
JID:BDR AID:32 /FLA [m5G; v1.168; Prn:26/11/2015; 15:54] P.1 (1-14)

Big Data Research ••• (••••) •••–•••
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

A Cloud Computing Based Network Monitoring and Threat Detection 

System for Critical Infrastructures ✩

Zhijiang Chen, Guobin Xu, Vivek Mahalingam, Linqiang Ge, James Nguyen, Wei Yu ∗, 
Chao Lu

Department of Computer and Information Sciences, Towson University, Towson, MD 21252, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 June 2015
Received in revised form 15 September 
2015
Accepted 2 November 2015
Available online xxxx

Keywords:
Network monitoring
Threat detection
Cloud computing

Critical infrastructure systems perform functions and missions that are essential for our national 
economy, health, and security. These functions are vital to commerce, government, and society and 
are closely interrelated with people’s lives. To provide highly secured critical infrastructure systems, 
a scalable, reliable and robust threat monitoring and detection system should be developed to efficiently 
mitigate cyber threats. In addition, big data from threat monitoring systems pose serious challenges for 
cyber operations because an ever growing number of devices in the system and the amount of complex 
monitoring data collected from critical infrastructure systems require scalable methods to capture, store, 
manage, and process the big data. To address these challenges, in this paper, we propose a cloud 
computing based network monitoring and threat detection system to make critical infrastructure systems 
secure. Our proposed system consists of three main components: monitoring agents, cloud infrastructure, 
and an operation center. To build our proposed system, we use both Hadoop MapReduce and Spark to 
speed up data processing by separating and processing data streams concurrently. With a real-world 
data set, we conducted real-world experiments to evaluate the effectiveness of our developed network 
monitoring and threat detection system in terms of network monitoring, threat detection, and system 
performance. Our empirical data indicates that the proposed system can efficiently monitor network 
activities, find abnormal behaviors, and detect network threats to protect critical infrastructure systems.

© 2015 Elsevier Inc. All rights reserved.

 

 

1. Introduction

A critical infrastructure system, as a typical cyber–physical 
system (CPS), is a system that integrates computation, network-
ing, and physical elements together to support different applica-
tions [1]. It covers smart transportation, smart electrical power 
grids, smart medical systems, smart manufacturing systems, etc. 
In a critical infrastructure system, a huge amount of data will be 
collected from physical and cyber components and transmitted to 
the computing core through communication networks. The col-
lected real time data leads to efficient and secured operations of 
a critical infrastructure system [2,3]. For example, in the smart 
grid, renewable energy sources, distributed energy storage, and 
generation need to be efficiently integrated and managed through 
complex and computationally intense models, real-time analysis, 
and visualization. Then, massive amount of data will be generated 

✩ This article belongs to SI: Big Data Networking.

* Corresponding author.
E-mail address: wyu@towson.edu (W. Yu).
http://dx.doi.org/10.1016/j.bdr.2015.11.002
2214-5796/© 2015 Elsevier Inc. All rights reserved.
from the power grid and transmitted to the energy management 
system (EMS) in order to enable efficient system operations [4].

Similarly, in a safe and reliable transportation system, various 
sensors will be installed on vehicles and deployed on roadsides 
to collect information and transmit collected data to the opera-
tion center. With a large number of vehicles dynamically running 
in a transportation system, huge volumes of streaming data (big 
data) are generated by monitoring variations in traffic character-
istics (e.g., traffic densities, speeds, vehicles, etc.), over time for 
timely processing and analysis [5]. For example, real-world SHRP2 
dataset is over a petabyte in size [6]. Thus, the mounting volume of 
stored and processed data, along with the continuously increasing 
requirements of storage and processing capacity pose significant 
challenges, which hinders the effectiveness of critical infrastruc-
ture systems.

To support highly secured critical infrastructure systems, a gen-
eric threat monitoring and detection system will be developed to 
efficiently mitigate cyber threats. Effectively monitoring data from 
both physical and cyber components will facilitate the detection of 
cyber threats and help security administrators respond to cyber-
 

http://dx.doi.org/10.1016/j.bdr.2015.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:wyu@towson.edu
http://dx.doi.org/10.1016/j.bdr.2015.11.002


threats in a timely manner. Nonetheless, developing a scalable, 
reliable and robust defense system for protecting critical infras-
tructure systems is a challenging issue. First, it is challenging to 
quantify the impact of threats as they may come from various 
sources. Second, it is difficult to detect threats because the detec-
tion system has to inspect various data sources, which are always 
in large-scale with different formats and semantics. Monitoring dif-
ferent applications and detecting threats can be characterized as 
high volume data streams and real-time processing requirements. 
In addition, resources in critical infrastructure systems (e.g., band-
width, storage, etc.) are also limited. Thus, how to efficiently store 
and process such big data to ensure security and efficient opera-
tions of critical infrastructure systems become a challenging and 
urgent issue.

To address the aforementioned challenges, in this paper, we de-
veloped a cloud-computing based network monitoring and threat 
detection system for critical infrastructures, which can efficiently 
enhance the security of critical infrastructures. The proposed sys-
tem consists of monitoring agents, cloud infrastructure, and an 
operation center. Monitoring agents can be deployed on devices 
in a critical infrastructure system to collect the threat monitoring 
information and transmit the information to the cloud infrastruc-
ture. A cloud infrastructure is a distributed system that is deployed 
with a number of servers, providing both storage and computa-
tion resources to efficiently process the large scale of collected 
data. In the cloud infrastructure, we used both Hadoop MapRe-
duce [44] and Spark [45] to speed up data processing by separating 
and analyzing the data streams concurrently. The operation cen-
ter plays the intelligence role that dynamically updates system 
operation policies and configuration, and monitors the system se-
curity.

To demonstrate the effectiveness of our developed network 
threat monitoring and detection system, we conducted experi-
ments from three aspects: network monitoring, threat detection, 
and system performance. In network monitoring, we designed sev-
eral scenarios to find the outgoing traffic volume from each server, 
the traffic volumes based on source and destination IP address, 
the incoming traffic volume to each server, and the port access 
count on each server in a given time duration. We implemented 
k-mean clustering algorithm in our proposed system to fast clas-
sify data into different groups based on their similarities. With 
dynamic thresholds, we conducted threat detection on emulated 
distributed denial-of-service (DDoS) network traffic and measured 
both detection rate and false positive rate. In addition, we com-
pared the efficiency of Hadoop and Spark for the data processing 
in network monitoring and threat detection. Through our exten-
sive evaluations, our result shows that our proposed system can 
efficiently help the system administrator to monitor network ac-
tivities and identify abnormal behaviors. Moreover, our proposed 
system can accurately and dynamically detect network threats. Our 
experimental data shows that, with the implementation by Spark, 
the system performance is almost 30 times better than that of the 
implementation by Hadoop.

The remainder of the paper is organized as follows: In Sec-
tion 2, we conduct a literature review of big data in critical infras-
tructure and cloud computing to assist network monitoring and 
threat detection. In Section 3, we introduce our system architec-
ture, components, and features. In Section 4, we propose to present 
the system implementation in detail. In Section 5, we demon-
strate the experimental results to validate the effectiveness of the 
developed threat monitoring system. In Section 6, we show the ex-
tension of our proposed system. Finally, we conclude the paper in 
Section 7.
2. Related work

In this section, we conduct the literature review on big data 
issues in critical infrastructure systems, cloud computing to assist 
network monitoring and threat detection.

2.1. Big data issue in critical infrastructure system

Governments, research communities, and enterprises can all 
make use of the overwhelming amounts of digital data, which is 
available, evidently creating new opportunities and nurturing pow-
erful business intelligence for decision support [7,8]. Big data can 
be used by the organizations in creating real-time solutions to 
the challenges put forth by healthcare, agriculture, transportation, 
and more. The relentless growth of data will not only challenge 
information technology engineers, but also researchers in various 
fields. In order to process massive amounts of data that have been 
collected, there have been a number of studies on critical in-
frastructure systems in the past [7,8,20–26,36–40]. For example, 
Nakazato et al. [9] designed a prototypical system related to big 
data, in which the driver can use his smartphone to view traffic 
conditions on an expressway in real time. Chen et al. [10] devel-
oped a system called DiabeticLink, which offers electronic health 
record search, diabetic health indicator tracking, Q&A forums, dia-
betic medication side effect reporting, and diet recommendations 
for diabetic patients. The researchers utilized the modern data, 
text, and web mining algorithms that are relevant to healthcare de-
cision support. In addition, the rapid growth of smart phones has 
apparently increased the usage of low cost sensors that detect en-
vironment and user interaction. For example, Billen et al. [11] pre-
sented a framework that stores, fuses and processes smartphone 
sensor data. Smart phone sensor data can be used in various areas, 
notably to detect the drunkenness of the driver [12], and pothole 
detection [13]. Detecting potholes (road surface defects) on real-
time can avoid accidents and higher costs.

2.2. Cloud computing to assist network monitoring

In critical infrastructure systems, network traffic has always 
been the primary resource for network security enthusiasts [15–19,
26–28,35,38,42,43]. There have been several MapReduce based 
algorithms implemented to monitor network traffic [16,17]. Al-
beit there are several programming models for parallel process-
ing, MapReduce is a generic mechanism to perform challenging 
computing tasks [14]. As indicated in [14,17], the key features 
of MapReduce include cost effectiveness, extreme scalability, high 
throughput and high performance. Vieira et al. [15] evaluated the 
efficiency of MapReduce in packet level analysis and DPI (Deep 
Packet Inspection) and verified that packet level analysis and DPI 
are Map-intensive. Their study implied that block, input and clus-
ter sizes play a vital role in defining the job completion time and 
efficiency of MapReduce [15]. Lee and Lee [16] analyzed multi-
terabytes of network traffic in a scalable manner. They have de-
vised TCP, IP and HTTP traffic analysis using MapReduce algorithms 
to improve the scalability of analysis. In addition, a web-based in-
terface to execute Hive queries on NetFlow data was developed.

2.3. Cloud computing to assist threat detection

In order to quickly and efficiently detect threats, integrating 
detection algorithms with cloud computing has been one of the 
most active research areas [17–19,28–31,33–35,41–43]. For exam-
ple, Aljarah and Ludwig [17] proposed an intrusion detection sys-
tem that uses MapReduce to analyze network traffic. They pro-
posed an algorithm IDS-MRCPSO, which is based on the particle 
swarm optimization method and clustering based on MapReduce 

 

 

 



Fig. 1. System architecture.

 

 

method. Their research results showed that their developed sys-
tem is efficient in terms of scalability and detection accuracy. Lee 
and Lee [18] implemented a DDoS detection method based on 
Hadoop that leverages HTTP GET flooding detection mechanism 
by checking both number of accesses and patterns. The findings 
imply that performing detecting through multiple nodes in paral-
lel could improve the performance. Narang et al. [19] proposed a 
Hadoop-based framework for the detection of P2P botnets by us-
ing the host-aggregation based mechanism to aggregate behavioral 
metrics for P2P hosts in the network.

Different from existing research efforts, our proposed cloud 
computing based threat monitoring and detection system can en-
able secured and efficient operations of critical infrastructure sys-
tems, which is novel. The developed cloud based defense system 
is generic and can integrate various security mechanisms to effec-
tively conduct security situation awareness of critical infrastructure 
systems. In addition, the large storage and high computational re-
sources in the cloud can handle big data processing and computa-
tion, which could further improve the efficiency of critical infras-
tructure systems.

3. System architecture

In this section, we first give an overview of our cloud based 
threat monitoring and detection system. We then present the de-
tailed components and features of the system, respectively.

3.1. Overview

The cloud based threat monitoring and detection system can 
effectively collect, store, and process large traffic data for critical 
infrastructure systems. As shown in Fig. 1, it consists of the mon-
itoring agent, the cloud infrastructure, and an operation center. 
The monitoring agent is the threat monitoring software deployed 
on nodes in the critical infrastructure system to collect threat re-
lated information and transmit information such as raw data to the 
cloud. With a large number of servers in a data center, a cloud in-
frastructure is a distributed system, which provides large data stor-
age space and high computation facilities. The real time monitored 
stream of data can be fed and stored in the storage server wait-
ing for threat analysis and detection. In addition, Hadoop MapRe-
duce and Spark, as the implementation of cloud infrastructure, are 
leveraged to separate and process the data concurrently, aiming to 
speed up data processing and to increase the efficiency of threat 
monitoring and detection. In addition, the detection center can dy-
namically provision the cyber operation policies on components in 
the critical infrastructure system to enhance the system security.

3.2. Components

We now introduce the main components of the proposed threat 
detection system in detail.

3.2.1. Monitoring agents
Monitor agents can be deployed on components in a critical 

infrastructure system to collect its components’ information and 
transmit the information to the cloud. To secure the cyber oper-
ation in the critical infrastructure, a large volume of data will be 
continuously collected for the purpose of threat analysis. For ex-
ample, different log files (e.g., system logs, firewall logs, web logs, 
and router access logs) associated with each component can record 
its activities, which can be used for conducting behavior analysis 
finding the malicious behaviors. In addition, network traffic data is 
important to detect normal and malicious behaviors through an-
alyzing traffic data patterns (e.g., the traffic volume per minute 
between the source and destination IP addresses, the traffic vol-
ume per minute from each server, the scan rate of each port, etc.).

3.2.2. Cloud infrastructure
All the data will be transmitted and stored in the cloud infras-

tructure. To build the cloud infrastructure, we use two types of 
framework: Hadoop MapReduce and Spark. (i) MapReduce: MapRe-
duce [44] is a framework that allows programs to process mas-
sive amounts of unstructured data in parallel across an array of 
computers or servers. Generally speaking, MapReduce comprises a 
Map() procedure that performs filtering and sorting operations and 
a Reduce() procedure that performs a summary operation. Map() 
procedure concurrently processes data based on key/value pair. As-
suming that the key/value pair is set as (k, v), Map() procedure 
can search and filter data set to list all keys and its corresponding 
values, which is Map(k, v) ⇒ List(k, v). Then, Reduce() procedure 
takes the intermediate output from Map() procedure to aggre-
gate them to generate the final result, which can be viewed as 
Reduce(k, List (v)) ⇒ FinalList(v). Notice that, MapReduce is exe-
cuted in sequence that Reduce tasks will be always executed after 
Map tasks. (ii) Spark: Spark [45] is a framework developed by 
Apache for cluster computing, which can be 10–100 times faster 
than Hadoop MapReduce, and easy to code if we use Scala pro-
graming language [45]. Spark can run on different platforms like  



Hadoop, Mesos, and standalone. Spark also has machine learn-
ing libraries build-in. In addition to Hadoop MapReduce, we also 
use Spark as a big data processing platform after carefully evalu-
ating the performance. Our experimental data shows that Spark, 
in our developed system, is almost 30 times faster than Hadoop 
MapReduce. We also implemented k-means detection algorithm on 
the Spark framework using Scala. Notice that other detection algo-
rithms can also be easily integrated to our developed system. After 
the detection process, the results will be stored in MySql database.

3.2.3. Operation center
The operation center can dynamically enforce monitoring poli-

cies on data generated by cloud infrastructure. The detection re-
sults can be visualized in a web application to help the system 
administrator efficiently monitoring the system operations. If an 
alarm signal is received in the operation center, the system admin-
istrator can reconfigure the system to ensure security.

3.3. Features

In our design, we consider several features to ensure secured 
data transmissions, and effective operation of the proposed threat 
monitoring system.

3.3.1. Modular
Our developed system is based on classic modular design, 

which is loosely coupled. Each component of the system can be 
individually plugged into any system by matching the APIs. Mod-
ular design can ensure system scalability and reliability that new 
modules can be integrated into the existing system to enhance its 
power, features and security.

3.3.2. Secured communication
To guarantee secured data transmission, all sensitive data are 

stored in a database that is separated from other modules. The 
communication between database and other modules are en-
crypted. In addition, we involve HTTPS to help secured data trans-
action and check session token for each request to make sure the 
authentication of access.

4. A prototypical system

In this section, we show the implementation of a prototypi-
cal system to demonstrate our system design. We first introduce 
Hadoop and Spark engines to implement the cloud infrastructure. 
Then, we introduce the system workflow. Finally, we describe the 
system database and user interface design, as well as threat detec-
tion.

4.1. Hadoop

Generally speaking, Hadoop is an open-source framework, 
which is mainly used to process massive amounts of data in a 
distributed fashion [44]. Hadoop distributed environment is built 
by clustering commodity hardware rather than using a supercom-
puter. Apparently, the use of commodity hardware makes Hadoop 
prone to hardware failures. Nonetheless, the underlying architec-
ture of Hadoop is built in such a way that makes it highly fault 
tolerant. Hadoop is written in Java. It comes under the license 
of Apache Software Foundation. The two important components 
of Hadoop are MapReduce and Hadoop Distributed File System 
(HDFS).

4.1.1. Hadoop Distributed File System (HDFS)
Hadoop Distributed File System also known as HDFS is the dis-

tributed file system. HDFS is highly scalable and portable. HDFS 
is not one hundred percent POSIX-compliant. Nonetheless, HDFS is 
capable of performing most of the basic POSIX-compliant file sys-
tem functionalities. HDFS is designed in a way that data access 
(reads) will be extremely high and writes will be minimal. HDFS 
uses TCP/IP for communication purposes. The two main compo-
nents of HDFS are data node and name node. Because, Hadoop 
is based on master/slave architecture. Only one name node will 
be presented in a cluster, i.e., master. Each slave will have a data 
node. Name node serves as the metadata store for the file system. 
HDFS also features triple redundancy and automatic failover, mak-
ing Hadoop highly available and fault tolerant.

4.1.2. MapReduce
MapReduce is the programming model that Hadoop uses to 

process massive amounts of data with a parallel algorithm on a 
cluster. Map phase is used to extract the desired data from each 
record. Reduce phase is used to aggregate, summarize, filter, or 
transform the mapped data. Any number of MapReduce jobs can 
be executed on the cluster of data. Hadoop moves the MapReduce 
jobs across the cluster and processes the data efficiently. In order 
to achieve this, it uses job tracker and task tracker. The job tracker 
will be presented only on the master node, the sole purpose is to 
track and schedule the MapReduce jobs. Each slave node will have 
a task tracker, which reports to the job tracker on a regular basis.

4.2. Spark

Apache Spark is an open-source framework, which uses in-
memory primitives to process massive amounts of data [45]. Spark 
is blessed with advanced directed acyclic graph execution engine, 
which supports in memory computing and cyclic data flow. Spark 
does not comply with the MapReduce paradigm. It has the abil-
ity to process the same data much faster. Spark is optimal for 
iterative machine learning algorithms as machine learning requires 
repetitive iterations and communication of shared state. Spark uses 
the concept of RDD (Resilient Distributed Datasets), which is an 
optimal way to collect data that can be processed in parallel. 
Spark streaming also allows modifying the data in real time. Spark 
provides the ease of managing tasks such as streaming, machine 
learning, and batch processing.

In Spark, once mapping is completed, the output of map pro-
cedure is stored in the buffer cache. Nonetheless, the operating 
system has complete control over data. The output data may be 
moved to the disk if necessary. Shuffle spill files are created by the 
map task, which is directly proportional to the number of reduc-
ers. Unlike Hadoop, Spark does not combine and partition shuffle 
spill files into one huge spill file. Spark writes the shuffle files di-
rectly onto the memory. Nonetheless, there must be enough mem-
ory to hold the data in order to achieve significant performance 
gains. Finally, the reducer procedure is executed on the intermedi-
ate shuffle files that reside in the memory.

We now compare Spark with Hadoop MapReduce. First, Spark 
is significantly faster than Hadoop MapReduce, because it runs 
in the main memory, whereas Hadoop MapReduce runs on data 
that resides in disks. Second, when compared to Hadoop MapRe-
duce’s API support, the API support for Spark is versatile and user-
friendly. Third, Spark can perform well on both real-time systems 
and batch processing, whereas Hadoop is good for batch processing 
only. Forth, for data integration and data transformation, Hadoop 
MapReduce can achieve optimized, where Spark is the solution 
for massive iterative computations. Fifth, to efficient schedule jobs, 
Spark has an inbuilt job scheduler, whereas Hadoop MapReduce 
had to use an external job scheduler such as Oozie. Moreover, un-
like Hadoop MapReduce, Spark is not bound to a single file system, 
which can access multiple data sources such as HDFS, Cassandra, 
Hbase, Amazon S3 and OpenStack Swift. Further, for data recovery, 

 

 

 



Fig. 2. System workflow.

 

 

Hadoop MapReduce uses check-pointing methods, whereas Spark’s 
RDD handles recovery of failed nodes. Hadoop MapReduce is much 
secure compared to Spark. In addition, both Hadoop MapReduce 
and Spark comply with speculative execution to provide fault tol-
erance. Nonetheless, Hadoop MapReduce has the capability to re-
sume a crashed process.

4.3. System workflow

Fig. 2 illustrates the workflow of our system. To conduct 
threat monitoring and detection for critical infrastructure systems, 
we collect real time data within the system (e.g., network traf-
fic, system logs) as an input for MapReduce framework, which 
integrates with the predefined java programming code to exe-
cute Map() and Reduce() job accordingly. After data processing by 
MapReduce framework, the output result will be stored in a MySql 
based database server. Based on the schedule, the detector, which 
is a java application running on a separated Linux server, can start 
to conduct malicious behaviors detection on the data in MySql 
database. Finally, the detection result will be sent back to database 
preparing for visualization purpose. If any malicious activity is de-
tected, an alarm will be automatically generated and inform the 
system administrator immediately by email and the monitoring 
system will pop up a warning window to ask for addressing the 
designated threats. The detailed workflow of the system is de-
scribed as follows:

Step 1: data collection: Data can be collected from each physical 
component or throughout a network. For example, a network snif-
fer like Wireshark software can be used to capture network traffic 
data. In addition, the collected data need to be normalized prior 
to entering the MapReduce framework. For example, network traf-
fic data captured by Wireshark is binary data. We should convert 
the package data to plain text file based on the package characters 
(e.g., source IP, destination IP, port number, protocol type, package 
length, package size, and package timestamp).

Step 2: data mapping: The system administrator can define the 
key/value pair to filter data based on the requirements. For exam-
ple, in network traffic analysis, if a system administrator intends to 
find traffic volume of each server, the server address shall be set as 
key and its corresponding traffic volume shall be set as value. Af-
ter parallel processing, intermediate files will be generated to store 
in local disk, which will be used for the input data of Reduce() pro-
cess.

Step 3: data reducing: With shuffle and sorting processes, the 
intermediate file will be further aggregated and fed to Reduce(). 
Based on the defined key/value pair in Reduce() by the system 
administrator, individual result in each intermediate file can be 
combined to generate the final result. For example, the traffic vol-
ume of the same server address in different intermediate files will 
be summarized to illustrate the total traffic volume.

Step 4: data storage: After data is processed, the final result will 
be stored in distributed databases, which can be easily retrieved 
and used for detection and virtualization purposes. All the data 
stored in distributed databases will be made into three copies to 
store in three different physical servers in order to make the sys-
tem fault-tolerant.

Step 5: notification: The detection results can be delivered to the 
administrator through email or web display. Once abnormal activ-
ities are determined, actions can be taken immediately, such as 
blocking ports, isolating or cutting off malicious components from 
network to protect from any possible loss, etc.  



Fig. 3. Database Entity Relationship Diagram (ERD).

4.4. Database design

Our threat monitoring system is developed using the JavaEE/
Scala and PHP languages, running on the Apache web server. Our 
system can integrate various databases (e.g., Oracle, MSSql, MySql, 
and others). To be cost-effective, we choose MySql as the system 
database. Fig. 3 illustrates the database design for our developed 
system, which includes core database tables of networkTraffic, net-
workStatisticsVolume, netoworkPort to support the virtualization. 
The networkTraffic table stores the analyzed result for network 
traffic, which is categorized by cluster. The networkStatisticVol-
ume table stores all the traffic to/from each host server. The net-
workPort table stores the port access count for each server. The 
database design is generic and can be extended to integrate more 
tables when additional modules are integrated.

4.5. User interface design

To help the operation center to conduct threat monitoring and 
detection, we developed a web based virtualization module with 
a dashboard. As shown in Fig. 4, the administration dashboard, 
which is designed by PHP with AJAX (Asynchronous JavaScript and 
XML), will be automatically refreshed every 5 seconds to retrieve 
latest data in database. In the dashboard, different types of dia-
grams help the administrator monitor the network activities (e.g., 
network traffic, port access, system performance, and others). Each 
diagram on dashboard is intractable that the detailed information 
can be displayed with clicking. When threats detected, the system 
warnings will pope up in the dashboard to notify the administrator 
to take actions.
4.6. Threat detection using k-mean clustering algorithm and naïve 
Bayes

To efficiently detect abnormal behaviors, in this paper, we lever-
age the k-mean clustering algorithm [46] in our system to rapidly 
classify data into different groups based on their similarities. Gen-
erally speaking, clustering is one of the popular and important data 
mining methods to form a group for the data that have similar 
feature patterns. We also implemented Naïve Bayes algorithm to 
compare with K-mean Clustering implementation.

The basic idea of k-mean clustering algorithm is to separate a 
set of data into k clusters. The process of partition includes two 
steps: (i) Computing distance between data point and cluster center:
Initially, with predefined number of clusters k, the k number of 
cluster center can be randomly generated. Then, the distance be-
tween data point and cluster center can be computed and each 
data point can be assigned to its nearest cluster. (ii) Updating clus-
ter center: Based on the newly created clusters, the cluster center 
will be re-computed and updated. With the help of updated cluster 
center, by iterating between these two parts repeatedly, the clus-
ters can be updated. The objective of k-mean clustering is to find 
the minimal sum of square errors to achieve high accuracy cluster-
ing. Algorithm 1 shows the detail procedure.

Notice that our proposed monitoring and threat detection sys-
tem is generic and applicable for different detection algorithms. 
For example, we can implement other machine learning algorithms 

Algorithm 1 K-mean clustering algorithm.
Input: X = {x1, x2, . . . , xn} – a set of data

k – the number of clusters
m – the number of iterations

Output: C = {C1, C2, . . . , Ck}, X ⊂ C – set of clusters
E = {E1, E2, . . . , Ek} – set of clusters’ center

1. For each C j

2. Random generate cluster center E1
j

3. End
4. Di = 0 – the minimal distance of xi to a cluster center
5. For each xi

6. Compute distance dij between data point xi and current cluster center (e.g.,
E1

j , E2
j )

7. If Di = 0
Di = dij

8. Else If Di > dij

Di = dij

9. Assign xi to cluster C j

10. End
11. For each C j

12. Re-compute cluster center E j

13. Update new E j

14. End
15. Repeat from step 5 to step 14
16. Until cluster center is Em

j

 

 

Fig. 4. Example of virtualization.  



Fig. 5. Testbed setup.

 

 

such as Logistic Regression and Naïve Bayes to profile the dynamic 
characteristics of traffic flows and then to detect anomalies based 
on learned classifiers. For different critical infrastructure systems, 
we can apply different detection mechanisms. For example, we can 
use on-line nonparametric cumulative change detection mecha-
nism to detect threats, which marginally manipulate data over 
time in the smart grid [51].

Besides K-mean clustering algorithm, Naïve Bayes algorithm is 
another well-known machine-learning method. The Naïve Bayes 
classifier can achieve a good classification performance when 
dataset size is large and the attributes of data are independent 
from each other. With the support of Naïve Bayes algorithm, 
we selected five important features, including source IP address, 
destination IP address, port, packet length, and protocol, to detect 
network threats. With applying Bayes’ theorem and the assump-
tion that features are independent, the classifier can be trained in 
a supervised learning process.

5. Performance evaluation

We conduct extensive experiments to evaluate the effectiveness 
of our developed system. In the following, we first present the 
evaluation methodology and the show the experiment results.

5.1. Evaluation methodology

To evaluate the effectiveness of our proposed system, as shown 
in Fig. 5, we developed a threat monitoring and detection testbed, 
which consists of three DELL PowerEdge T420 servers. Each server 
is configured with 2X Intel Xeon E5-2400 processors with 128 GB 
ECC RAM and a 1.5 TB hard drive. Each server has two CPUs and 
each CPU has six cores, which can support up to twelve threads. 
Because of this, deploying VMs (virtual machines) can effec-
tively utilize computing resources of servers. After installing Esxi 
6.0 (enterprise-class, type-1 hypervisor developed by VMware), 
we created ten VMs on each server. Each VM is installed with 
Ubuntu 14.04 server operating system and configured with 10 GB 
RAM, 100 GB disk space, while static IP address and hosts ta-
ble are configured to achieve reliable communication among all 
VMs. We deployed a gigabyte switch to ensure a high performance 
communication among servers. In total, we deployed thirty VMs 
installed with Cloudera CDH 5.4 for threat analysis. We have one 
master server to manage thirty computing nodes. We implemented 
both Hadoop MapReduce (with java language) and Spark (using 
Scala language) as the cloud infrastructure in our system, which 
are bundled in Cloudera CDH 5.4.

For the data set, we used real-world network traffic data from 
Chicago Equinix Data Center [47]. The size of the data set is around 
200 GB, which includes more than 50 network traffic related fea-
tures (e.g., source IP address, destination IP address, source port, 
destination port, sequence number, acknowledgment number, data 
offset, reserved, 9 bits flags, windows size, checksum, padding, and 
others). Notice that, for all the features, only parts of them are 
useful for detecting potential threats. The selected features include 
source IP address, destination IP address, source port, destination 
port, package length, and package timestamp. The data set size is 
then reduced to 50 GB after partially selecting the features. In ad-
dition, in order to simulate abnormal network traffic data, we used 
the LOIC software [48] to simulate DDoS attacks. In our simula-
tion, we isolated two physical machines to establish a separate lab 
network. One of them is installed with LOIC simulator [48] to sim-
ulate DDoS attacks and the other one is configured as web server, 
ftp server and SSH server, where all ports are opened and it can 
be set as a target for attacks. Therefore, we collect DDoS attack 
data from an isolated network so that other machines will not 
be affected and the security of our testbed can be ensured. After 
that, the simulated attack data will be embedded to the normal 
network traffic data set and will be further used to evaluate the 
effectiveness of detection algorithms. In our experiments, we used 
Wireshark software to capture network traffic data.

We evaluated the effectiveness of our developed system in the 
following three aspects: network monitoring, threat detection, and 
system performance. For the network monitoring, we designed 
four scenarios: (i) Finding out the outgoing traffic volume from 
each server for every 10 seconds, (ii) Finding out the traffic volume 
based on source and destination IP address for every 10 seconds, 
(iii) Finding out the incoming traffic volume to each server for ev-
ery 10 seconds, and (iv) Finding out the port access count on each 
server for every 10 seconds. Notice that these scenarios are useful 
and important for detecting potential DDoS attack, port scanning  



Fig. 6. Top 20 outgoing traffic servers.

 

 

attack, and more. Using the detection of DDoS attack as an exam-
ple, if the attack occurs, usually, the traffic volume to the victim 
server is high. Similarly, a large number of port access can reflect 
potential port scanning attack.

For the threat detection, we simulated DDoS and port-scanning 
activities that last for around 25 minutes. The collected dataset was 
used for the training process of k-mean clustering. By applying the 
k-mean clustering algorithm, we established two clusters for the 
collected data, where one cluster contains the normal traffic data 
and the other contains the anomalous data. In k-mean clustering, 
we define the distance from the test data to the cluster center as-
sociated with the normal traffic data in a high-dimensional feature 
space as a threshold for the detection process. For example, if the 
measured difference is larger than the defined threshold, the test 
data will be classified as a member in the anomaly cluster. The se-
lection of threshold is a trade-off between the detection accuracy 
and the false positives. We run simulations for 1000 times without 
attacks and compute the total number of false alarms for a certain 
threshold. Then we control the threshold to maintain a low false 
positive rate. We implemented k-mean clustering algorithm in both 
Hadoop and Spark. For threat detection, we simulated the DDoS 
attack through HTTP requests and UDP fragments in the network. 
To validate the effectiveness of our proposed approach, we com-
pared the efficiency of Hadoop and Spark with respect to network 
monitoring and threat detection.

To measure the performance, we used the traffic volume and 
its processing time as metrics for network monitoring. Specifically, 
the total number of package length in a time interval (e.g., we set 
it as 10 seconds) and its processing time is the time taken for pro-
cessing a certain amount of data (e.g., we set data size as 50 GB). 
To measure the detection accuracy, we use the receiver operating 
characteristic (ROC) curve, which is plotted with the detection rate 
versus the false positive rate at various threshold settings. In our 
case, the detection rate is defined as the probability of correctly 
classifying the malicious traffic cluster and is the ratio of the num-
ber of malicious traffic cluster correctly classified versus the total 
number of malicious traffic clusters. False positive rate is defined 
as the probability of falsely classifying non-malicious traffic clus-
ters and is the ratio of the number of non-malicious traffic clusters 
falsely classified as malicious traffic flows versus the total number 
of non-malicious traffic clusters.
5.2. Evaluation results

In the following, we show the evaluation results from network 
monitoring, threat detection, and system performance aspects.

5.2.1. Network monitoring
Fig. 6 shows the top 20 active servers that have high outgo-

ing traffic. We can see that the larger area in the figure means the 
higher network traffic volume. For example, as shown in Fig. 6, the 
server with IP address 92.238.91.254 has highest outgoing traffic. 
The unusual high outgoing traffic of the server means the server 
may be compromised as a new attack source. Similarly, Fig. 7
presents the top 20 active servers that have high incoming traf-
fic. As we can see, the server with IP address 73.168.190.18 takes 
around 25% of incoming traffic in the network, which indicates 
that the server has possibly been attacked. In addition, the net-
work traffic status between servers is shown in Fig. 8. We observe 
that the server 92.238.91.254 and the server 73.168.190.18 have 
highly active communication.

Fig. 9 shows the overall ports access count is larger than 10,000 
in a given time from all servers. It shows that the port num-
ber 1935 is the most accessed port, which has been accessed 
11,069,411 times in an hour. With this figure, the system adminis-
trator can easily find the most active port in the network.

5.2.2. Threat detection
Fig. 10 shows our simulated DDoS attack network traffic data 

captured by Wireshark in 20 minutes. Specifically, the traffic vol-
ume fluctuations in the figure show the DDoS attack occurred in 
the network. The significant traffic volume changed in 145–152 
and 183–191 denotes the occurrence of strong DDoS attack. Fig. 11
presents the result of k-mean clustering based threat detection. 
In training process, we carried out extensive experiments and eval-
uated different thresholds and dataset in our developed testbed. 
The results on our testbed show when the threshold is set to nine, 
it can achieve a lowest false positive rate and a highest detec-
tion rate. It is worth noting that, for the threat detection used for 
different networks, the threshold needs to be adjusted to ensure 
the detection accuracy. The red line in the figure is the detec-
tion threshold. The black line represents the distance to anomalous 
cluster and the blue line is the distance to normal cluster. As we  



Fig. 7. Top 20 incoming traffic servers.

Fig. 8. Network traffic between servers ranking.

Fig. 9. The number of access in each port.

 

 

 



Fig. 10. Network traffic of simulated DDoS attacks.

Fig. 11. K-mean clustering based threat detection. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

 

 

can see, when a DDoS attack is launched, the traffic volume sud-
denly spikes. Then, the distance between the node and anomalous 
cluster will decrease and the distance between the node and nor-
mal cluster will increase.

Fig. 12 shows the detection results when Naïve Bayes algorithm 
is in place. We trained and tested data with the same dataset as 
K-mean algorithm. In the detection process shown in the figure, 
we can observe that 338,374 out of 1,636,748 packets have been 
identified as DDoS attack.

Fig. 13 shows the ROC curve. Our data shows that K-mean clus-
tering scheme achieves a high detection rate (say 90%) and a sup-
pressed false positive rate (say 0.5%). In comparison with K-mean
clustering scheme, when Naïve Bayes scheme achieves 90% of de-
tection rate, its false positive rate is around 1.8%, which is higher 
than that of K-mean clustering scheme. This is because in Naïve 
Bayes scheme, the training data is randomly selected. While in 
K-mean clustering scheme, we trained the classifier with history 
dataset, which can lead to a higher detection accuracy.

Fig. 14 shows the number of ports accessed by server
192.203.28.207 in a time interval. The bigger bubble of a port 
number means more number of port access. As we can see from 
the figure, there are six ports accessed during a period of 20 min-
utes. If an adversary is trying to access a system through port 
scanning (assuming that, at most, only three ports can be accessed 
according to the trained data within normal system operations), 
the alarm will be triggered to notify the abnormal activity.

5.2.3. System performance
Fig. 15 illustrates the processing time with different number of 

computing nodes on Spark implementing k-mean clustering algo-
rithm. When 50 GB data set is processed in a local machine, which 
can be considered as one node, the processing time is 16.04 s. 
By increasing the number of nodes to twenty, the processing time  



Fig. 12. Naïve Bayes based threat detection.

 

 

Fig. 13. ROC curve of our detection methods.

will increase. This is because the overhead incurs significantly 
when the system assigns tasks to node, for example, schedule the 
resources and perform communication. When more than twenty 
nodes are used in the system, the processing time is efficiently re-
duced. With more computing nodes, substantial computation time 
will be saved even though the overhead still exists.

Fig. 16 shows the performance of Hadoop and Spark to process 
50 GB of network traffic data with 30 nodes. As expected, we can 
see that the Spark’s performance is almost 30 times better than 
Hadoop MapReduce. That is because the Spark runs in the main 
memory, whereas Hadoop MapReduce runs on data that resides in 
disks.

Fig. 17 shows the performance comparison between k-mean al-
gorithm and Naïve Bayes algorithm. As shown in the figure, with 
the same number of computing nodes involved (i.e., 30 computing 
nodes in our experiments) and different sizes of dataset, k-mean 
algorithm can achieve fast data processing in comparison with 
Naïve Bayes algorithm.
Fig. 14. Detection of port-scanning attack.  



Fig. 15. Processing time of Spark.

Fig. 16. Processing time comparison between Spark and Hadoop.

Fig. 17. Performance comparison between k-mean and Naïve Bayes.

 

 

 



6. Discussion

We now discuss the extension of our work from the following 
aspects: enhance critical infrastructure security with proactive and 
reactive defense strategies and an extension to handle live stream-
ing data.

6.1. Enhance critical infrastructure security with proactive defense 
strategies

As ongoing work, we will enhance the cloud based threat mon-
itoring and detection system to secure critical infrastructure sys-
tems with proactive defense strategies. We will develop techniques 
in both data level and system level and integrate them to our 
system. In data level, we will develop a data self-correction mech-
anism to detect and recover compromised data. In system level, 
we will implement and deploy monitoring and detection tools in 
critical infrastructure systems to effectively discover exploitable 
vulnerabilities proactively to make the system secure. We will de-
ploy various system management and security tools to establish 
a trustworthy critical infrastructure. For example, monitoring and 
detection tools (e.g., Fuzzing [49], SYSSTAT [50], etc.) can be lever-
aged.

6.2. Enhance critical infrastructure security with reactive defense 
strategies

In addition to proactive defense strategies, we will systemati-
cally integrate more reactive defense strategies in our system (e.g., 
memory authentication, etc.) to detect compromised components 
remotely by effectively and efficiently checking whether memory 
codes are modified. The challenge is performing detection remotely 
by decoupling detection from network delays. We will also adopt 
both statistical-based and machine learning-based techniques (e.g., 
support vector machine, neural networks, etc.), to detect and fore-
see impeding system anomalies and improve the ability of defense 
systems to predict behaviors of new attacks. To improve detection 
efficiency, we will develop a MapReduce based machine-learning 
scheme to monitor threats on big data sets efficiently. The main 
idea is to speed up the machine learning process using cloud 
computing and MapReduce. The first step is to collect the char-
acteristics of threat monitoring data from threat monitors in criti-
cal infrastructure system. To accurately and rapidly detect anoma-
lies, techniques (e.g., MapReduce-based machine learning (MML) 
schemes, etc.) can be used to profile the dynamic characteristics of 
collected threat monitoring data and then used to detect anoma-
lies. In this way, the computational burden of the learning process 
is spread across multiple machines and the learned computational 
results from multiple machines are then integrated into a single 
learned classifier. Finally, the learned classifier will be used to rec-
ognize whether a newly observed data is normal or abnormal. 
We will evaluate the effectiveness of these techniques in terms 
of learning accuracy, training set size, and training and detection 
processes overhead.

6.3. Extension to handle streaming data

Currently, our developed system is intended to analyze static 
network data. Our system is capable of capturing and storing net-
work traffic data in the database, waiting for batch processing. 
Nonetheless, in order to monitor and detect imminent threats, 
we will enhance our developed system to handle streaming data 
from all sources. Thus, the abnormal behaviors can be detected 
in near real-time. To achieve this, we will leverage the Spark 
streaming technique to our system. Spark streaming can use high-
level functions like map, reduce, join and window to process live 
streaming data (e.g., network traffic, active system logs, network 
device logs, etc.) [45]. The basic idea of Spark streaming is that the 
streaming data from different sources can be continuously fed to 
Spark streaming API, and then divided and combined into a small 
batch for Spark engine processing, which is called DStream (dis-
cretized stream). In addition, we will apply a high performance 
database in our system to handle extreme database input and out-
put operations in order to increase the stability of system.

7. Conclusion

In this paper, we proposed a cloud computing-based network 
monitoring and threat detection system to secure critical infras-
tructure systems. The three main components of the proposed sys-
tem are monitoring agents, cloud infrastructure, and an operation 
center. With distributed deploying in critical infrastructure sys-
tems, monitoring agents play a role in data collection. A cloud in-
frastructure can provide both large storage space and high compu-
tation resources. The operation center can dynamically update sys-
tem operation policies, configuration, and monitor the system se-
curity. We leveraged both Hadoop MapReduce and Spark to speed 
up data processing by separating and processing data streams con-
currently. To evaluate the effectiveness of our developed network 
threat monitoring system, we evaluated the effectiveness of our 
developed system with respect to network monitoring, threat de-
tection, and system performance. Through our extensive evalua-
tions, our data shows that the proposed system can efficiently 
help the system administrator to monitor network activities and 
find abnormal behaviors. Moreover, the proposed system can ac-
curately and dynamically detect network threats. Our experiments 
also show that there is a significant performance gain when Spark 
is used over Hadoop MapReduce.

Uncited references

[32]

References

[1] Wikipedia, Cyber-physical system, available at http://en.wikipedia.org/wiki/
Cyber-physical_system, 2013.

[2] Abhishek B. Sharma, Franjo Ivančić, Alexandru Niculescu-Mizil, Haifeng Chen, 
Guofei Jiang, Modeling and analytics for cyber–physical systems in the age of 
big data, in: Proceedings of ACM SIGMETRICS Performance Evaluation Review, 
2014.

[3] Lu-An Tang, Jiawei Han, Guofei Jiang, Mining sensor data in cyber–physical sys-
tems, in: Proceedings of Tsinghua Science and Technology, 2014.

[4] Ching-Han Chen, Ching-Yi Chen, Chih-Hsien Hsia, Guan-Xin Wu, Big data col-
lection gateway for vision-based smart meter reading network, in: Proceedings 
of Big Data, BigData Congress, 2014.

[5] Tao Qu, Steven T. Parker, Yang Cheng, Bin Ran, David A. Noyce, Large-scale in-
telligent transportation system traffic detector data archiving, in: Proceedings 
of Transportation Research Board 93rd Annual Meeting, 2014.

[6] Transportation Research Board, Strategic Highway Research Program: SHRP 2, 
available at http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/
Blank2.aspx.

[7] G. Kim, S. Trimi, J. Chung, Big-data applications in the government sector, Proc. 
Commun. ACM 57 (3) (2014) 78–85.

[8] J. Bertot, H. Choi, Big data and e-government: issues, policies, and recommen-
dations, in: Proceedings of the 14th Annual International Conference on Digital 
Government Research, 2013.

[9] Naoto Nakazato, Takuji Narumi, Toshiki Takeuchi, Tomohiro Tanikawa, Kyohei 
Suwa, Michitaka Hirose, Influencing driver behavior through future expressway 
traffic predictions, in: Proceedings of the 2014 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing, 2014.

[10] Hsinchun Chen, Sherri Compton, Owen Hsiao, DiabeticLink: a health big data 
system for patient empowerment and personalized healthcare, in: Proceedings 
of Smart Health, 2013.

[11] Nicolas Billen, Johannes Lauer, Alexander Zipf, A mobile sensor data acquisi-
tion and evaluation framework for crowd sourcing data, in: Proceedings of the 
Second ACM SIGSPATIAL International Workshop on Crowdsourced and Volun-
teered Geographic Information, 2013.

 

 

 

http://en.wikipedia.org/wiki/Cyber-physical_system
http://en.wikipedia.org/wiki/Cyber-physical_system
http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/Blank2.aspx
http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/Blank2.aspx


[12] Jiangpeng Dai, Jin Teng, Xiaole Bai, Zhaohui Shen, Dong Xuan, Mobile phone 
based drunk driving detection, in: Proceedings of Pervasive Computing Tech-
nologies for Healthcare, PervasiveHealth, 2010.

[13] Jakob Eriksson, Lewis Girod, Bret Hull, Ryan Newton, Samuel Madden, Hari Bal-
akrishnan, The pothole patrol: using a mobile sensor network for road surface 
monitoring, in: Proceedings of the 6th International Conference on Mobile Sys-
tems, Applications, and Services, 2008.

[14] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, D. Stott Parker, Map–reduce–
merge: simplified relational data processing on large clusters, in: Proceedings 
of the 2007 ACM SIGMOD International Conference on Management of Data, 
2007.

[15] Thiago Pereira de Brito Vieira, Stenio Flavio de Lacerda Fernandes, Vinicius 
Cardoso Garcia, Evaluating mapreduce for profiling application traffic, in: Pro-
ceedings of the first Workshop on High Performance and Programmable Net-
working, 2013.

[16] Yeonhee Lee, Youngseok Lee, Toward scalable internet traffic measurement and 
analysis with Hadoop, in: Proceedings of ACM SIGCOMM Computer Communi-
cation Review (43), 2013, pp. 5–13.

[17] I. Aljarah, A.S. Ludwig, Towards a scalable intrusion detection system based on 
parallel PSO clustering using mapreduce, in: Proceedings of the 15th Annual 
Conference Companion on Genetic and Evolutionary Computation, 2013.

[18] Yeonhee Lee, Youngseok Lee, Detecting DDoS attacks with Hadoop, in: Proceed-
ings of the ACM CoNEXT Student Workshop, 2011.

[19] Pratik Narang, Abhishek Thakur, Chittaranjan Hota, HaDeS: a Hadoop-based 
framework for detection of peer-to-peer botnets, in: Proceedings of the 20th 
International Conference on Management of Data, 2014.

[20] Lin Dai, Xin Gao, Yan Guo, Jingfa Xiao, Zhang Zhang, Bioinformatics clouds for 
big data manipulation, Biol. Direct 7 (2012).

[21] Randal Bryant, Randy H. Katz, Edward D. Lazowska, Big-data computing: creat-
ing revolutionary breakthroughs in commerce, science and society, available at 
www.cra.org/ccc/files/docs/init/Big_Data.pdf.

[22] Viktor Mayer-Schönberger, Kenneth Cukier, Big Data: A Revolution that Will 
Transform how We Live, Work, and Think, Houghton Mifflin Harcourt, 2013.

[23] Danah Boyd, Kate Crawford, Critical questions for big data: provocations for a 
cultural, technological, and scholarly phenomenon, Inf. Commun. Soc. 15 (5) 
(2012) 662–679.

[24] Chris Yiu, The big data opportunity: making government faster, smarter and 
more personal, in: Policy Exchange, 2012.

[25] Lev Manovich, Trending: the promises and the challenges of big social data, 
available at http://manovich.net/index.php/projects/trending-the-promises-and-
the-challenges-of-big-social-data.

[26] Hsinchun Chen, Roger H.L. Chiang, Veda C. Storey, Business intelligence and 
analytics: from big data to big impact, Manag. Inf. Syst. Q. 36 (4) (2012) 
1165–1188.

[27] Jiaqi Zhao, Lizhe Wang, Jie Tao, Jinjun Chen, Weiye Sun, Rajiv Ranjan, Joanna 
Kołodziej, Achim Streit, Dimitrios Georgakopoulos, A security framework in 
G-Hadoop for big data computing across distributed cloud data centres, J. Com-
put. Syst. Sci. 80 (5) (2014) 994–1007.

[28] Eric Bloedorn, Alan D. Christiansen, William Hill, Clement Skorupka, Lisa M. 
Talbot, Jonathan Tivel, Data mining for network intrusion detection: how to 
get started, MITRE Technical Report, 2001.

[29] Jerome Francois, Shaonan Wang, Walter Bronzi, R. State, Thomas Engel, Bot-
cloud: detecting botnets using mapreduce, in: Proceedings of IEEE International 
Workshop on Information Forensics and Security, WIFS, 2011.

[30] Anna Koufakou, Jimmy Secretan, John Reeder, Kelvin Cardona, Michael Geor-
giopoulos, Fast parallel outlier detection for categorical datasets using MapRe-
duce, in: Proceedings of IEEE International Joint Conference on Neural Net-
works, 2008.
[31] Vibhore Kumar, Henrique Andrade, Buğra Gedik, Kun-Lung Wu, DEDUCE: at the 
intersection of MapReduce and stream processing, in: Proceedings of the 13th 
International Conference on Extending Database Technology, 2010.

[32] Zhifeng Xiao, Yang Xiao, Accountable MapReduce in cloud computing, in: Pro-
ceedings of IEEE Conference on Computer Communications Workshops, INFO-
COM WKSHPS, 2011.

[33] Marcelo D. Holtz, Bernardo M. David, Rafael Timóteo de Sousa Jr., Building scal-
able distributed intrusion detection systems based on the mapreduce frame-
work, in: Proceedings of Revista Telecommun., vol. 1, 2011.

[34] Junho Choi, Chang Choi, Byeongkyu Ko, Dongjin Choi, Pankoo Kim, Detecting 
web based DDoS attack using MapReduce operations in cloud computing envi-
ronment, J. Internet Serv. Inf. Secur. 3 (4) (2014) 28–37.

[35] Alvaro A. Cárdenas, Pratyusa K. Manadhata, Sreeranga P. Rajan, Big data analyt-
ics for security, in: Proceedings of the IEEE Computer and Reliability Societies, 
2013.

[36] Stephanie E. Hampton, Carly A. Strasser, Joshua J. Tewksbury, Wendy K. Gram, 
Amber E. Budden, Archer L. Batcheller, Clifford S. Duke, John H. Porter, Big data 
and the future of ecology, in: Proceedings of Frontiers in Ecology and the En-
vironment, 2013.

[37] Stephen Kaisler, Frank Armour, J. Alberto Espinosa, William Money, Big data: 
issues and challenges moving forward, in: Proceedings of 46th Hawaii Interna-
tional Conference on System Sciences, HICSS, 2013.

[38] Emilio Corchado, Álvaro Herrero, Neural visualization of network traffic data 
for intrusion detection, in: Proceedings of Applied Soft Computing, 2012.

[39] Yuri Demchenko, Zhiming Zhao, Paola Grosso, Adianto Wibisono, Cees de Laat, 
Addressing big data challenges for scientific data infrastructure, in: Proceedings 
of CloudCom, 2012.

[40] Wei Yu, Guobin Xu, Khanh D. Pham, Erik P. Blasch, Genshe Chen, Dan Shen, 
Paul Moulema, A framework for cyber–physical system security situation 
awareness, Foundational Methods for Cyber–Physical Systems, 2015, in press.

[41] Linqiang Ge, Hanling Zhang, Guobin Xu, Wei Yu, Chen Chen, Erik P. Blasch, To-
wards MapReduce Based Machine Learning Techniques for Processing Massive 
Network Threat Monitoring Data, Networking for Big Data, CRC Press & Francis 
Group, 2015.

[42] Guobin Xu, Wei Yu, Zhijiang Chen, Hanlin Zhang, Paul Moulema, Xinwen Fu, 
Chao Lu, A cloud computing based system for network security management, 
Int. J. Parallel Emerg. Distrib. Syst. 30 (1) (2015) 29–45.

[43] Wei Yu, Guobin Xu, Zhijiang Chen, Paul Moulema, A cloud computing based 
architecture for cyber security situation awareness, in: Proceedings of the 4th 
International Workshop on Security and Privacy in Cloud Computing (SPCC), 
2013.

[44] Hadoop, What is Apache Hadoop, available at https://hadoop.apache.org/, 2015.
[45] Spark, Spark: lightning-fast cluster computing, available at https://spark.

apache.org/, 2015.
[46] Ahmad Amir, Lipika Dey, A k-mean clustering algorithm for mixed numeric and 

categorical data, in: Proceedings of Data & Knowledge Engineering, 2007.
[47] CAIDA Data, available at http://www.caida.org/data/, 2015.
[48] troyhunt, What is LOIC and can I be arrested for DDoS’ing someone, available 

at http://www.troyhunt.com/2013/01/what-is-loic-and-can-i-be-arrested-for.
html, 2013.

[49] Anna-Maija Juuso, Ari Takanen, Kati Kittilä, Proactive cyber defense: under-
standing and testing for advanced persistent threats (APTs), in: Proceedings of 
the European Conference on Informations Warfare, 2013.

[50] SYSSTAT, http://sebastien.godard.pagesperso-orange.fr/, 2015.
[51] Qingyu Yang, Jie Yang, Wei Yu, Dou An, Nan Zhang, Wei Zhao, On false data-

injection attacks against power system state estimation: modeling and coun-
termeasures, IEEE Trans. Parallel Distrib. Syst. 25 (3) (March 2014) 717–729.

 

 

 

http://www.cra.org/ccc/files/docs/init/Big_Data.pdf
http://manovich.net/index.php/projects/trending-the-promises-and-the-challenges-of-big-social-data
http://manovich.net/index.php/projects/trending-the-promises-and-the-challenges-of-big-social-data
https://hadoop.apache.org/
https://spark.apache.org/
https://spark.apache.org/
http://www.caida.org/data/
http://www.troyhunt.com/2013/01/what-is-loic-and-can-i-be-arrested-for.html
http://www.troyhunt.com/2013/01/what-is-loic-and-can-i-be-arrested-for.html
http://sebastien.godard.pagesperso-orange.fr/

	A Cloud Computing Based Network Monitoring and Threat Detection System for Critical Infrastructures
	1 Introduction
	2 Related work
	2.1 Big data issue in critical infrastructure system
	2.2 Cloud computing to assist network monitoring
	2.3 Cloud computing to assist threat detection

	3 System architecture
	3.1 Overview
	3.2 Components
	3.2.1 Monitoring agents
	3.2.2 Cloud infrastructure
	3.2.3 Operation center

	3.3 Features
	3.3.1 Modular
	3.3.2 Secured communication


	4 A prototypical system
	4.1 Hadoop
	4.1.1 Hadoop Distributed File System (HDFS)
	4.1.2 MapReduce

	4.2 Spark
	4.3 System workﬂow
	4.4 Database design
	4.5 User interface design
	4.6 Threat detection using k-mean clustering algorithm and naïve Bayes

	5 Performance evaluation
	5.1 Evaluation methodology
	5.2 Evaluation results
	5.2.1 Network monitoring
	5.2.2 Threat detection
	5.2.3 System performance


	6 Discussion
	6.1 Enhance critical infrastructure security with proactive defense strategies
	6.2 Enhance critical infrastructure security with reactive defense strategies
	6.3 Extension to handle streaming data

	7 Conclusion
	References


