apparent power flow and

the maximum apparent power flow limit, respectively, through
branch x, NL is the number of load buses and NTL is the number of
transmission lines.

Transient stability assessment

The term ‘transient stability’ refers to the ability of a syn-
chronous machine of an interconnected power system to return
to normal or stable operation after being subjected to some form
of disturbances and the instability, usually, appears in the form
of increasing angular swings of some generators leading to their
loss of synchronism with respect to the other generators [50].

Mathematically, transient stability problem is described by a set
of differential–algebraic equations. For describing the transient
behavior of a system incorporating transient stability, the genera-
tor rotor angles are used here with respect to the initial center of
all the generators. So, the position of center of inertia (COI) is
defined as

dCOI ¼
PNG

x¼1MxdxPNG
x¼1Mx

ð10Þ

where dx is the rotor angle for the generator x and Mx is the inertia
constant of the generator x for an NG generator system.

In view of inequality constraints, it may be put as

dmin 6 dx � dCOI 6 dmax; x# SG ð11Þ
where dmin, dmax are, respectively, the lower and the upper limits of
generator rotor angles and SG is the set of synchronous generators.

Algorithms employed

In this article, a new algorithm, named as KHA [25], is tested to
solve the TSCOPF problem of power system. Moreover, to improve
the convergence speed and the quality of the simulation results,
the idea of OBL is integrated with the basic KHA technique. To
check the compatibility and the effectiveness of the proposed
OKHA, it is compared with the basic KHA and other two recently
developed evolutionary algorithms, namely, GSA [51,52] and BBO
[53,54]. The details of these algorithms are explained below.

GSA

GSA, proposed by Rashedi et al. [51], is based on the law of grav-
ity and motion. In this algorithm [48,51,52], agents are considered
as objects and their performance is measured by their masses. The
gravitational force, by which the objects attract each other, causes
a global movement of all the objects toward the objects with heav-
ier masses. The objects with heavier masses through which gravi-
tational force cooperate by using a direct form of communication,
guarantee the exploitation step of the algorithm and move more
slowly than the lighter ones. In GSA, active gravitational mass, pas-
sive gravitational mass, position and inertial mass are the four
specified masses or agents. Using a fitness function, its gravita-
tional and inertial masses are determined while the position of
the mass corresponds to a solution [48,51,52].

GSA could be considered as an isolated system of masses. Now,
this masses present optimum solution in the search space. More
precisely, masses obey the following laws:



Generate initial population

Evaluate the fitness for each agent

Update the gravitational constant by (22), best value by (15) 
and worst value by (16) of the population 

Calculate the mass by (14) and the acceleration
by (18) for each agent 

Update the velocity by (19) and the position by (20)

Meeting end of 
criterion?

Return best solution

No

Yes

End

Start

Fig. 1. Flowchart of GSA [51].
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Law of gravity
It states that any two bodies in the universe attract each other

with a force that is directly proportional to the product of their
masses and inversely proportional to the square of the distance
between them.

Law of motion
The current velocity of any mass is equal to the sum of the frac-

tion of its previous velocity and the variation in the velocity. Vari-
ation in the velocity or acceleration of any mass is equal to the
force acted on the system divided by mass of inertia.

The position of the ith agent may be defined by considering a
system of K agents (masses).

Pi ¼ ðp1
i ; . . . ; p

d
i ; . . . ;p

n
i Þ; i ¼ 1;2;3; . . . ;Np ð12Þ

where pd
i presents the position of the agent i in the dimension d and

n is the total dimension of the search space.
Based on GSA, mass of each agent may be calculated after

computing the fitness of current population by using (13) and
(14) [48]

miðtÞ ¼ fitnessiðtÞ �worstðtÞ
bestðtÞ �worstðtÞ ð13Þ

MiðtÞ ¼ miðtÞPNp

i¼1miðtÞ
ð14Þ

where Mi(t) and fitnessi(t) symbolize, respectively, the mass and the
fitness value of the agent i at time t while worst(t) and best(t) are
defined (for a minimization problem) [48] as follows:

bestðtÞ ¼ mini2f1;...;NpgfitnessiðtÞ ð15Þ

worstðtÞ ¼ maxi2f1;...;NpgfitnessiðtÞ ð16Þ
Now, based on the law of gravity, the total forces applied on an

agent among a set of heavier masses may be calculated by using
(17) which is followed by an another equation (refer (18)) that
shows the calculation of acceleration based on the law of motion.
After that, the velocity and position of agent may be updated,
respectively, by (19) and (20) [48]. The updated velocity of an
agent is considered to the sum of the fraction of its current velocity
added to its acceleration.

Xn
i ðtÞ ¼

XK
j¼kbest ;

j–i

randj � GðtÞ �MiðtÞ �MjðtÞ
HijðtÞ þ v � ðpn

j ðtÞ � pn
i ðtÞÞ ð17Þ

accdi ðtÞ ¼
Xn

i ðtÞ
MiðtÞ ¼

XK
j¼kbest ;

j–i

randj � GðtÞ � MjðtÞ
HijðtÞ þ v� ðpn

j ðtÞ � pn
i ðtÞÞ

ð18Þ

vd
i ðt þ 1Þ ¼ randi � vd

i ðtÞ þ accdi ðtÞ ð19Þ

Pd
i ðt þ 1Þ ¼ Pd

i ðtÞ þ ud
i ðt þ 1Þ ð20Þ

where randi and randj are two random numbers defined in the inter-
val [0, 1], v is a small constant, kbest is the set of first K agents consist
of best fitness value and bigger mass that may be considered as a
function of time and Hij(t) is the Euclidian distance between the
two agents i and j, defined by (21).

HijðtÞ ¼ kpiðtÞ; pjðtÞk2 ð21Þ
Here, the gravitational constant G may be considered as a func-

tion of the initial value (Go) and time (t) (i.e. decreased with time to
control the search accuracy) formulated by (22) [48]
GðtÞ ¼ Go � e�k Iter
Itermaxð Þ ð22Þ

where Go value is chosen as 100 [48], k is preferred as 10 [48], Iter
and Itermax are the present and the total number of iterations,
respectively.

Computational procedure of GSA algorithm
Thedifferent steps of theGSAalgorithmare shown inAlgorithm1

[48] while its flowchart may be found in Fig. 1 [51].
Algorithm 1: Computational procedure of GSA [48]
Step 1
 Search space identification.

Step 2
 Generate initial population between

minimum and maximum values.

Step 3
 Evaluate the fitness of each agent.

Step 4
 Update the mass of the object Mi(t) using

(13) and (14), best(t) based on (15), worst
(t) based on (16). Also, update the
gravitational constant G(t) using (22).
Step 5
 Calculate the total force using (17) for
different directions.
Step 6
 Calculate the acceleration using (18) and
the velocity of an agent using (19).
Step 7
 Update the position of an agent by (20).

Step 8
 Check for constraints of the problem.

Step 9
 Repeat Step 3 to Step 8 until the stopping

criteria is satisfied.
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BBO
Fig. 2. Species model of a single habitat BBO [53].
Mathematical model of biogeography [53] describes the evolu-
tion of new species (i.e. the migration of species (like animals, fish,
birds, or insects) between islands and the extinction of these spe-
cies). A habitat is defined as an island (area) that is, geographically,
isolated from the other islands. Islands that are friendly to life are
said to have a high habitat suitability index (HSI). The features that
correlate with the HSI values include rainfall, vegetative diversity,
topographic diversity, land area, temperature and others. The
index variables that qualify the suitability are termed as suitability
index variables (SIVs). Islands with a high HSI can support many
species while islands with a low HSI can support only few numbers
of species. Islands with a high HSI have many species that emigrate
to nearby habitats because of the large populations and the large
numbers of species that they host. So, the emigration process
may be defined as the migration of some species from a habitat
to an exterior habitat whereas an entry of some species into one
habitat from an outside habitat is known as immigration process.
Islands with a high HSI not only have a high emigration rate, but
they also have a low immigration rate because they already sup-
port many species. Species that migrate to such islands will tend
to die in spite of the high HSI of the preferred island, because there
is too much competition for resources from other species. Islands
with a low HSI have a high immigration rate because of their low
populations.

Comparing the concept of BBO with any other optimization
technique, it may be noted that a higher value of HSI corresponds
to a good solution while a lower value of HSI corresponds to a poor
solution. Poor solutions accept much more new features from good
solutions that help to raise the quality of poor solutions with low
HSI.

Mathematically, the whole process of immigration and emigra-
tion may be expressed by a probabilistic model. If Ps(t) denotes the
probability of a habitat at time t containing exactly s species, then
at time (t + Dt), the probability will be given by (23) [53,54]

Psðt þ DtÞ ¼ PsðtÞð1� ksDt � lsDtÞ þ Pðs�1Þkðs�1ÞDt

þ Pðsþ1Þlðsþ1ÞDt ð23Þ
If Dt time is taken as very small, then the probability of more

than one immigration or emigration may be ignored. Taking the
limit asDt? 0, the species count probability may, mathematically,
be expressed as follows [53,54]:

_Ps ¼
�ðks þ lsÞPs þ lsþ1Psþ1; S ¼ 0
�ðks þ lsÞPs þ ks�1Ps�1 þ lsþ1Psþ1; 1 6 S 6 Smax � 1
�ðks þ lsÞPs þ ks�1Ps�1; S ¼ Smax

8><
>:

ð24Þ

where Ps�1 is the probability of habitat containing (s � 1) species,
Ps+1 is the probability of habitat containing (s + 1) species, ks and
ls are the immigration and emigration rate, respectively, for habitat
containing s species, ks�1 and ls�1 are the immigration and emigra-
tion rate, respectively, for habitat containing (s � 1) species, ksþ1

and ls+1 are the immigration and emigration rate, respectively, for
habitat containing (s + 1) species and Smax is the maximum count
of species in the habitat.

Immigration rate ðksÞ and emigration rate (ls) may be repre-
sented by (25) and (26), in order, as follows [53,54]

ks ¼ I 1� S
Smax

� �
ð25Þ

ls ¼
E� S
Smax

ð26Þ
where I is the maximum immigration rate and E is the maximum
emigration rate, respectively.

Fig. 2 describes the model of habitants’ profusion in a single
habitat. The two functions, ls and ks, are the number of habitants
in the habitat. From this figure, it may be seen that the presence
of zero habitant in the habitat results to the maximum possible
immigration rate of I (in case of immigration curve). Due to the
increase of number of species, the habitat becomes more crowded
and a few number of species are able to successfully endure and, as
a result, the immigration rate decreases. The largest possible num-
ber of habitants is Smax where the immigration rate becomes zero.
On the other side, in case of emigration curve, the emigration rate
must be zero for the presence of zero habitants. When the habitat
is becoming more crowded, the emigration rate increases. In Fig. 2,
S0 is the equilibrium point, where immigration and emigration rate
become equal [53,54].

BBO technique is, mainly, based on migration and mutation. The
basic concept of migration and mutation are given below.

Migration
In this algorithm, population of candidate solutions is repre-

sented as vector of real numbers. For sharing the information
between habitats, emigration and immigration rates of individuals
are used. Here, each solution may be modified based on other solu-
tion using habitat modification probability. If any individual solu-
tion is selected to be modified, then immigration rate (ks) is used
to probabilistically decide whether or not to modify any SIV in that
solution. After selection of any SIV for modification, emigration
rates (ls) of other solutions are applied, to probabilistically select
among the population set for migration.

Mutation
In BBO, species count probabilities are used to determine muta-

tion rates. Species count probability of each individual may be cal-
culated by using (24). Each population member relates to an
associated probability that indicates the likelihood with which it
exists as a solution for a given problem. If the probability has lower
value, then the chance of mutation with other solution is higher
but if the probability has a higher value, then it has very little
chance to mutate. Mutation rate of each individual solution may
be defined by (27) [53,54]:

mðsÞ ¼ mmax
1� Ps
Pmax

� �
ð27Þ

where m(s) is the mutation rate for habitat containing s species,
mmax is the maximum mutation rate and Pmax is the maximum
probability.



Start

Initialize the input parameters of BBO

Calculate HSI for all the habitats

Update the emigration, immigration and mutation rates for each habitat

Modify habitants according to immigration and emigration rates

Select random number of habitats and mutate some of their habitants

Elitism

Sort the current population from best to worst 

Display results

End

Satisfying end 
criterion

Yes

No

Species model of a single habitat (refer Fig. 2)

Fig. 3. Flowchart of BBO [54].
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Computational procedure of BBO
Algorithm 2 [53] describes the computational procedure of the

studied BBO algorithm while Fig. 3 portrays its flowchart [54].

Algorithm 2: Computational procedure of BBO [53]
Step 1
 Initialize the BBO parameters.

Step 2
 Initialize the random set of habitats

where each habitat is analogous to the
potential solution to the particular
problem.
Step 3
 For each habitat, update the mutation
rate, the immigration rate and the
emigration rate.
Step 4
 Adjust each non-elite habitat by
probabilistically using immigration and
emigration rates.
Step 5
 Update the probability of species count
for each habitat using (24). Transform
each non-elite habitat depending upon
its probability and calculate each HSI.
Step 6
 Sort the population from the best to the
worst.
Step 7
 Go to Step 3 for next iteration.

Step 8
 Stop iterations after reaching a certain

number of iterations.
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KHA

KHA is a novel meta-heuristic swarm intelligence based opti-
mization method for solving optimization problems. It is based
on the herding behavior of krill swarms in response to the specific
biological and environmental processes. It has been first intro-
duced by Gandomi and Alavi in 2012 [25]. In this optimization
algorithm, the objective function for the krill movement is sup-
posed to be a combination of the least distances of the position
of the food and the highest density of the herd. The KHA repeats
the implementation of the three movements and follows the
search directions that enhance the objective function value. The
movement of each individual krill is determined by three main
processes. These are:

(a) movement induced by other krill individuals,
(b) foraging activity,
(c) random diffusion.

Basic KHA technique may be expressed by Lagrangian model in
an n dimensional decision space, as shown in (28) [25]

dup

dt
¼ Wnew

p þWnew
Fp þWnew

Dp
ð28Þ

whereWnew
p is the motion induced by other krill individuals,Wnew

Fp is

the foraging motion and Wnew
Dp

is the physical diffusion of the krill

individuals, respectively.
Motion induced by other krill individuals
In this process, the krill individuals try to maintain a high den-

sity while the velocity of each individual is influenced by the
movement of the others. The direction of motion induced (wp) is,
approximately, evaluated by the three effects, namely, (a) local
effect, (b) target effect and (c) repulsive effect. For a krill individual
p, this motion may be formulated as

Wnew
p ¼ wpW

max
p þ uwW

old
p ð29Þ
wp ¼
Xns
q¼1

vp � vq

vw � vb
� up � uq

jup � uqj þ rand ð0;1Þ
� �

þ 2 rand ð0;1Þ þ z
zmax

� �
vbest

p Xbest
p ð30Þ

where Wmax
p is the maximum induced motion, uw is the inertia

weight of the motion induced in the range [0, 1], Wold
p is the previ-

ous induced motion of the pth krill individuals, vw and vb are the
worst and the best position among all the krill individuals of the
population, respectively, vp and vq are the fitness values of the pth
and the qth individuals, respectively, ns is the number of krill indi-
viduals other than the particular krill, z and zmax are, respectively,
the number of current iteration and maximum number of iterations
and u represents the related positions.

For the determination of the distance between the individual
krills and the neighbors, a parameter named as sensing distance
(Ds) is used. It may be formulated by (31)

Ds ¼ 1
5Np

XNp

k¼1

jup � ukj ð31Þ

where Np is the total number of the krill individual and ux, uk are the
position of the xth and kth krill, respectively. It is noted here that if
the distance between the two individual krill has lesser value than
the sensing distance, then they are treated as neighbors.
Foraging activity
Foraging activity is based upon two main factors. First is the

present food location and second is the information about the
previous food location. The foraging velocity may be expressed
for the pth krill individual by (32)

Wnew
Fp ¼ 0:02

� 2� 1� z
zmax

� �
� vp �

Pns
k¼1

uk
vkPns

k�1
1
vq

þ vbest
p � Xbest

p

" #

þ uwF �Wold
Fp ð32Þ

where uwF is the inertia weight of the foraging motion, Wnew
Fp and

Wold
Fp are the foraging motions of the new and the old pth krill,

respectively.

Random diffusion
The random diffusion process of the krill individual is, mainly,

considered to enhance the population diversity. It may be
expressed as follows:

Wnew
Dp

¼ a�Wmax
D ð33Þ

where Wmax
D is the maximum diffusion speed and a is the random

directional vector lies between [�1, 1].

Position update
In this process, the individual krill alters its current positions

and moves to better positions based on induction motion, foraging
motion and random diffusion motion. According to the three above
discussed motions, the updated position of the pth krill individual
may be expressed by (34)

unew0
p ¼ unew

p þ ðWnew
p þWnew

Fp þWnew
Dp

Þ � PC

Xnd
q¼1

ðUq � LqÞ ð34Þ

where nd is the total number of variables, Uq and Lq are the upper
and the lower limits of the qth variables (q = 1, 2, . . . , nd), respec-
tively and PC is the position constant number between [0, 2].

In order to improve the performance of the optimization prob-
lem and to speed up the convergence property, the crossover and
the mutation process of DE algorithm is incorporated with KHA.

(a) Crossover

Crossover process is, mainly, controlled by a parameter, called
as crossover probability (CR). To update the position of own, each
krill individual interacts with others. In this process, the qth
component of the pth krill may be formulated by (35) and (36)

up;q ¼
uk;q if rand 6 CR

up;q if rand < CR

�
where k ¼ 1;2; . . . ;Np ð35Þ

CR ¼ 0:2vbest
p ð36Þ

(b) Mutation
Mutation process is, mainly, controlled by a parameter called as

mutation probability (MR). This process may be formulated by (37)

up;q ¼ ubest;q þ cðum;q � un;qÞ ð37Þ
where ubest,q is the global best vector, um,q and un,q are the two ran-
domly selected vectors and c is a scalar number between 0 and 1.

The modified value of up,q may be calculated by using (38)

umod
p;q ¼ unew

p;q if rand 6 MR

up;q if rand > MR

�
ð38Þ
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Computational procedure of KHA technique
The computational steps of KHA technique are presented in

Algorithm 3 [25] and the corresponding flowchart is drawn in
Fig. 4 [25].
Algorithm 3: Computational procedure of KHA [25]
Step 1
 Initialization of the algorithm
parameters.
Step 2
 Afterward, depending upon the
population size, initial feasible
population set are generated and it may
be expressed by (39).
Start

Data structures
XNp ¼

X1
g1
; X1

g2
; . . . ; X1

gp
; . . . ; X1

gn

X2
g1
; X2

g2
; . . . ; X2

gp
; . . . ; X2

gn

Xp
g1
; Xp

g2
; . . . ; Xp

gp
; . . . ; Xp

gn

: : . . . ; : . . . :

XNp
g1
; XNp

g2
; . . . ; XNp

gp
; . . . ; XNp

gn

2
666666664

3
777777775

ð39Þ
Step 3

Initialization
Determination of the fitness value of each
individual according to its position using
(34).
Step 4
Fitness evaluation and 
check for constraints
Evaluation of motion induced by other
krill individuals, foraging motion and
random diffusion motion using (29), (32)
and (33), in order.
Step 5
 Modification of the position of each krill
individual using (34).
Step 6

Motion calculation
(i) Induced motion

(ii) Foraging motion
Implementation of crossover and
mutation process to modify the position
of each individual krill in the search
space using (35) and (37), respectively.
(iii) Random diffusion
Step 7
 Stop if maximum number of iteration is
achieved, otherwise repeat from Step 2.
Implement the genetic operator (s)
(crossover and mutation)

Update krill position

Best solution

End

Best result 
found?

Yes

No

Fig. 4. Flowchart of KHA [25].
OKHA

Opposition based learning
OBL is, basically, a machine intelligence strategy which was

expressed by Tizhoosh [41]. It considers the current individual
and its opposite individual simultaneously in order to get a better
approximation at the same time for a current candidate solution.
It has been also proved that an opposite candidate solution has a
greater opportunity to be closer to the global optimum solution
than a random candidate solution [55]. So, the concept of OBL
may be utilized to enhance the performance of the population-
based algorithms [56].

The general OBL concept has been, successfully, applied in DE
[57], GA [58], reinforcement learning [59], ACO [60], windowmem-
orization [61], SA [62], PSO [63,64], fuzzy sets [65], BBO [66,67],
teaching learning based optimization (TLBO) [68] and so on.

In proposing this technique, two definitions (i.e. opposite point
and opposite number) should be clearly defined as follows.

Opposite number
Let p 2 [u, v] be a real number. The opposite number of p⁄ is

defined by (40)

p� ¼ uþ v � p ð40Þ
Opposite point
Let, P = (p1, p2, . . . , pd) be a point in d-dimensional space, where

pm 2 [um, vm] and m = {1, 2, . . . , d, . . . , n}. The opposite point is
defined by (41)

p�
m ¼ um þ vm � pm ð41Þ
Opposition based population initialization
By utilizing opposite points, a suitable starting candidate solu-

tion may be obtained even when there is not a priori knowledge
about the solution. The main steps of the proposed approach are
listed below:



Yes

Start

Data structures

Initialization based on OBL

Fitness evaluation and 
check for constraints

Motion calculation
(i) Induced motion

(ii) Foraging motion
(iii) Random diffusion

Implement the genetic operator (s)
(crossover and mutation)

Update krill position

Best solution

End

Best result 
found?

No

Opposition based generation jumping

Fig. 5. Flowchart of the proposed OKHA.
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Step 1
 Initialize the population set P(Np) in a
random manner.
Step 2
 Calculate opposite population by

OPm;n ¼ un þ vn � Pm;n

m ¼ 1;2; . . . ;Np and n ¼ 1;2; . . . ; d ð42Þ

where Pm,n and OPm,n denote the n th vari-
able of the m th vector of the population
and opposite population, respectively.
Step 3
 Select the fittest individuals from
{P [ OP} as initial population.
Opposition based generation jumping
If the similar type of approach (as mentioned above) is applied

to the current population, the whole evolutionary process can be
forced to jump to a new candidate solution which is more suitable
than the current one. Based on a jumping rate (JR), after following
the induction, the foraging action and the random diffusion pro-
cesses of KHA, the new population is generated and opposite pop-
ulation is calculated. From this comparison, the fittest individuals
are selected. In each generation, search space is reduced to calcu-
late the opposite points i.e.

OPm;n ¼ Minp
n þMaxpn � Pm;n

m ¼ 1;2; . . . ;Np and n ¼ 1;2; . . . ;d
ð43Þ

where bMinp
n;Maxpnc is the current interval in the population which

is becoming increasingly smaller than the corresponding initial
range [un, vn].

Flowchart of OKHA
The flow chart of the proposed OKHA algorithm is shown in

Fig. 5.

OKHA applied to TSCOPF problem
Themain steps of the proposedOKHA approach, as applied to the

TSCOPF problem of the present work, is described in Algorithm 4.

Algorithm 4: Implementation of the proposed OKHA for
TSCOPF problem
Step 1
 Initialize all the individual population within
their effective real operating limits in a random
manner. The voltages of generator buses, active
power of the entire generator buses except slack
bus, tap settings of regulating transformers,
reactive power injections are generated randomly
satisfying the inequality constraints defined in
(5)–(7). Afterward, Newton Raphson based load
flow [69] is run to check if the constraints are
within the limits or not. Moreover, the transient
stability criterion, defined in (11), is verified. If
any one of these does not satisfy the inequality
constraints, then that particular set has to be
discarded and initialised again. Now, several
initial set (P), depending upon the population size,
are generated. A feasible solution set represents
the position of different krill individuals.
Depending upon the population size, initial krill
position matrix is created by (39).
Step 2
 For determining the opposite population (OP) set
using opposition based learning, again the
voltages of generator buses, active power of the
entire generator buses except slack bus, tap
settings of regulating transformers, reactive
power injections are evaluated by using (42) and
Newton Raphson based load flow method [69] is
run to satisfy the equality constraints. Moreover,
the transient inequality criterion is verified. If
any one of these violates the limits, then the
corresponding set is reinitialised.
Step 3
 Select the fittest individuals from {P [ OP}.

Step 4
 Sort the selected fittest vectors from best to

worst.

Step 5
 Choose few elite solutions based on the fitness

value.
(continued on next page)
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Step 6
ble 1
st co-efficient da

Generator

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

ble 2
ulation results

Control variable

PG30 (p.u.)
PG31 (p.u.)
PG32 (p.u.)
PG33 (p.u.)
PG34 (p.u.)
PG35 (p.u.)
PG36 (p.u.)
PG37 (p.u.)
PG38 (p.u.)
PG39 (p.u.)
V30 (p.u.)
V31 (p.u.)
V32 (p.u.)
V33 (p.u.)
V34 (p.u.)
V35 (p.u.)
V36 (p.u.)
V37 (p.u.)
V38 (p.u.)
V39 (p.u.)
Cost ($/h)
The position of krill individuals of non-elite
population set are modified using (34).
Afterward, the position of each krill individual is
further modified applying crossover and
mutation operation of DE (defined in (35) and
(37), in order).
Step 7
 Run load flow [69] to evaluate the dependent
variables of TSCOPF and calculate the fitness
value of the population set.
Step 8
 Based on jumping rate (JR), the opposite
population of the current population and
corresponding fitness values are calculated.
Step 9
 Fittest individuals are determined from {P [ OP}.

Step 10
 Stop if maximum number of iteration is

achieved, otherwise repeat from Step 6.
Simulation results and discussion

In this section, KHA and the proposed OKHA algorithms are
applied for the solution of the TSCOPF problem of power system.
Two different test systems (viz. 10 generator New England 39-
bus system and 17 generator 162-bus system) are considered for
verifying their applicability for TSCOPF study. For both the systems,
a classical generator model is used as the synchronous generators
and a constant impedance model is used for the loads. All simula-
tions are carried out using MATLAB 2008a and implemented on a
ta and power generation limits of 10 generator New England 39-bus s

ax bx

0.0193 6.9
0.0111 3.7
0.0104 2.8
0.0088 4.7
0.0128 2.8
0.0094 3.7
0.0099 4.8
0.0113 3.6
0.0071 3.7
0.0064 3.9

obtained by different methods for fault at bus number 29 of 10 genera

s DSA [71] CM [70] DM [70] GSA [

2.4783 2.4873 2.49447 2.39
5.7723 5.7784 5.78359 5.76
6.5341 6.5447 6.54356 6.48
6.4328 6.4500 6.4176 5.67
5.1778 5.1882 5.1741 5.40
6.6246 6.6432 6.60731 6.25
5.6959 5.7137 5.68181 5.49
5.4388 5.4781 5.47695 5.11
7.7454 7.5202 7.54618 8.45

10.0035 9.9560 10.03181 10.30
0.9840 1.0150 1.0150 1.09
1.0740 1.0870 1.0870 1.08
1.0080 1.0290 1.0290 1.08
1.0140 1.0160 1.0160 1.09
1.0190 1.0220 1.0220 1.09
1.0670 1.0620 1.0620 1.08
1.0870 1.0900 1.0900 1.09
1.0120 1.0470 1.0470 1.09
1.0510 1.0380 1.0380 1.09
1.0190 1.0530 1.0530 1.09

61799.68 61600.76 61597.76 60969
personal computer with Intel Pentium Dual-Core 1.73 GHz proces-
sor with 2GB-RAM. For implementing the techniques in TSCOPF
problems, maximum number of iterations of 100 (for both KHA
and OKHA), integration time step of 0.01 s, total population size
of 50 (for both KHA and OKHA), jumping rate (JR) of 0.3 are consid-
ered. Total simulation period is 5.0 s for all the simulation works.
Also, input parameters of KHA are taken from [25], which are as
follows: Wmax

p ¼ 0:01, Wmax
D ¼ 0:005, PC = 0.5 and the values of ini-

tial inertia weights (uw and uwF ) are equal to 0.9 for increasing
exploration and these values are decreased linearly to 0.1 at the
end for encouraging exploitation. In order to demonstrate the
robustness, statistical comparison such as best, worst and mean
results over 50 independent trial runs are reported. To indicate
the superior optimization capability of the proposed OKHA, the
results of interest are bold faced in all the respective tables.
Test case 1: 10 generator New England 39-bus system

This system comprises of 10 generator buses and 19 load buses.
Bus 39 is taken here as the slack bus. The system data are available
in [69]. The cost co-efficient data and power generation limits of
different generators of this system are adopted from [18] and are
given in Table 1. A 3-phase to ground fault occurs at bus 29 and
between lines 28–29 in the system. The fault is cleared by opening
the contacts of the circuit breakers by 100 ms. The simulation
results of the proposed OKHA technique is shown in Table 2 and
its results are compared to the other obtained results offered by
generator classical model (CM) [70], generator detailed model
ystem [18].

cx Pmin (MW) Pmax (MW)

0 0 350
0 0 650
0 0 800
0 0 750
0 0 650
0 0 750
0 0 750
0 0 700
0 0 900
0 0 1200

tor New England 39-bus system.

Studied] BBO [Studied] KHA [Studied] OKHA [Proposed]

40 2.7508 2.4599 2.4656
49 5.6827 5.6758 5.6849
92 6.6363 6.2331 6.4291
87 6.4231 6.4613 6.3341
76 5.1307 5.1490 4.9784
37 6.7498 6.0591 6.3682
54 5.4800 5.5764 5.4440
26 5.5535 5.2100 5.3074
46 7.6663 8.4106 8.4546
41 9.2867 10.1462 9.8996
28 1.0977 1.0824 1.0964
73 1.0912 1.0447 1.0934
60 1.0766 1.0518 1.0870
31 1.0974 1.0763 1.0993
67 1.0938 1.0435 1.0967
20 1.0986 1.0800 1.0980
99 1.0989 1.0820 1.0999
74 1.0956 1.0679 1.0974
88 1.0922 1.0962 1.0988
48 1.0923 1.0844 1.0973
.18 60957.87 60943.69 60883.55



Table 3
Statistical comparison (out of 50 independent trial runs) among various methods for 10 generator New England 39-bus system.

Parameter DSA [71] CM [70] DM [70] GSA [Studied] BBO [Studied] KHA [Studied] OKHA [Proposed]

Best cost ($/h) 61799.68 61600.76 61597.76 60969.18 60957.87 60943.69 60883.55
Worst cost ($/h) NR⁄ NR⁄ NR⁄ 61015.13 61008.42 60985.19 60892.25
Mean cost ($/h) NR⁄ NR⁄ NR⁄ 60989.15 60985.17 60962.24 60885.77

NR⁄ means not reported in the referred literature.

Fig. 6. Relative rotor angle deviation of different generators with respect to slack
bus for 10 generator New England 39-bus system using GSA.

Fig. 7. Relative rotor angle deviation of different generators with respect to slack
bus for 10 generator New England 39-bus system using BBO.

Fig. 8. Relative rotor angle deviation of different generators with respect to slack
bus for 10 generator New England 39-bus system using KHA.

Fig. 9. Relative rotor angle deviation of different generators with respect to slack
bus for 10 generator New England 39-bus system using OKHA.

Fig. 10. Comparative convergence characteristic of fuel cost for 10 generator New
England 39-bus system.

A. Mukherjee et al. / Electrical Power and Energy Systems 83 (2016) 283–297 293
(DM) [70], dynamic simulation algorithm (DSA) [71], GSA, BBO and
KHA techniques. It is found that the total cost from OKHA is less
than that obtained by all other discussed algorithms.

Best, mean and worst fuel costs obtained by GSA, BBO, KHA and
the proposed OKHA are presented in Table 3. From these statistical
results, it is clear that the worst cost value of OKHA algorithm is
even less as compared to the best fuel costs of other existing tech-
niques. This observation clearly suggests the higher computational
efficiency of OKHA than any other methods in terms of quality of
solution and robustness. The relative rotor angle deviation curves
of different generators with respect to slack bus are shown in
Figs. 6–9, sequentially, (using GSA, BBO, KHA and proposed OKHA
technique). From this rotor angle deviation curves, it is seen that all
the curves are within limits and maintains stability. The conver-
gence characteristics obtained by different techniques of this test



Table 4
Cost co-efficient data and power generation limits of 17 generator 162-bus system
[72].

Generator ax bx cx Pmin (MW) Pmax (MW)

G3 0.00064 0.50 0.0 1000 2300
G6 0.00098 0.30 0.0 500 1094
G15 0.00076 0.50 0.0 1000 1800
G27 0.00076 0.50 0.0 1000 1800
G73 0.00150 0.20 0.0 200 747
G76 0.00088 0.30 0.0 500 1355
G99 0.00200 0.40 0.0 0 450
G101 0.00200 0.40 0.0 0 382
G108 0.00084 0.30 0.0 0 1200
G114 0.00200 0.40 0.0 0 431
G118 0.00200 0.40 0.0 0 473
G121 0.00150 0.30 0.0 200 920
G124 0.00640 0.52 0.0 1000 2851
G125 0.00640 0.67 0.0 1000 2688
G126 0.00640 0.42 0.0 1000 2767
G130 0.00150 0.30 0.0 200 755
G131 0.00150 0.30 0.0 200 875

Table 5
Simulation results obtained by different methods for fault at bus number 1 of 17
generator 162-bus system.

Control
variables

GSA
[Studied]

BBO
[Studied]

KHA
[Studied]

OKHA
[Proposed]

PG3 (p.u.) 20.8952 21.7302 19.3818 19.9436
PG6 (p.u.) 10.4926 10.8603 10.7574 10.8517
PG15 (p.u.) 16.1527 16.2511 17.1541 16.9445
PG27 (p.u.) 17.5148 17.9683 17.6595 17.9750
PG73 (p.u.) 7.4503 6.2834 7.3883 6.9504
PG76 (p.u.) 9.5115 9.6565 9.5236 9.9380
PG99 (p.u.) 4.1530 3.4393 4.4420 4.4194
PG101 (p.u.) 3.7575 3.7544 3.6922 3.6567
PG108 (p.u.) 9.7397 9.5216 9.5115 9.9905
PG114 (p.u.) 4.2481 4.2173 4.2053 4.3053
PG118 (p.u.) 4.3501 4.6996 4.6884 4.7010
PG121 (p.u.) 8.5450 9.0452 8.8195 8.1637
PG124 (p.u.) 10.8524 10.0329 10.0178 10.7940
PG125 (p.u.) 10.6664 11.0298 10.4218 10.0368
PG126 (p.u.) 10.2292 10.3578 11.3468 10.4579
PG130 (p.u.) 7.5071 7.5193 7.2521 7.2489
PG131 (p.u.) 8.6936 8.4358 8.5284 8.1677
V3 (p.u.) 1.0533 1.0591 1.0518 1.0569
V6 (p.u.) 1.0548 1.0597 1.0532 1.0558
V15 (p.u.) 1.0515 1.0495 1.0535 1.0414
V27 (p.u.) 1.0446 1.0537 1.0434 1.0502
V73 (p.u.) 1.0510 1.0565 1.0510 1.0593
V76 (p.u.) 1.0412 1.0545 1.0587 1.0585
V99 (p.u.) 1.0548 1.0542 1.0562 0.9943
V101 (p.u.) 1.0509 1.0574 1.0475 1.0567
V108 (p.u.) 1.0567 1.0526 1.0431 1.0376
V114 (p.u.) 1.0462 1.0436 1.0485 1.0230
V118 (p.u.) 1.0336 1.0546 1.0521 1.0484
V121 (p.u.) 1.0537 1.0598 1.0594 1.0568
V124 (p.u.) 1.0585 1.0585 1.0535 1.0514
V125 (p.u.) 1.0457 1.0523 1.0569 1.0481
V126 (p.u.) 1.0358 1.0590 1.0511 1.0497
V130 (p.u.) 1.0552 1.0528 1.0447 1.0483
V131 (p.u.) 1.0570 1.0580 1.0244 1.0476
Cost ($/h) 45234.08 45220.62 45162.77 44666.16
Loss (p.u.) 6.2126 6.2562 6.2439 5.9985

Table 6
Statistical comparison (out of 50 independent trial runs) among various methods for
10 generator 162-bus system.

Parameters GSA
[Studied]

BBO
[Studied]

KHA
[Studied]

OKHA
[Proposed]

Best cost ($/h) 45234.08 45220.62 45162.77 44666.16
Worst cost ($/h) 45282.93 45263.57 45204.42 44676.71
Mean cost ($/h) 45259.65 45241.49 45186.59 44674.54

Fig. 11. Relative rotor angle deviation of different generators with respect to slack
bus for 17 generator 162-bus system using GSA.

Fig. 12. Relative rotor angle deviation of different generators with respect to slack
bus for 17 generator 162-bus system using BBO.

Fig. 13. Relative rotor angle deviation of different generators with respect to slack
bus for 17 generator 162-bus system using KHA.
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system are illustrated in Fig. 10. From the comparative conver-
gence characteristics of the fuel cost, it is fascinating to observe
that the cost function value converges smoothly at lesser iteration
cycles for the proposed OKHA than GSA, BBO and KHA techniques.



Fig. 14. Relative rotor angle deviation of different generators with respect to slack
bus for 17 generator 162-bus system using OKHA.

Fig. 15. Comparative convergence characteristics of fuel cost for 17 generator 162-
bus system.
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Test case 2: 17 generator 162-bus system

In order to further investigate the superiority and robustness of
the proposed OKHA method, it is, finally, applied on a large system
consisting of 162 buses. The upper and lower limits of bus voltage
magnitudes are 0.94–1.06 p.u., respectively. System data of this
test system is available in [72]. The fuel cost parameters and
corresponding generator ratings are given in Table 4. A 3-phase
to ground fault occurs at bus 1 and within lines 1–4. The fault is
cleared by tripping the line at 0.240 s. The proposed algorithm is
used to minimize the same objective function as used in Test case
1 and its performance is compared to that of GSA, BBO and KHA.
The simulation results of the proposed OKHA technique along with
GSA, BBO and KHA are given in Table 5. From Table 5, it is observed
that, in minimizing the fuel cost, OKHA, GSA, BBO and KHA do not
violate any operating constraint limits. The comparison shows that
OKHA provides the minimum cost among all the comparative algo-
rithms which demonstrate that the proposed method outperforms
the other techniques in terms of optimal solutions.

Moreover, the statistical comparisons of best, worst and mean
fuel cost values of different algorithms are listed in Table 6. From
the statistical results of Table 6, it is clear that the difference
among the best, worst and mean objective cost values, as obtained
by OKHA, are very much insignificant. Moreover, it is observed that
the worst value of OKHA is even much better than the best values
offered by the other indicated methods. It clearly suggests that the
proposed OKHA method produces similar results in most of the
trials and, thus, the robustness of the proposed method may be
proved. Figs. 11–14 are pertaining to the relative rotor angle devi-
ation curves of different generators with respect to the slack bus of
this test system (in the order of employing GSA, BBO, KHA and the
proposed OKHA techniques). From rotor angle deviation curves, it
may be inferred that all the curves are within safe limits and
maintains stability. To illustrate the convergence property of the
different algorithms, fuel cost values over 100 iterations are
plotted in Fig. 15. This comparative convergence graph shows that
cost function value converges smoothly by all the methods without
any abrupt oscillations and OKHA converges at lesser iteration
cycles than all other adopted methods.
Constraint-handling mechanism

Swarm intelligence behavior based nature-inspired evolution-
ary algorithms are unable to deal with the constraint-handling
mechanism of constraints for solving numerical optimization prob-
lems. Recently, different researches are going on for successful
handling of these constraints to solve nature inspired algorithms.
The most significant and delegate techniques in this direction are
presented and discussed in [73]. Penalty factor approach may be
also used to find out the violated results in optimization problem.
Ensemble of constrained handling techniques has been considered
in [74]. For further interest on this topic, the works presented in
[73,74] may be referred. However, ensemble of constraint-
handling technique [74] is adopted in the present work.
Conclusion

To enhance the convergence behavior and to speed up the
search process, OBL concept is applied on basic KHA algorithm
and this new variant of KHA is termed as OKHA. OKHA is imple-
mented, successfully, to solve TSCOPF problem of power systems.
To check the superiority of the proposedmethod, it is implemented
on two different standard test systems like 10 generator
New England 39-bus system and 17 generator 162-bus systems.
In addition to the basic KHA and the proposed OKHA, two recently
developed algorithms like GSA and BBO are also adopted for the
sake of comparison. The simulation test results, supported by sta-
tistical analysis, show the efficiency, the robustness, the stability
and the enhanced convergence rate of the proposed OKHA tech-
nique over the other compared algorithms. This comparison results
confirm that the proposed OKHA may be very much promising and
encouraging tool for future engineering optimization task.
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