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Abstract—This study aimed to develop a time–frequency method
for measuring directional interactions over time and frequency
from scalp-recorded electroencephalographic (EEG) signals in a
way that is less affected by volume conduction and amplitude scal-
ing. We modified the time-varying generalized partial directed co-
herence (tv-gPDC) method, by orthogonalization of the strictly
causal multivariate autoregressive model coefficients, to minimize
the effect of mutual sources. The novel measure, generalized or-
thogonalized PDC (gOPDC), was tested first using two simulated
models with feature dimensions relevant to EEG activities. We then
used the method for assessing event-related directional informa-
tion flow from flash-evoked responses in neonatal EEG. For testing
statistical significance of the findings, we followed a thresholding
procedure driven by baseline periods in the same EEG activity.
The results suggest that the gOPDC method 1) is able to remove
common components akin to volume conduction effect in the scalp
EEG, 2) handles the potential challenge with different amplitude
scaling within multichannel signals, and 3) can detect directed
information flow within a subsecond time scale in nonstationary
multichannel EEG datasets. This method holds promise for esti-
mating directed interactions between scalp EEG channels that are
commonly affected by the confounding impact of mutual cortical
sources.
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I. INTRODUCTION

THE human brain performs its sensory and cognitive func-
tions by dynamically employing highly complex and inter-

laced neuronal networks. Better understanding of these network
functions may open insights into pathophysiological mecha-
nisms of neurological development and disease [1]. Due to its
noninvasive nature, high temporal resolution, and low cost, scalp
EEG is often used as the basis for studying brain connectiv-
ity [2]–[8]. Several methods have been developed for assess-
ing directed interactions from EEG (or MEG) signals (reviewed
in [9]). Among these, multivariate autoregressive (MVAR) mod-
els have been widely used for neurophysiological signal anal-
ysis [5], [6], [10]–[12]. An MVAR process is able to model
interactions between EEG channels in the form of linear dif-
ference equations and allows the direction of information flow
between channels including direct and indirect influences [12].
The concept of Granger causality [13] is widely used to in-
vestigate the flow of information within the coupled dynamical
networks based on MVAR models. A dynamical process X is
said to Granger cause a dynamical process Y , if the prediction
of the process Y is enhanced using the information of the past
of process X compared to the knowledge of the past of process
Y alone [6]. This definition incorporates the lagged effects only
from one channel to another; hence, it is also denoted as lagged
causality [6]. The immediate effect of a channel on the other
channels at the zero delay is called instantaneous causality [6].
The combination of the concepts of lagged and instantaneous
causality leads to the general form of extended causality [6]. In
this paradigm, the classical MVAR models accounting only for
the lagged causality are called strictly causal MVAR models,
while the models also considering the zero-lag effects are de-
noted as extended MVAR models [6]. The instantaneous effects
built in the strictly causal MVAR models are reflected in the
nondiagonal elements of their noise covariance matrix. There-
fore, they can be converted into the extended models using the
Cholesky decomposition of their uncorrelated noise covariance
matrix [6].

Strictly causal and extended MVAR models provide the ba-
sis for several measures of directional influence in multivariate
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systems, such as Granger causality index (GCI) [14], directed
coherence [15], partial directed, multiple coherence [16], co-
herence (PDC) [15], extended PDC [6], gPDC [17], directed
transfer function (DTF) [16], [18], and direct DTF (dDTF) [19]
which have been validated using simulated models [6], [12],
[15], [20], [21]. Ordinary coherence quantifies the linear re-
lationship between two signals in the frequency domain. In a
multichannel dataset, the linear relationship between two chan-
nels in absence of all other channels is measured by the partial
coherence function. In fact, the function removes linear influ-
ences from all other channels in order to detect direct interaction
between channels i and j [15]. Multiple coherence describes the
proportion of the power of the ith channel at a certain frequency
which is explained by the influences of all other channels [16].
These coherence measures provide a symmetric representation
of the relations between channels, namely, the extracted inter-
relationship matrix is always symmetrical. Directed coherence
is defined as a unique decomposition of the ordinary coherence
function and represents the directed interaction between chan-
nels. This measure is obtained by spectral decomposition of the
cross-spectral density matrix and channel-wise normalization
of each element in the matrix [15]. Although the directed co-
herence has a straightforward physical interpretation in terms
of signal power transferred from one process to another, it can-
not distinguish between direct and indirect causal effects within
the channels. DTF and PDC account for the activity flow in a
given direction as a function of frequency/time–frequency. In
particular, the PDC inherits useful characteristics of both di-
rected coherence and partial coherence at the same time. While
the DTF shows all direct and cascade flows together (e.g., both
propagations 1→2→3 and propagation 1→3 are reflected in it),
dDTF [19] can separate direct flows from indirect flows [9], [10].
The two frequency domain approaches to connectivity analysis
(PDC versus DTF) are designed to assess different properties in
the signal with each having its own advantages and disadvan-
tages [8], [12], [15], [20], [22]. The measure gPDC [17] com-
bines the idea of DTF (to show the influencing effects) and PDC
(to reflect influenced effects) between channels i and j. Also,
GCI [14], [20] is a time-domain connectivity measure based on
the concept of Granger causality. The original versions of the
previously discussed measures assume that the underlying sig-
nals are stationary and their interactions are constant over time,
which has made their use challenging for EEG—a known time-
varying (nonstationary) signal [23], [24]. This has prompted the
development of time-varying MVAR-based connectivity mea-
sures for EEG signal processing [7], [12], [21].

A further significant challenge in connectivity analysis of
scalp EEG (or sensor space MEG) is the effect of volume
conduction where a given brain source is often reflected in
several EEG/MEG signals, and consequently, their similar-
ity may be falsely perceived as “connectivity” by the analy-
sis paradigms [25]. This is particularly problematic with the
MVAR-based connectivity measures that are sensitive to vol-
ume conduction effects (for example, [26, p. 94]). A potential
solution is to perform the EEG/MEG connectivity analysis at
the source level [27], although this would require sufficiently
reliable source localization [28]. An intriguing idea for an al-

ternative solution was provided by a recent study that mitigated
the effect of volume conduction in the analysis of spatial EEG
amplitude correlations [29] by orthogonalizing signal powers.
A well-known related procedure is use of the imaginary part of
the (ordinary) coherence function [25], which renders the esti-
mate insensitive to instantaneous effects between two signals.
In this paper, we combine the idea of the dual extended Kalman
filter (DEKF)-based time-varying PDC analysis [11], orthog-
onalization and imaginary part of coherence function leading
to an orthogonalized version of the classical PDC, which we,
hereafter, call orthogonalized PDC (OPDC). We propose here
that combining orthogonalization and the imaginary part of co-
herence has the potential to reduce spurious covariability, the
common result of volume conduction effects. Moreover, we
develop its generalized version (called gOPDC) to handle the
numerical problem associated with potentially different vari-
ance of signal amplitudes (known as time-series scaling [17]).
The novel OPDC paradigm is compared with the classical PDC
and gPDC, first using simulated time-invariant and time-varying
models, and then using task-related EEG data obtained from
flash light-evoked EEG responses of newborn babies. Finally,
we will apply stringent statistical testing to assess significances
of individual findings, and the time–frequency (T–F) connec-
tivity maps are subsequently visualized in 3-D directed graphs
of the baby’s head to demonstrate the potential power of the
proposed method in studying dynamical brain networks.

II. METHODS

A. MVAR Model

For a given time series y(n) ∈ RM with L number of samples
(n = 1, . . . , L), a strictly causal MVAR model of order p is
defined as follows [30]:

⎡
⎢⎢⎣

y1(n)
...

yM (n)

⎤
⎥⎥⎦ =

p∑
r=1

Ar

⎡
⎢⎢⎣

y1(n − r)
...

yM (n − r)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

w1(n)
...

wM (n)

⎤
⎥⎥⎦ (1)

where [w1 . . . wM ]T = w is a normally distributed real-valued
zero-mean white noise vector with diagonal covariance matrix
Σw = 〈wwT〉 = diag

{
λ2

kk

}
where 〈.〉 is the expected value

operator and M denotes the number of channels. The assump-
tion of diagonality for Σw ensures that there is no instantaneous
effect within the MVAR model described in (1), as there is no
nondiagonal element in Σw [6]. The matrices Ar are given by

Ar =

⎡
⎢⎢⎣

ar
11 · · · ar

1M

...
. . .

...

ar
M 1 · · · ar

M M

⎤
⎥⎥⎦ (2)

for r = 1, . . . , p. The real-valued parameter ar
kl reflects the

linear relationship between channels k and l at the delay r. In the
stationary case, the optimum order p of an MVAR model can be
estimated using different methods such as Akaike information
criterion (AIC) and Schwarz’s Bayesian criterion (SBC) [8],
[31]. The SBC has been shown to be preferable over the AIC for
time series analysis [32]. For a reliable estimation of the MVAR
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parameters, the number of data points available (ML) needs to
be significantly larger than the number of parameters (M 2p) or
equivalently, the signal length (L) should be much longer than
Mp [30].

B. Time-Varying PDC Measure

Partial and directed relationships in a network can be detected
using the PDC measure. As an example, suppose channel 1 af-
fects channel 2 and channel 2 affects channel 3, i.e., 2←1, 3←2,
where the arrows show the direction of the information flow.
In this case, channel 1 has a direct relationship with channel 2,
while there is an indirect (partial) relationship between channels
1 and 3. It has been shown in previous studies that the PDC mea-
sure outperforms its MVAR-based counterparts for connectivity
analysis because it misses this partial relation [15], [20], [22].

The PDC measure is based on the concept of Granger causal-
ity [15]. The time-varying version of the PDC is defined based
on the time-varying version of the model given in (1) (in which
matrices Ar (n) are time varying) as follows [21]:

πkl(n, f) Δ=
|Akl(n, f)|√

aH
l (n, f)al(n, f)

(3)

where al(n, f) is the lth column of A(n, f) defined as follows:

A(n, f) = I −
p∑

r=1

Ar (n)z−r |z=ej 2 π f (4)

where I is the identity matrix and the frequency f varies within
the range of 0 to the Nyquist rate. In (3), Akl(n, f)is the klth
element of A(n, f), aH

l denotes the Hermitian transpose of the
vector al , and |.| represents the absolute value operator. The
measure πkl(n, f) takes values between 0 and 1 where high
values in a certain T–F bin reflects a directionally linear influence
from channels l to k at that bin (CHk ← CHl). Note that the
measure is directional, i.e., πkl(n, f) is not equal to πlk (n, f)
necessarily. The scale invariance version of the classical PDC
(called gPDC) is obtained by incorporating the variances of the
innovation processes wi(n) [6], [17]:

π̃kl(n, f) Δ=
λ−1

kk |Akl(n, f)|√
aH

l (n, f)Σ−1
w al(n, f)

(5)

where λkk are the diagonal elements of Σw . The null hypothesis
in the statistical significance test of the PDC-based connectivity
analysis is then stated as follows:

H0 : PDCkl(n, f) = 0 (6)

where PDCkl(n, f) is either πkl(n, f) or π̃kl(n, f). Rejection of
H0 implies a significant partial directed outflow of information
from channel l to k [17].

C. Time-Varying gOPDC for Reducing the Effect
of Volume Conduction

The cortical electrical activity recorded by a scalp electrode
is a space-averaged potential that is often considerably affected
by spatial smearing in the tissue layers between cortex and

scalp [33]. This process, known as volume conduction, leads
to covariability in the EEG signal amplitude that is not due to
true connectivity between underlying cortical activities. This
effect needs attention in the preprocessing stage in any EEG
connectivity analysis to differentiate presumably genuine brain
interactions from those caused by smearing of EEG signal via
volume conduction. To reduce the covariability due to spatial
smearing of the surface EEG signals, one can orthogonalize their
power envelopes in the complex domain to remove the parallel
components and extract the orthogonal parts [29]. The orthogo-
nal components are then used in the connectivity analysis. Note
that two signals can be orthogonal and still correlated [34]. The
power envelope of a random signal represents the temporal evo-
lution of its spectral power and can be derived using Morlet’s
wavelets [29] or the Hilbert transform [35]. Parametric or non-
parametric (FFT-based) methods are also used to explore the
frequency content of the signal. It is known, however, that the
FFT-based methods inherit performance limitations of the FFT
approach. Namely, they are unable to provide high-frequency
resolution and also suffer from the spectral leakage caused by
the effect of windowing on the signal. Autoregressive (AR)
model-based spectral estimation methods can overcome these
limitations by fitting the observations to an AR model. These
methods can be extended to multivariate signals using (1) lead-
ing to the power spectral density (PSD) matrix. Therefore, the
MVAR model coefficients in (1) and (4) reflect the interactions
within the channels and at the same time, they represent the
spectral information of the signal power envelopes. The main
idea behind the OPDC and gOPDC measures is that instead of
performing the orthogonalization process at the amplitude level,
it is done at the level of MVAR coefficients to alleviate the effect
of mutual sources [36].

Suppose scalp EEG channels are generated through a linear
superposition of K independent source signals within the brain
with instantaneous effect on the surface electrodes. This rela-
tionship can, therefore, be formulated in the frequency domain
using Fourier transform as follows:

Yi(f) =
K∑

k=1

vikSk (f). (7)

Equation (7) can be rewritten in its matrix form:

Y (f) = V S(f) (8)

where Y (f) ∈ CM is the multichannel EEG signal in the fre-
quency domain, S(f) ∈ CK is the multivariate source signal
in the frequency domain, and V ∈ RM ×K includes all source
weights:

V =

⎡
⎢⎢⎣

v11 . . . v1K

...
. . .

...

vM 1 . . . vM K

⎤
⎥⎥⎦ . (9)

Note that zero lag between the source signals and the sen-
sor realizations ensures that the matrix V is real valued. As-
suming independence among sources, that is,

〈
Si(f)S∗

j (f)
〉

=
δij 〈|Si(f)|2〉 with δij denoting the Kronecker delta, the
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cross-spectral density function Cij (f) between Yi(f) and
Yj (f), i.e.,

Cij (f) = 〈Yi(f)Y ∗
j (f)〉 =

K∑
k=1

vikvjk 〈|Sk (f)|2〉 (10)

is necessarily real valued [25]. Now, let us fit a strictly causal
MVAR model on the multichannel EEG signal y(n) in the time
domain according to (1) and transform it into the frequency
domain. We have

Y (f) =
p∑

r=1

Are
−j2πf rY (f) + W (f) = B(f)Y (f) + W (f)

(11)
where

B(f) =
p∑

r=1

Are
−j2πf r (12)

Bkl(f) =
p∑

r=1

ar
kle

−j2πf r . (13)

Combining (8) and (11), we have

Y (f) = B(f)V S(f) + W (f). (14)

Then, the cross-spectral density matrix of Y (f), namely,
C(f) can be computed as follows:

C(f) = 〈Y (f)Y H (f)〉 = 〈(B(f)V S(f) + W (f))

× (SH (f)V H BH (f) + WH (f))〉 (15)

where the superscript H denotes the Hermitian operator. As-
suming the source signals and noise processes are statistically
independent, (15) is written as follows:

C(f) = 〈(B(f)V S(f)SH (f)V H BH (f))〉 + 〈W (f)WH (f)〉.
(16)

Therefore, Cij (f) in (10) can be obtained based on (16) as
follows:

Cij (f) =

〈
M∑

n1 =1

M∑
n2 =1

K∑
k1 =1

K∑
k2 =1

Bin1 (f)B∗
jn2

(f)vn1 k1 vn2 k2

×Sk1 (f)S∗
k2

(f)

〉
+ 〈Wi(f)W ∗

j (f)〉. (17)

Since Sk1 (f) and Sk2 (f) are independent, all terms including
〈Sk1 (f)S∗

k2
(f)〉, k1 �= k2 are zero resulting in:

Cij (f) =
M∑

n1 =1

M∑
n2 =1

K∑
k=1

Bin1 (f)B∗
jn2

(f)vn1 k vn2 k |Sk (f)|2

+ 〈Wi(f)W ∗
j (f)〉. (18)

True interaction between channels, independent from the pure
effect of mutual sources (that is, relations in which the effect
of mutual independent sources have been excluded) is reflected
in the imaginary part of Cij (f). Since vn1 kvn2 k |Sk (f)|2 and
〈Wi(f)W ∗

j (f)〉 are necessarily real valued, Imag{Cij (f)} will
be written as follows:

Imag{Cij (f)} =
M∑

n1 =1

M∑
n2 =1

K∑
k=1

× {vn1 k vn2 k |Sk (f)|2Imag{Bin1 (f)B∗
jn2

(f)}}. (19)

Therefore, the terms Imag{Bin1 (f)B∗
jn2

(f)} are associated
with the true interactions between channels devoid of the effect
of mutual sources and given by

Imag
{
Bin1 (f)B∗

jn2
(f)

}

=
p∑

r1 =1

p∑
r2 =1

ar1
in1

ar2
jn2

sin (2πf (r1 − r2)) (20)

=
P∑

r1 =1

P∑
r2 =1

ar1
in1

ar2
jn2

sin(2πf(r1)) cos(2πf(r2))

+
P∑

r1 =1

P∑
r2 =1

ar1
in1

ar2
jn2

sin(2πf(r2)) cos(2πf(r1)). (21)

Thus, the orthogonalized components of ar
kle

−j2πf r , k =
1, . . . ,M, l = 1, . . . , M at different delays, i.e., the real part
ar

kl cos(2πfr) and the imaginary part ar
kl sin(2πfr) play a

salient role in estimating the true relations between channels,
when the effect of mutual sources has been excluded. In fact,
the orthogonalized components at different delays do not share
the trivial covariability caused by linear superposition of inde-
pendent sources. Based on this rationale, we propose the or-
thogonalized version of the classical time-varying PDC (called
OPDC) as a combination of the orthogonal components of the
MVAR coefficients in the T–F domain given by (22) and (23),
as shown at the bottom of the page.

Summation of the weighted sine and cosine terms in (22) im-
poses a trend varying appearance to the OPDC measure along the
frequency axis. It is straightforward to show that (22) and (23)
are equivalent with the following decomposition of πkl(n, f) in
(3):

Ψkl(n, f) =
|Real{Akl(n, f)}|√

aH
l (n, f)al(n, f)

.
|Imag{Akl(n, f)}|√

aH
l (n, f)al(n, f)

if k �= l. (24)

Ψkl(n, f) Δ=

∣∣∑p
r1 =1

∑p
r2 =1 ar1

kl (n)ar2
kl (n) cos (2πfr1) sin (2πfr2)

∣∣
aH

l (n, f)al(n, f)
(22)

=

∣∣∑p
r1 =1

∑p
r2 =1 Real

{
ar1

kl (n)e−i2πf r1
}

Imag
{
ar2

kl (n)e−i2πf r2
}∣∣

aH
l (n, f)al(n, f)

. (23)
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Since each factor in (24) is greater than zero and less than
πkl(n, f), the measure Ψkl(n, f) will always take values be-
tween zero and 1. In analogy to the definition of gPDC, the
OPDC can be extended to the gOPDC Ψ̃kl(n, f) by taking the
effect of time series scaling into consideration:

Ψ̃kl(n, f) =
1

λ2
kk

|Real{Akl(n, f)}|√
aH

l (n, f)Σ−1
w al(n, f)

.
|Imag{Akl(n, f)}|√
aH

l (n, f)Σ−1
w al(n, f)

if k �= l. (25)

In the next sections, we evaluate the proposed measures on
two simulated models consisting of a time-invariant as well as
a time-varying strictly causal MVAR model affected by a linear
superposition of independent sources.

III. TESTING THE OPDC PARADIGM

To evaluate the performance of the OPDC and gOPDC mea-
sures against the performance of the classical PDC and gPDC,
two independent simulations were conducted covering both
time-invariant and time-varying circumstances. The basic form
of the time-invariant model was used in [15] to reflect the su-
periority of the PDC to the DTF. Also, the time-varying one
has been previously used in [21] to extract time-variant directed
influences during Parkinsonian tremor. The models were then
manipulated by adding random interactions between channels
to test the integrity of our connectivity analysis framework.

A. Time-Invariant Simulated Model

The model is a 5-D time-invariant strictly causal MVAR [37]
process plus a linear superposition of sparse uniformly dis-
tributed random sources with approximately 50% nonzero en-
tries within the interval [0 3], given by

x(n) = y(n) + V s(n) (26)

where y(n) is a strictly causal MVAR model of order 3 with
five channels and x(n) is its distorted version with some con-
founding instantaneous interferences between channels defined
by V ∈ R5×6 , a time-constant random mixing matrix and s(n),
the intermittent interactions between channels given as a six-
channel sparse uniformly distributed random matrix with 50%
nonzero entries. The matrix V is a weighting matrix whose
element in the i, j position represents the random interaction
between the ith and jth component of s(n). In fact, we have as-
sumed that six sparse and instantaneous relationships are being
imposed randomly on y(n). The distorted matrix x(n) is finally
used for connectivity analysis. The elements of V were selected
from the interval [0, 1] through a uniformly distributed pseudo-
random generator. The MVAR process y = [y1 y2 y3 y4 y5 ]T is

Fig. 1. Time course of the time-varying parameters in the simulated model
(see also [21]).

expressed as follows (see also [15]):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(n) = 0.95
√

2y1(n − 1) − 0.9025y1(n − 2) + 10w1(n)

y2(n) = 0.5y1(n − 2) + 5w2(n)

y3(n) = −0.4y1(n − 3) + w3(n)

y4(n) = −0.5y1(n − 2) + 0.25
√

2y4(n − 1)

+0.25
√

2y5(n − 1) + 1.5w4(n)

y5(n) = −0.25
√

2y4(n − 1) + 0.25
√

2y5(n − 1) + 2w5(n)
(27)

where w = [w1 w2 w3 w4 w5 ]T is a normally distributed white
noise vector with different variances for its entries. The model
is simulated for L = 2000 samples at the sampling frequency
Fs = 200 Hz.

B. Time-Varying Simulated Model

The model is a 3-D time-varying strictly causal MVAR [37]
process plus a linear superposition of sparse uniformly dis-
tributed random sources with approximately 50% nonzero en-
tries within the interval [0 1], given by (26) where V ∈ R3×6 is
a time-constant mixing matrix and s(n) represents the intermit-
tent interactions between channels. Similar to the time-invariant
case, the elements of V were selected from the interval [0, 1].
The MVAR process y = [y1 y2 y3 ]T is denoted as follows (see
also [21]):

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

y1(n) = 0.59y1(n − 1) − 0.20y1(n − 2)

+ b(n)y2(n − 1) + c(n)y3(n − 1) + w(n)

y2(n) = 1.58y2(n − 1) − 0.96y2(n − 2) + w2(n)

y3(n) = 0.60y3(n − 1) − 0.91y3(n − 2) + w3(n)
(28)

where w = [w1 w2 w3 ]T is a normally distributed white noise
vector. For a model of length L = 2000 samples and the sam-
pling frequency Fs = 200 Hz, parameters b(n) and c(n) are
depicted in Fig. 1. For MVAR parameter estimation, the model
order is fixed to 2 throughout the process.

C. Newborn EEG Data

We used 20-channel EEG recordings of four full-term new-
borns obtained from EEG archives in the Department of Chil-
dren’s Clinical Neurophysiology (Helsinki University Central
Hospital, Finland). The signals were recorded during sleep
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with sampling rate of 256 Hz using a NicoOne EEG amplifier
(Cardinal Healthcare, USA) and EEG caps (sintered Ag/AgCl
electrodes; Waveguard, ANT-Neuro, Germany) with position-
ing according to the international 10–20 standard (see [38] and
http://www.nemo-europe.com/en/educational-tools.php for fur-
ther details of the newborn EEG recording method). To capture
connectivity in the brain network associated with visual pro-
cessing driven by the visual stimuli, we selected ten monopo-
lar channels (Cz as the reference—see also Fig. 7) divided
into two groups representing left (O1,C3,P3,T3,T5) and right
(O2,C4,P4,T4,T6) hemispheres. The analysis of functional con-
nectivity was then performed on each hemisphere (group) sepa-
rately. Visual stimuli were delivered with the routine flash stimu-
lator of the NicOne EEG system at 1 Hz for 5 min (thus a total of
300 times). The continuous multichannel EEG recordings were
then segmented into 1-s nonoverlapping epochs each of which
included one of the 1-Hz visual stimuli. Use of these anonymized
EEG recordings has approval from the Ethics Committee, Hos-
pital of Children and Adolescents, Helsinki University Central
Hospital.

D. Preprocessing Prior to the OPDC Analysis

The following sequence of preprocessing was applied on the
continuous raw EEG data using EEGLAB functions [39]: in-
dependent component analysis (ICA) was used to remove ECG
artifact, mains noise (50 Hz) as well as potential artifacts intro-
duced by the flash stimulator directly to the EEG electronics. All
20-EEG electrodes were used at this stage to maximize the reli-
ability of ICA operation [37]. The signal was band-pass filtered
between 0.1 and 30 Hz (using a finite impulse response filter of
order 200). Periods of the EEG with exceedingly high artifacts
were then visually identified, marked manually, and excluded
from the later analysis. The remaining epochs were submitted
for further analysis (212 ± 28.6 average number of epochs per
hemisphere).

E. Statistical Testing of EEG Responses

In order to evaluate the significance of our tv-gOPDC results,
we employed statistical hypothesis testing for each individual
pairwise connection within a multichannel EEG dataset using
a null distribution that we generated from the signal itself. The
null hypothesis is stated as statistical similarity between the
baseline condition and poststimulus activation. In other words,
we tested whether the gOPDC measure after flash light stimula-
tion is statistically different from the gOPDC measure without
brain activity triggered by the flash. This approach acknowl-
edged the idea that brain areas may interact spontaneously in
the absence of external stimulation leading random connectiv-
ity between EEG channels. Hence, the statistically significant
event-related information flow can be estimated by comparing
it to the level of interactions that take place between those same
electrodes in the absence of stimulation. Studies on event related
oscillatory activity often use “baseline” subtraction at the trial
level [40]. Fig. 7(a) illustrates an example of the clear difference
between the baseline (last 400 ms after flash light stimulation)
and stimulus-induced components (first 400-ms interval) in a

newborn visual evoked potential (VEP) signal. However, we
searched for additional statistical power and analytical stability
by generating a null distribution from a larger set of baseline
epochs. The statistical approach used is conceptually straight-
forward and computationally efficient compared to the sample
shuffling, that in our multivariate dataset needed up to 10-h com-
putation time per baby (using a Windows-based PC of 2.66-GHz
Core2 Duo CPU with 8 GB of RAM).

To this end, we constructed the null distribution using the last
400-ms interval of the 1-s interstimulus EEG epochs, which was
found to be beyond all obvious components of VEPs [see also
Fig. 7(a)], hence considered as the “baseline” (typical EEG ac-
tivity known as “background”). The tv-gOPDC measures were
extracted from the first 400 ms of each epoch and compared
with a distribution of the same measures extracted from the
last 400-ms intervals for all epochs. The procedure of obtain-
ing a T–F thresholding plane for each group (either left or right
hemisphere) of each subject is as follows.

1) tv-gOPDC measures are extracted from the whole length
(1 s) of each epoch. If N is the number of epochs for
subject i obtained from either right or left hemisphere, N
T–F representations of the gOPDC measures are obtained
at the end of this step.

2) Each T–F representation is divided into two parts: the first
one covering the beginning 400-ms interval and the sec-
ond one covering the last 400-ms interval. First intervals
over epochs provide the original estimates and the second
intervals build the null distribution’s library.

3) The highest score at the 99th percentile of the distribution
of each T–F bin over epochs is computed. With our res-
olution (3.9 ms × 0.5 Hz), this yields a threshold plane
(or matrix) with 102 time bins (0.4 s, Fs = 256 Hz) and
60 frequency bins (Fmax = 30 Hz), thus altogether 6120
threshold values in the thresholding plane that covers the
whole T–F graph.

Fig. 2 illustrates the above procedure for constructing the
thresholding plane that determines significance level of the T–F
bins in the gOPDC graph. The statistical testing procedure was
applied on the preprocessed data of each subject at each group
(hemisphere) to obtain a subject-dependent thresholding plane.
To find the T–F bins with significant values over the first 400-ms
time interval, a T–F threshold was applied to each epoch aver-
age of the thresholded gOPDC plots was computed as the mean
connectivity representation of the subject in the underinvesti-
gated hemisphere (see Fig. 2). At the end, each subject had two
average multichannel representations, one for each hemisphere.

F. Implementation of the DEKF-Based OPDC Measure
for the EEG Signals

In this paper, the coefficients Ar (n) in (4) are estimated us-
ing the DEKF [41]. Time-dependent parameters Ar (n) account
for the nonstationary behavior of the signals. The DEKF is em-
ployed to estimate time-varying MVAR parameters fitted on the
multichannel EEG signals. It leads to a time resolved gOPDC
measure quantifying the time-varying directed influences within
channels in the T–F plane. The resulting DEKF-based T–F plane

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077



686 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 3, MARCH 2014

Fig. 2. (a) Block diagram of implementing the DEKF-based gOPDC measure and the null distribution from N multichannel epochs of the newborn VEP
responses. The thresholding plane in the last stage will be used to determine the significant values of the OPDC measures in the T–F domain. (b) Procedure of
constructing the thresholding plane for the tv-gOPDC measures. Each white square represents a tv-gOPDC representation associated with the last 400 ms of an
epoch. The histogram of each T–F bin (small black squares) over all epochs of a group is obtained and its highest score at the 99th percentile is extracted. The
estimated value is then used as the threshold of that T–F bin in the thresholding plane.

Fig. 3. Diagrams of the mutual influences within the multichannel time-invariant model given by (26) and (27): (a) PDC, (b) gPDC, (c) OPDC, and (d) gOPDC.
The diagonal plots (effect of each channel on itself) are excluded from the matrix layouts.
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Fig. 4. Connectivity measures extracted from the simulated model: (a) time-varying gPDC and (b) time-varying gOPDC. The diagonal plots (effect of each
channel on itself) have been excluded from the matrix layouts.

is constructed on a sample-by-sample basis. Therefore, the time
resolution is defined by the sampling step size and the frequency
resolution is determined by the number of frequency bins in the
gOPDC measure (here, Fs = 256 Hz leading to 3.9-ms steps
and NFFT = 2FS leading to 0.5-Hz spectral steps). The MVAR
model order determines the frequency resolution of the esti-
mates: low-order MVAR models cannot capture low-frequency
components due to their short memory [42]. On the other hand,
high-order MVAR models are able to represent rapid changes in
the signal, but reliable estimation of their numerous parameters
needs lengthy signals. If the signal is known to be stationary
(which is not generally true for EEG), the optimum order p can
be estimated using different methods such as the AIC or the
SBC [31]. The model order selection is not straightforward for
time-varying MVAR models, as it may vary over time. In this
study, the optimal model order is estimated by evaluating the
SBC for a range of p values over the entire data using the ARFIT
toolbox [31] and is kept constant during the process. Since the
MVAR parameters needed to be inferred from a short EEG seg-
ment in this study (1 s), the order of the model was kept as
low as possible (p = 5). The whole procedure of extracting the
tv-gOPDC values from the multichannel newborn EEG datasets
is depicted in Fig. 2. The two hemispheres were analyzed as sep-
arate groups of electrodes, and quantitative 3-D maps of directed
influences were plotted using customized MATLAB functions
of eConnectome toolbox [43].

IV. RESULTS

Our comparison between different methodologies is based
on visual inspection (see Figs. 4 and 5) analogous to the orig-
inal PDC study [15], and we found this sufficiently revealing
to conclude that there were considerable differences between
methods. However, a quantitative measure with statistical test-
ing was used for an objective comparison of the EEG results in
which the average tv-gOPDC values over predefined T–F planes
were computed (see Fig. 7).

A. Time-Invariant Simulation

The corresponding PDC, gPDC, OPDC, and gOPDC mea-
sures for the time-invariant model given by (26) and (27) are
plotted in a matrix layout in Fig. 3. In the ideal case, we expect
to see the immediate impact of channel 1 to channels 2, 3, and 4
as well as the reciprocal effect between channels 4 and 5 (that is,
nonzero values for π21(f), π31(f), π41(f), π45(f), and π54(f),
while the other flows are zero). Because of the effect of mutual
sources, the classical PDC [see Fig. 3(a)] shows an erroneous
reflection of the true connections (considerable effect of chan-
nel 1 on the other channels) in addition to the spurious leakages
among some other channel pairs. The distinctive role of chan-
nel 1 in contrast to the other channels refers to its large noise
variance. This problem is tackled to some extent by the gPDC
[see Fig. 3(b)], although leakage due to the effect of mutual
sources still exists. The OPDC measure [see Fig. 3(c)] allevi-
ates the leakage problem, but is not able to confront the issue
of different amplitude scaling. Namely, considerable nonzero
values due to the large noise variance of channel 1 are observed
for Ψ13(f) and Ψ15(f) in Fig. 3(c). The gOPDC measure [see
Fig. 3(d)] takes both the issue of time series scaling and infor-
mation leakage into consideration and provides the most desired
presentation of the information flows.

B. Time-Varying Simulation

Comparison of the tv-gOPDC measures to tv-gPDC mea-
sures on the time-varying simulated model described in (26)
and (28) demonstrates that gOPDC can effectively remove the
intermittent interactions between variables (see Fig. 4). In this
study, the optimal model order was estimated by evaluating
the SBC for a range of p values over the entire data using
the ARFIT toolbox [31] and kept constant during the process
for all simulations as well as EEG signal analysis. Both mea-
sures are able to successfully reflect the oscillatory partial con-
nectivity from channels 2 to 1 (π̃12(n, f), Ψ̃12(n, f)) as well
as the ramp-shaped strength influence from channels 3 to 1
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Fig. 5. Time-varying connectivity analysis of the scalp EEG electrodes from the left hemisphere: (a) gPDC measure and (b) gOPDC measure.

Fig. 6. Time-invariant connectivity analysis of the scalp EEG electrodes from the left hemisphere: (a) gPDC measure and (b) gOPDC measure.

(π̃13(n, f), Ψ̃13(n, f)) (see Fig. 4). According to the model,
there is no direct coupling from y1(n) to y2(n) and y3(n),
from y2(n) to y3(n), and also from y3(n) to y2(n). This is
reflected well in the corresponding gOPDC graphs with neg-
ligible activity. However, the corresponding gPDC graphs for
π̃21(n, f), π̃23(n, f), π̃31(n, f), and π̃32(n, f) represent high
false-positive values. Another large difference can also be ob-
served: the residual connectivity values after removing the effect
of mutual sources reveal much smaller magnitude than the gPDC
values (note the color bars in Fig. 4). This observation originates
directly from the orthogonalization step in the gOPDC measure
where the spurious connectivity caused by the mutual sources is
attenuated.

C. Newborn EEG Data

Because the MVAR parameters need to be inferred from a
short EEG segment (1 s), the order of the model should be kept
as low as possible (p = 5). Many coefficients of a high-order

MVAR model cannot be reliably estimated from a short length
signal. Therefore, we were conservative in selecting the opti-
mum model order and selected the lowest order at which a near
constant plateau appears in the information criterion diagram of
the SBC method. On the other hand, low-order MVAR models
cannot capture low-frequency components, as they have short
memory [42]. Therefore, we exclude low-frequency results of
this study (below 1–2 Hz) from our interpretations.

To make sure that the EEG results are not substantially af-
fected by different amplitude scaling in scalp EEG electrodes
[see Fig. 7(a)], the gOPDC was used for EEG connectivity anal-
ysis and its performance was compared with the gPDC. The
time-varying results (see Fig. 5) were obtained for the scalp
EEG electrodes of the left hemisphere after thresholding as de-
scribed earlier. As shown in Fig. 5, the gPDC levels are notably
high and spread across the whole T–F plane with emphasis on
low-frequency components, whereas gOPDC levels are clearly
emphasized around 10 Hz. In particular, the low-frequency con-
tent (lower than 3 Hz) associated with the mutual component
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Fig. 7. (a) Average VEPs of a typical subject—responses of the right group of electrodes. (b) and (c) Average tv-gOPDC measures across four subjects for the
occipital-temporal-parietal areas from 100 to 400 ms poststimulus at the left and right hemispheres, respectively. The direction of the information flow is presented
on top of each map. (d) Rectangular T–F compartments over which the gOPDC measure was averaged. (e)–(g) Color-coded 3-D directed graphs representing the
grand-mean information flow at Δt1 = 100–200 ms, Δt2 = 200–300 ms, and Δt3 = 300–400 ms, respectively, after the stimulus onset within the frequency
range of 5–15 Hz. Note the substantial decrease of information flow in the last time window compared to the first two time windows. Each color-coded arrow
shows a directed interaction between two electrodes.

of the newborn EEG signals have been almost eliminated in the
gOPDC plots.

The time-invariant measures (see Fig. 6) can be readily ob-
tained by temporal averaging of the corresponding time-varying
values (see Fig. 5). They show a clearly dominant hump at
around 7–10 Hz. In contrast, the gPDC plots show strikingly
high levels toward both higher and lower frequency components.
We find it plausible to assume that these frequency compo-
nents represent mainly the “common mode” effect of reference
electrode that is unavoidably present in monopolar recordings,
which is effectively attenuated by orthogonalization at the level
of MVAR parameters.

The conventional time-locked averaging of the EEG showed
canonical shape visual evoked responses in both hemispheres
and in all babies (see Fig. 7) with little difference in timing and
shape of components between scalp locations. The first compo-
nents always started before 200 ms, and no consistent response
components were seen beyond 400-ms post-stimulus. Notably,
all components of this response have a strong spatial decay to-
ward central (C3 and C4) and temporal (T3 and T4) sites, with
maximal amplitude in the occipital electrodes (O1 and O2).
Based on these observations, we limited our tv-gOPDC analy-
sis to a rectangular T–F area from 100-ms poststimulus onward
and within the frequency range of 5–15 Hz [see Fig. 7(d)].
Grand-mean T–F maps of directional interactions between EEG
channels at each hemisphere over subjects are demonstrated in

Fig. 7(b) and (c). The 3-D connectivity maps of the grand-mean
interactions at 5–15 Hz band were then created from 2-D av-
eraging of the T–F gOPDC values within three different time
spans: Δt1 = 100–200 ms, Δt2 = 200–300 ms, and Δt3 =
300–400 ms (see Fig. 7(e), (f), and (g), respectively).

An overall inspection of the results in Fig. 7(b) and (c) sug-
gests that there are preferential frequencies and directions of
information flow in the T–F domain. To quantify the visual in-
terpretation of the results, the total mean gOPDC value was
calculated for each plot. The pairwise gOPDC maps, i.e., two
maps for each electrode pair (one for each direction) can be
interpreted as the pure directional “coherence spectrogram” be-
tween the two electrodes, when the effect of volume conduction
is removed. Notably, most directed information flow appears to
take place at 5–15 Hz frequency band, with a general decrease in
frequency over time. This change in frequency is, indeed, com-
patible with the respective changes in the intrinsic frequency
content of the average waveforms [see Fig. 7(a)] which show a
clear attenuation of interactions toward the end of the 400-ms
analysis window. The grand-mean gOPDC maps [see Fig. 7(b)
and (c)] reveal strong interrelations between the occipital and
central areas at the left hemisphere and between the occipital
and temporal areas at the right hemisphere around the central
frequency of 10 Hz (most dominant interactions are O1←C3
and O2←T4). In both matrix layouts (left and right—40 maps
in total), the dominant electrode pairs involve the occipital and
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parietal electrodes as the sink of information (e.g., P3←T3,
O2←T4, O1←C3). In addition, relatively high T–F interac-
tions originate from the temporal lobe and discharge into the
occipital and parietal lobes (e.g., P3←T5, P3←T3, O2←T4).

The 3-D plots are compatible with the observations from the
T–F gOPDC graphs in Fig. 7(b) and (c) that show attenuation
of the interactions in the network over time. In the earliest time
window (100–200 ms), most connections are active, whereas
the interactions weaken toward the end of the analysis time. The
3-D maps also show the long connections from the occipital
lobe to the central regions.

V. DISCUSSION

Our work demonstrates that directional information flow can
be assessed in the T–F domain from multivariate EEG datasets,
and it can be statistically tested at the level of each individual
connection. The method we describe here stems from combining
multiple independent streams of prior analytical development:
the core of the OPDC measure and its generalized version is
grounded on the T–F representation of MVAR processes and
the notion of Granger causality. To render the estimate insen-
sitive to instantaneous effects between two scalp EEG signals,
the well-known idea of taking the imaginary part of the coher-
ence function has been used [25]. In our study, we combined the
idea of time-varying PDC analysis [11] with orthogonalization
at the level of MVAR parameters and the imaginary part of the
coherence function leading to an orthogonalized version of the
classical PDC. Moreover, we developed its generalized version
(called gOPDC) to handle the numerical problem associated
with varying amplitude scaling between signals. The perfor-
mance of the gOPDC measure was evaluated using a simulated
model and real newborn EEG signals.

The major properties of the tv-gOPDC paradigm and their re-
lationship with the previously published measures can be sum-
marized as follows.

1) The gOPDC approach is based on the strictly causal
MVAR model given in (1) which does not consider the
instantaneous interactions between EEG channels. An ex-
tended MVAR model which takes into account the in-
stantaneous effects will be similar to (1) with Ar �= 0 for
r = 0 [6]. In this case, the gOPDC measure given in (25)
can be extended in a similar way as presented in [6] where
the MVAR coefficients are modified in the presence of
zero-lagged effects. However, it is shown in [6] that if a
strictly causal MVAR model is inaccurately fitted on an ex-
tended MVAR process, true instantaneous influences are
likely to be reflected as spurious lagged interconnections
among the model inputs.

2) In contrast to ordinary coherence, partial coherence, mul-
tiple coherence, and similar to the DTF, dDTF, PDC, and
gPDC, the proposed gOPDC method is able to extract di-
rection of the information flow and differentiate between
direct/indirect interactions.

3) It inherits all characteristics of the classical PDC which
makes it superior to the DTF and dDTF.

4) As opposed to GCI, it can extract both temporal and spec-
tral interactions.

5) In comparison with the PDC and gPDC for the specific
application of scalp EEG analysis, it is able to alleviate
the distorting effect of volume conduction within multi-
channel EEG signals.

One should note, however, that the inverse spectral matrix
elements employed in the family of PDC-based measures make
physical interpretation of their results difficult in terms of PSD.

We have demonstrated that tv-gOPDC using DEKF is able to
track changes associated with transient couplings and remove
the effect of mutual independent sources within the multivariate
nonstationary signals. Most of the existing EEG connectivity
analysis methods assume stationarity of interactions in the un-
derlying signals, while EEG signals are well known to be non-
stationary [23], [24]. Also, the effect of volume conduction and
the differences in amplitude scaling between EEG signals can
pose challenges. Our present work introduces a T–F framework
for functional EEG connectivity analysis to deal with both con-
founders, and extracts the sequence of nonstationary informa-
tion flows between EEG channels within subsecond segments
and at the lack of scale invariance. This approach obviously
requires sufficient signal to noise ratio, which can be achieved
by averaging over a larger number of trials. The effects of other
sources of constant noise or artifacts, such as mains noise and
its harmonics, can be mitigated by efficient artifact handling
(see preprocessing steps) and by employing statistical testing of
the kind presented in our work. The method of generating null
distributions from the original EEG segments will directly af-
fect the statistical testing. There are several customized versions
of classical surrogate data methods to estimate significance in
PDC connectivity analysis [44], [45]. Their application to each
epoch in a multivariate dataset (multichannel newborn EEG in
our study) is, however, often computationally challenging, and
we do not see specific advantages to their use compared to our
conceptually straightforward method. As an alternative, the null
distribution of our hypothesis testing (cortical connectivity ver-
sus no connectivity) can be generated using the background EEG
in the given experiment, which is also automatically “normal-
ized” with respect to spontaneous (as opposed to event related)
brain connectivity as well as technical variances (for example,
external noise or interindividual variations in the recording con-
stellation). The method presented in our paper is conceptually
straightforward and computationally efficient.

The effect of EEG montage is another important factor in
studies on EEG connectivity. While we used monopolar mon-
tage with Cz reference in this study, other montages like Lapla-
cian or average referencing should be explored. Use of monopo-
lar reference outside of the analyzed EEG recordings may be
perceived as neutral with respect to mixing sources among the
analyzed signals; however, it also leads to a significant common
source within all signals that is technically identical to a serious
volume conduction effect. We found it particularly encourag-
ing to see that even such common source components could
be alleviated by using the orthogonalization procedure. Using
Laplacian or average reference montages would require a high
number of recorded EEG channels. Hence, it seems intriguing
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that our method may even open the possibility to analyze record-
ings with only few monopolar EEG signals, such as the routine
clinical evoked potential studies. However, any effect of the
number of electrodes also affects tv-gOPDC measures, and it
needs systematic assessment in prospective applications for two
reasons: first, higher electrode density implies increased mutual
components caused by volume conduction. Second, the quan-
titation of directional interactions between higher number of
pairwise comparisons can dilute the effect between each elec-
trode pair, which calls for higher signal-to-noise ratio. These
considerations imply that 1) increasing the electrode density
may be beneficial when it is used for spatial down sampling
(either at signal or at source space), while 2) the performance
of tv-gOPDC improves by selecting a lower number of signal
pairs as guided by a priori knowledge about assumed number
of underlying, interacting sources. Indeed, such optimization
is an inevitable exercise with all advanced analyses of brain
interactions.

The ability of the gOPDC in detecting interactions between
sources within the cortex in the presence of volume conduction
can be quantitatively measured using other simulated models
like the one presented in [46] where the interactions at the source
level are projected onto the scalp through a realistic lead field
matrix. In the special case, where source activities are governed
by an MVAR process, a different version of (26) like x(n) =
Vy(n) can be used for simulation purposes in which x(n) is the
multichannel scalp EEG, V represents the lead field matrix, and
y(n) models the lagged source time traces in the form of an
MVAR process. The simulation strategy of this study, however,
was to look at the EEG connectivity problem from another
perspective, namely, fitting an MVAR model on the scalp EEG
signals (not sources) in the presence of an additive interfering
factor.

The time-varying connectivity approach used in this paper
discloses longer range connections from occipital to temporal
and central regions, which is strikingly compatible with previ-
ous steady-state VEP studies in adults [47], [48]. Our proposed
analysis methodology as well as the stimulation paradigm (a
routine flash light during routine clinical EEG recording) is di-
rectly applicable even for larger scale clinical testing. Notably, a
directed information flow, often called “traveling waves” in the
adult literature [49] is considered to be sensitive to changes in
subcortical structures [50]. In the clinical context, it raises the
potential that our paradigm could be used to assess integrity of
the subcortical structures after acute brain injury, such as birth
asphyxia, where diagnostic strategies have remained a chal-
lenge [51], [52]. The present paradigm may have applicability
to follow change over time in response to therapy and prognos-
tication of long-term outcome.
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[7] W. Hesse, E. Möller, M. Arnold, and B. Schack, “The use of time-variant
EEG granger causality for inspecting directed interdependencies of neural
assemblies,” J. Neurosci. Methods, vol. 124, pp. 27–44, 2003.

[8] B. L. P. Cheung, R. Nowak, L. Hyong Chol, W. Drongelen, and B. D. Veen,
“Cross validation for selection of cortical interaction models from scalp
EEG or MEG,” IEEE Trans. Biomed. Eng., vol. 59, no. 2, pp. 504–514,
Feb. 2012.

[9] K. Lehnertz, “Assessing directed interactions from neurophysiological
signals-an overview,” Physiol. Meas., vol. 32, pp. 1715–1724, 2011.

[10] D. Marinazzo, W. Liao, H. Chen, and S. Stramaglia, “Nonlinear connec-
tivity by granger causality,” Neuroimage., vol. 58, pp. 330–338, 2010.

[11] A. Omidvarnia, M. Mesbah, M. S. Khlif, J. M. O’Toole, P. Colditz, and
B. Boashash, “Kalman filter-based time-varying cortical connectivity anal-
ysis of newborn EEG,” presented at the IEEE 33th Annu. Int. Conf. Engi-
neering in Medicine and Biology Society, Boston, MA, USA, 2011.

[12] L. Astolfi, F. Cincotti, D. Mattia, F. De Vico, A. Tocci, A. Colosimo,
S. Salinari, M. G. Marciani, W. Hesse, H. Witte, M. Ursino, M. Zavaglia,
and F. Babiloni, “Tracking the time-varying cortical connectivity patterns
by adaptive multivariate estimators,” IEEE Trans. Biomed. Eng., vol. 55,
no. 3, pp. 902–913, Mar. 2008.

[13] C. W. J. Granger, “Investigating causal relations by econometric models
and cross-spectral methods,” Econometrica, vol. 37, pp. 424–438, 1969.

[14] J. Geweke, “Measurement of linear dependence and feedback between
multiple time series,” J. Am. Stat. Assoc., vol. 77, pp. 304–313, 1982.
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