
Accepted Manuscript

A Clustering Based Approach to Improving the Efficiency of Collaborative Fil-
tering Recommendation

Chih-Lun Liao, Shie-Jue Lee

PII: S1567-4223(16)30027-8
DOI: http://dx.doi.org/10.1016/j.elerap.2016.05.001
Reference: ELERAP 666

To appear in: Electronic Commerce Research and Applications

Received Date: 5 August 2015
Revised Date: 27 March 2016
Accepted Date: 5 May 2016

Please cite this article as: C-L. Liao, S-J. Lee, A Clustering Based Approach to Improving the Efficiency of
Collaborative Filtering Recommendation, Electronic Commerce Research and Applications (2016), doi: http://
dx.doi.org/10.1016/j.elerap.2016.05.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.elerap.2016.05.001
http://dx.doi.org/10.1016/j.elerap.2016.05.001
http://dx.doi.org/10.1016/j.elerap.2016.05.001

A Clustering Based Approach to Improving the Efficiency

of Collaborative Filtering Recommendation

Chih-Lun Liaoa,1, Shie-Jue Leea,b,2,∗

aDepartment of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
bElectronic Commerce Research Center, and Information Technologies Research Center, National Sun

Yat-Sen University, Kaohsiung 80424, Taiwan.

Abstract

In collaborative filtering recommender systems, products are regarded as features and

users are requested to provide ratings to the products they have purchased. By learn-

ing from the ratings, such a recommender system can recommend interesting products

to users. However, there are usually quite a lot of products involved in E-commerce

and it would be very inefficient if every product needs to be considered before mak-

ing recommendations. We propose a novel approach which applies a self-constructing

clustering algorithm to reduce the dimensionality related to the number of products.

Similar products are grouped in the same cluster and dissimilar products are dispatched

in different clusters. Recommendation work is then done with the resulting clusters.

Finally, re-transformation is performed and a ranked list of recommended products is

offered to each user. With the proposed approach, the processing time for making rec-

ommendations is much reduced. Experimental results show that the efficiency of the

recommender system can be greatly improved without compromising the recommen-

dation quality.

Keywords: Collaborative filtering recommender system; correlation graph;

self-constructing clustering; dimensionality reduction; ranking algorithm.

∗Corresponding author

Email address: leesj@mail.ee.nsysu.edu.tw. (Shie-Jue Lee)

URL: http://itlab.ee.nsysu.edu.tw/ (Shie-Jue Lee)
1E-mail: clliao@water.ee.nsysu.edu.tw.
2Phone: +886-7-5252000 ext 4141.

Preprint submitted to Electronic Commerce Research and Applications May 7, 2016

1. Introduction

Due to the fast development of E-commerce, nowadays there are a large number

of on-line shoppers and a huge amount of products from which people can choose on-

line. However, the task of examining and choosing appropriate products from such a

large number of products can be not only confusing but also time-consuming. Recom-5

mender systems [1, 2] have thus been developed to help people find the products they

are interested in and save their time in the search process. For a user, such systems can

learn from the recorded experience of all the customers and recommend a preference

list of products to the user. During the past several years, recommender systems have

been evolving rapidly. Many recommender systems have been developed. In essence,10

they can be classified into two categories, content-based and collaborative filtering,

although a tendency toward hybrid systems [3] has been growing in recent years.

A content-based recommender system [4, 5, 6, 7] makes recommendations to a user

based on the content which may include the categories or other attributes of the prod-

ucts. It may also refer to the habits, interests, or preferences of the users. By analyzing15

these data with some technologies such as Bayesian modeling [8, 9], a content-based

recommender system recommends to the user those products that are most appeal-

ing. In general, content-based systems require detailed information about products

and users. New products can be recommended to the users. However, the informa-

tion needed is either enormous or hard to get. The products or users have their own20

attributes. It’s difficult to collect the attributes of all the products and users. Further-

more, making sure a product or a user is uniquely represented by the collected attributes

is also hard.

A collaborative filtering recommender system [10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25], on the other hand, does not require detailed information25

about the attributes of the products or the users. Instead, it makes recommendations

by applying the interaction information between users and products. Usually, the in-

teraction information is expressed as the user ratings for the purchased products. By

learning from the ratings, such a recommender system can recommend a product to

a user based on the opinions of other like-minded users on that product. In general,30

2

collaborative filtering recommender systems are simpler and more implementable, and

tend to be more appealing and practical in the E-commerce community.

There are usually quite a lot of products to be considered in a recommender sys-

tem. It would be very inefficient if every product needs to be considered before mak-

ing recommendations. Dimensionality reduction techniques have been incorporated to35

produce quickly quality recommendations for large-scale problems. In [26], a vari-

ant of K-means called the bisecting K-means clustering algorithm is adopted to group

the involved users into different partitions. The neighborhood of a given user is se-

lected by looking into the partition to which the user belongs, and is used for making

recommendations to the user. Xue et al. [27] present a smoothing-based approach40

which employs clusters generated from the training data to provide the basis for data

smoothing and neighborhood selection. Honda et al. [28] apply a clustering method

for selecting neighbors based on a structural balance theory. Users and products are

partitioned into clusters by balancing a general signed graph composed of alternative

evaluations on products and users. Ba et al. [29] group the users into clusters according45

to the attributes, e.g., gender, age, and occupation. Then the user-product rating matrix

is decomposed and recombined into a new rating matrix to calculate the similarity be-

tween any two users. The iExpand system [30] enhances collaborative filtering by user

interest expansion via personalized ranking. It introduces a three-layer representation

scheme to help the understanding of the interactions among users, products, and user50

interests. Latent Dirichlet allocation (LDA) is applied to partition the involved prod-

ucts into clusters. In [31], fuzzy clustering is conducted on users to form user groups.

A user group typicality vector is thus constructed for each user. Representing a user by

a user group typicality vector instead of product vector can be regarded as a dimension

reduction on user representation. Sarwat et al. [32] produce recommendations using a55

taxonomy of three types of location-based ratings within a single framework. User par-

titioning and travel penalty are exploited to favor recommendation candidates closer to

querying users. In PRM2 [33], personal interest, interpersonal interest similarity, and

interpersonal influence are fused into a unified personalized recommendation model,

and singular value decomposition (SVD) is used to produce a low-dimensional rep-60

resentation of the original user-product space. BiFu [34] introduces the concepts of

3

popular products and frequent raters to identify the rating sources for recommendation.

To reduce the dimensionality of the rating matrix, K-means [35] is applied to group the

users and products into clusters. It also employs the smoothing and fusion technique

to overcome the data sparsity and rating diversity. ICRRS [36] is an iterative rating65

algorithm which is not based on comparing submitted evaluations to an approximation

of the final rating scores, and it entirely decouples credibility assessment of the cast

evaluations from the ranking itself.

The dimensionality reduction based recommender systems mentioned above have

some disadvantages. Some systems [29, 32] require extra attributes about users or70

products to group the users into clusters. These attributes are usually hard to get in a

practical application. Other systems, e.g., [26], [27], and [31], require the number of

clusters be given in advance, which is a big burden on the user. Also, the similarity

measure most systems adopted for dimensionality reduction only takes the centers of

clusters into account. Ignoring the variances of clusters may lead to imprecise results.75

In this paper, we propose a clustering based approach which applies a self-constructing

clustering algorithm to reduce the dimensionality related to the number of products.

Similar products are grouped in the same cluster and dissimilar products are dispatched

in different clusters. Recommendation work is then done with the resulting clusters

called product groups. A correlation graph which shows the inter-relationship among80

the product groups is created. A series of random walks are then executed and a pref-

erence list of product groups is derived for each user. Subsequently, re-transformation,

which transforms preference lists of product groups to preference lists of individual

products, is performed, and a ranked list of recommended products is finally offered

to each user. With the proposed approach, clustering is done totally based on the user-85

product rating matrix without the necessity of collecting extra attributes about cus-

tomers and products. Clusters are formed automatically and a pre-determined number

of clusters provided by the user is not required. Besides, when measuring the similar-

ity for clustering, we consider both the centers and variances of clusters, resulting in a

similarity measure better than that proposed in other methods. Due to dimensionality90

reduction on the number of products, the processing time for making recommendations

by our approach is much reduced. Experimental results show that the efficiency of the

4

recommender system can be greatly improved without compromising the recommen-

dation quality.

The rest of this paper is organized as follows. The problem to be solved is stated95

in Section 2. A collaborative filtering recommender system, ItemRank [17], is intro-

duced in Section 3. Our proposed approach of efficiency improvement to ItemRank

is described in detail in Section 4. An example for illustration is given in Section 5.

Experimental results are presented in Section 6. Finally, a conclusion is given in Sec-

tion 7.100

2. Problem Statement

Suppose there are a set of N users ui, 1 ≤ i ≤ N , and a set of M products pj ,

1 ≤ j ≤ M . A user ui may express his/her evaluation to a product pj by providing a

rating rij , a positive integer, for pj . Usually, a higher rating is assumed to indicate a

more favorable feedback from the user. If user ui has not provided a rating for product

pj , rij = 0. Such information can be represented by the following user-product rating

matrix R:

R =

R1

R2

...

RN

=

r11 r12 . . . r1M

r21 r22 . . . r2M

...
...

...
...

rN1 rN2 . . . rNM

(1)

which is an N by M matrix. Note that Ri =
[

ri1 ri2 . . . riM

]

, 1 ≤ i ≤ N .

For convenience, each row is called a user record and each column is called a product

column. The goal of a collaborative filtering recommender system is, given the rating

matrix, to recommend a predicted preference list of the products to each user.105

3. ItemRank

ItemRank [17] is one of the baseline methods for collaborative filtering recom-

mendation. It applies a random-walk based scoring algorithm to recommend products

according to user preferences. ItemRank was chosen in our study since it is less com-

plex, yet performs better, in terms of memory usage and computational cost, than other

5

baseline systems [37]. Given the rating matrix shown in Eq.(1), ItemRank proceeds

with two steps, correlation graph creation and random walks [38]. In the correlation

graph creation step, a correlation graph is built from the given ratings. Each product is

regarded as a node in the graph. The edge between any two nodes, node pi and node

pj , 1 ≤ i, j ≤ M , has a weight wij which is the number of users who have provided

ratings to both product pi and product pj . Note that a user uk has provided ratings

to both products pi and pj if rki > 0 and rkj > 0. When the correlation graph is

completed, one gets the following correlation matrix:

W =

w11 w12 . . . w1M

w21 w22 . . . w2M

...
...

...
...

wM1 wM2 . . . wMM

(2)

which is an M by M matrix. Each column of W is then normalized. In the random

walks step, a series of random walks are performed. Consider any user ui, 1 ≤ i ≤ N .

Let Si(0) be

Si(0) =
[

1/M 1/M . . . 1/M
]T

(3)

which is a vector of size M . The following operation

Si(t + 1) = αWSi(t) + (1 − α)RT
i (4)

is performed repeatedly for t = 0, 1, 2, . . . until convergence is reached. Note that

α ∈ [0, 1] is a user-defined constant. A common choice for α is 0.85. Usually, a rea-

sonable convergence is reached after 20 iterations. Therefore, it is sufficient to apply

Eq.(4) 20 times for each user. Let Si be the vector after convergence, which is regarded110

as the predicted preference list of the products for user ui. Then the products can be

recommended to user ui in the order according to the magnitudes of the elements in

Si. The product corresponding to the largest element in Si is the first recommendation,

the product corresponding to the second largest element in Si is the second recommen-

dation, etc.115

6

4. Proposed Approach

ItemRank encounters the issue of inefficiency. Since there may be a huge num-

ber of products involved in E-commerce, the W matrix, which is of size M × M ,

can be enormously large. Multiplying W with Si(t) each time in Eq.(4) takes a large

amount of time, making ItemRank inefficient for large scale problems. We apply a120

self-constructing clustering (SCC) algorithm [39, 40] to do dimensionality reduction

by grouping products into clusters. Recommendation work is then done with the re-

sulting clusters. As a result, the efficiency of ItemRank can be much improved. Com-

pared with other dimensionality reduction techniques [41, 42, 43, 44], SCC has some

advantages. Clusters are formed automatically and a pre-determined number of clus-125

ters provided by the user is not required. Besides, when measuring the similarity for

clustering, both the centers and variances of clusters are taken into account, resulting

in a similarity measure better than that considering only the centers in other methods.

Our approach consists of five steps, user labeling, dimensionality reduction, corre-

lation graph creation, random walks, and re-transformation, as shown in Figure 1. In130

the user labeling step, SCC is applied to assign the users class labels which help the

second step do the job efficiently. In the dimensionality reduction step, SCC is applied

again to cluster the products into a number of product groups. Similar products belong

to the same product group and dissimilar products belong to different product groups.

Since the number of product groups is much smaller than the number of products,135

the dimensionality involved is much reduced. Then a correlation graph which shows

the inter-relationship among the resulting product groups is created in the third step.

Based on the correlation graph, a series of random walks are executed and a preference

list of product groups is derived for each user in the fourth step. Finally, in the re-

transformation step, preference lists of product groups are transformed to preference140

lists of individual products, and a ranked list of recommended products is offered to

each user.

In this study, we chose ItemRank [17] as the target of improvement. However, our

approach can also work with other baseline methods to reduce the involved dimension-

ality and improve their efficiency.145

7

Rating matrix of

users and products

User labeling:

Assigning a label to each

user by clustering

Dimensionality reduction:

Reducing dimensionality by

clustering products into

product groups

Correlation graph creation:

Showing inter-relationship

among product groups by a

graph

Random walks:

Deriving a preference list of

product groups for each

user

Re-transformation:

Recommending a

preference list of products

for each user

Preference lists of products

Random walks:

Deriving preference lists of

product groups for users

Re-transformation:

Transforming preference lists

of product groups to

preference lists of products

Ranked lists of

recommended products to

users

Figure 1: Overview of our approach.

4.1. Self-Constructing Clustering (SCC)

Given a set X of n patterns x1, x2, . . . , xn, with xi = 〈xi1, xi2, . . . , xip〉 for

1 ≤ i ≤ n, the purpose of the SCC algorithm is to group these patterns into a collec-

tion of clusters, with similar patterns being grouped in the same cluster and dissimilar

patterns being dispatched in different clusters. Let K be the number of currently exist-150

ing clusters, named as G1, G2, . . . , and GK , respectively. Each cluster Gj has mean

mj = 〈mj1,mj2, . . . , mjp〉 and deviation σj = 〈σj1, σj2, . . . , σjp〉 which stand for the

average and standard deviation, respectively, of all the patterns contained in Gj . Let

sj be the size of cluster Gj , i.e., the number of patterns contained in Gj . Initially, we

have K = 0, indicating that no clusters exist at the beginning. For each pattern xi,155

1 ≤ i ≤ n, we calculate the membership degree of xi in each existing cluster, µGj
(xi),

by

µGj
(xi) =

p
∏

q=1

exp

[

−
(

xiq − mjq

σjq

)2
]

(5)

8

for 1 ≤ j ≤ K. We say that xi passes the similarity test on cluster Gj if

µGj
(xi) ≥ ρ (6)

where ρ, 0 ≤ ρ ≤ 1, is a predefined threshold. Note that ρ plays an important role

in this clustering algorithm. A bigger ρ results in smaller clusters, while a smaller ρ160

results in larger clusters. As ρ increases, the number of clusters also increases. Two

cases may occur. Firstly, there are no existing clusters on which xi has passed the

similarity test. In this case, we assume that xi is not similar enough to any existing

cluster and a new cluster Gh, h = K + 1, is created with

mh = xi, σh = σ0 (7)

where σ0 = 〈σ0, σ0, . . . , σ0〉 is a user-defined constant vector. Of course, the number165

of clusters is increased by 1 and the size of cluster Gh, sh, should be initialized to 1,

i.e.,

K = h, sh = 1. (8)

Secondly, there are existing clusters on which xi has passed the similarity test. In this

case, let cluster Gt be the cluster with the largest membership degree, i.e.,

t = arg max
1≤j≤K

(µGj
(xi)). (9)

We regard xi to be most similar to cluster Gt, and mt and σt of cluster Gt should be170

modified to include xi as its member. The modification to cluster Gt is described as

follows:

σtj =
√

A − B + σ0, (10)

A =
(st − 1)(σtj − σ0)

2 + st×mtj
2 + xij

2

st

, (11)

B =
st + 1

st

(
st×mtj + xij

st + 1
)2, (12)

mtj =
st×mtj + xij

st + 1
(13)

for 1 ≤ j ≤ p, and

st = st + 1. (14)

9

Note that K does not change in this case. This process is iterated until all the patterns

have been processed. Consequently, we obtain K clusters for X.175

4.2. Step 1: User Labeling

To do dimensionality reduction effectively, we need to assign class labels to the

users. The idea is to group the users into clusters [32]. Similar users are grouped into

the same cluster, and dissimilar users are grouped into different clusters. Then all the

users in one group are assigned a unique class label. We use the SCC algorithm for this180

purpose. Many other clustering algorithms [45, 46, 35] also can do the job, but they

require the number of classes to be decided in advance, which is usually difficult in

practice. With the SCC algorithm, we only need to provide some meaningful constants

during the clustering process.

To apply SCC, we determine the similarity among the users based on the ratings185

they have provided for the products. However, people are different in personality. For

giving ratings, some users are generous and the given scores tend to be high, while

others are less generous and the given scores tend to be low. Let’s regard the ratings

of a user as a waveform. It is reasonable to assume that two users are similar to each

other if their waveforms are closely matched except for a certain offset between these190

two waveforms. Therefore, we normalize the user record of user ui as follows:

Qi =
M
∑

k=1

rik,

xij =
rij

Qi

, 1 ≤ j ≤ M (15)

for 1 ≤ i ≤ N . Let xi = 〈xi1, xi2, . . . , xiM 〉, 1 ≤ i ≤ N , and X = {xi|1 ≤ i ≤ N}.

We apply the SCC algorithm on X. Suppose z clusters, G1, G2, . . . , Gz , are ob-

tained. Each cluster is regarded as a class, and we have z classes, labeled as c1, c2, . . . ,

cz , respectively. For all the users contained in cluster Gj , 1 ≤ j ≤ z, we assign class la-195

bel cj to these users. As a result, we expand the original set R into another set R
′

which

contains N entries (R1, y1), (R2, y2), . . . , (RN , yN) where yi ∈ {c1, c2, . . . , cz},

1 ≤ i ≤ N .

10

4.3. Step 2: Dimensionality Reduction

In this step, we reduce the dimensionality M associated with the products using a

similar idea proposed in [40]. For each product pj , 1 ≤ j ≤ M , we construct a feature

pattern xj = 〈xj1, xj2, . . . , xjz〉 by

xjk = P (ck|pj) =

∑N

d=1
rdj × δdk

∑N

d=1
rdj

, 1 ≤ k ≤ z (16)

for 1 ≤ j ≤ M , where δdk is defined as

δdk =

1, if yd = ck;

0, otherwise.
(17)

Therefore, we have M feature patterns x1, x2, . . . , xM , each having z components. Let200

Y = {xi|1 ≤ i ≤ M}.

Next, we apply the SCC algorithm on Y. Suppose we obtain q clusters, G1, G2,

. . . , and Gq. Note that the products contained in a cluster are similar to each other. It is

reasonable to employ the cluster to represent all the products contained in this cluster.

Since there are q clusters, a user record with M components can be replaced by a new

record with q components. In this way, we can reduce the high dimensionality M to a

low dimensionality q. Let T be the reducing matrix:

T =

t11 t12 . . . t1q

t21 t22 . . . t2q

...
...

...
...

tM1 tM2 . . . tMq

(18)

where

tij = µGj
(xi) (19)

is the membership degree of xi in cluster Gj as defined in Eq.(5), for 1 ≤ i ≤ M and

1 ≤ j ≤ q. Then we transform the high-dimensional R, which is an N×M matrix, to

a low-dimensional B by

B =

B1

B2

...

BN

= RT =

R1

R2

...

RN

T (20)

11

which is an N×q matrix. Note that

Bi =
[

bi1 bi2 . . . biq

]

(21)

for 1 ≤ i ≤ N . For convenience, we call each column in B a product group. Thus

we have q product groups, named as g1, g2, . . . , and gq, respectively. By this, user

records with M components, each component corresponding to one product, become

new user records with q components, each component corresponding to one product205

group. Recall that ItemRank works with R. But our approach will work with B. Since

q is usually much smaller than M , the dimensionality can be reduced and the efficiency

can be improved significantly.

4.4. Step 3: Correlation Graph Creation

In this step, we create a correlation graph which shows the inter-relationship among

the q product groups [47]. Since we work with B, instead of R, we derive the graph in

a somewhat different way. Each product group is regarded as a node, and thus we have

q nodes in the graph. The weight wij between node gi and node gj , 1 ≤ i, j ≤ q, is

calculated by

wij =

0, if i = j

N
∑

k=1

limit(
bki

bkj

), otherwise
(22)

where

limit(
a1

a2

) =

0, if a1 = 0 or a2 = 0

a1

a2

, if a1 < a2

1, otherwise

(23)

For the case of a1 < a2, we have wij = a1

a2

< 1 since it is less preferable for a user

to go from a more favorable node, having the value of a2, to a less favorable node,

having the value of a1. For the case of a1 ≥ a2, we might as well set wij = a1

a2

≥ 1 to

encourage a user to go from a less favorable node to a more favorable. However, if wij

is too large, some certain product groups may dominate and prevent the other product

groups from being discriminated and properly recommended. Therefore, we set a cap

12

limit, 1, on the value of wij in this case. When the correlation graph is completed, we

have the following correlation matrix:

W =

w11 w12 . . . w1q

w21 w22 . . . w2q

...
...

...
...

wq1 wq2 . . . wqq

(24)

which is a q by q matrix. Each column of W is then normalized, i.e.,210

Qj =

q
∑

k=1

wkj ,

wij =
wij

Qj

, 1 ≤ i ≤ q

for 1 ≤ j ≤ q.

4.5. Step 4: Random Walks

In this random walks step, a series of random walks [48, 38, 17, 49] are performed.

Consider any user ui, 1 ≤ i ≤ N . Let Vi(0) be

Vi(0) =
[

1/q 1/q . . . 1/q
]T

(25)

which is a vector of size q. The following operation

Vi(t + 1) = αWVi(t) + (1 − α)BT
i (26)

is performed repeatedly for t = 0, 1, 2, . . . until convergence is reached. Note that W

is the matrix of Eq.(24), Bi is the vector of Eq.(21), and α ∈ [0, 1] is a user-defined

constant. As in [17], α is chosen to be 0.85 and Eq.(4) is applied 20 times to reach a215

reasonable convergence for each user. Let Vi be the vector after convergence, which

has q components. Then Vi is the derived preference list of product groups for user ui,

1 ≤ i ≤ N .

4.6. Step 5: Re-Transformation

Each vector Vi, 1 ≤ i ≤ N , obtained for user ui in the previous step contains q220

values since q product groups are involved. However, we are interested in recommend-

ing individual products, instead of product groups, to each user. Therefore, we have

13

to transform Vi to Si which contains preferences of individual products. Recall that,

from Eq.(19), the membership degrees of xj , 1 ≤ j ≤ M , in G1, G2, . . . , and Gq

are tj1 = µG1
(xj), tj2 = µG2

(xj), . . . , and tjq = µGq
(xj), respectively. First, we225

normalize each column of T in Eq.(18), such that

Qk =
M
∑

j=1

tjk,

tjk =
tjk

Qk

, 1 ≤ j ≤ M

for 1 ≤ k ≤ q. For each row, this calculates the proportion product pj contributes to

each product group. Then we have

Si[j] = tj1Vi[1] + tj2Vi[2] + tj3Vi[3] + . . . + tjqVi[q] (27)

where Si[j] is the jth component of Si and Vi[k], 1 ≤ k ≤ q, is the kth component

of Vi. Note that tjk is the proportion product pj contributes to product group gk and

Vi[k] indicates the preference of product group gk for user ui. Therefore, tjkVi[k] is

the preference of product pj for user ui in terms of product group gk. Summing up230

together over all the product groups, as shown in Eq.(27), results in the preference of

product pj for user ui. Eventually, we end up with the predicted preference list Si of

products for user ui. Like ItemRank, the products can be recommended to user ui in

the order according to the magnitudes of the elements in Si.

4.7. Complexity Analysis235

We give a rough analysis on the computational cost of our approach here. In the

user labeling step, we have to calculate the similarity between each user and every ex-

isting cluster. Recall that N is the number of users, M is the number of products, each

user has M components, and z is the number of class labels. The time complexity of

this step is O(NzM). In the dimensionality reduction step, we have to compute the240

similarity between each feature pattern and every existing cluster. Since the number

of feature patterns is M , the number of product groups is q, and each feature pattern

contains z components, the time complexity of the dimensionality reduction step is

O(Mqz). In the correlation graph creation step, each weight wij , 1 ≤ i, j ≤ q, of

14

Table 1: A user-product rating matrix R

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

u1 5 0 2 0 5 2 3 0 4 0 0 5

u2 0 4 0 3 0 3 3 0 2 0 4 0

u3 4 0 2 0 4 0 2 2 3 0 0 4

u4 3 4 0 4 0 0 3 0 2 0 4 0

u5 0 2 5 3 0 4 0 5 0 4 2 0

u6 5 0 0 0 4 3 0 2 4 2 0 5

u7 0 4 0 3 2 2 3 0 0 0 3 0

u8 2 3 4 0 0 4 0 5 0 4 0 0

u9 4 0 2 2 4 0 0 0 3 0 0 5

u10 0 2 4 0 0 3 0 4 0 4 2 2

Eq.(22) has to be computed. Therefore, the complexity of this step is O(q2). In the245

random walks step, Eq.(26) has to be iteratively computed. For each iteration, WVi(t)

is computed, requiring q2 multiplications. Since 20 iterations are performed before

convergence, the complexity of this step is O(q2) for a user and O(Nq2) for all the

users. Finally, for a given user, Eq.(27) has to be computed M times, each time involv-

ing q multiplications and q − 1 additions. The complexity of this step is O(NqM) for250

all the users. Therefore, the time complexity of our approach to recommend products

to all the users is O(NzM)+O(Mqz)+O(q2)+O(Nq2)+O(NqM). Since z < N ,

the complexity can be simplified approximately to O(NzM + Nq2 + NqM).

5. Example

Here we give an example to illustrate our approach. Consider the user-product

rating matrix R shown in Table 1. Note that there are 10 users, N = 10, 12 products,

M = 12, and 65 ratings provided by the users. For example, user u1 has provided 7

ratings to products p1, p3, p5, p6, p7, p9, and p12, respectively. In the user-labeling step,

class label c1 is assigned to users u1, u3, u6, and u9, class label c2 is assigned to users

u2, u4, and u7, while class label c3 is assigned to users u5, u8, and u10. Therefore, we

15

Table 2: Feature patterns in the second step

x1 = 〈0.783, 0.130, 0.087〉 x2 = 〈0.000, 0.632, 0.368〉
x3 = 〈0.316, 0.000, 0.684〉 x4 = 〈0.133, 0.667, 0.200〉
x5 = 〈0.895, 0.105, 0.000〉 x6 = 〈0.238, 0.238, 0.524〉
x7 = 〈0.357, 0.643, 0.000〉 x8 = 〈0.222, 0.000, 0.778〉
x9 = 〈0.778, 0.222, 0.000〉 x10 = 〈0.143, 0.000, 0.857〉
x11 = 〈0.000, 0.733, 0.267〉 x12 = 〈0.905, 0.000, 0.095〉

have z = 3. In the dimensionality reduction step, we calculate the feature patterns as

shown in Table 2. After applying the SCC algorithm, three clusters G1, G2, and G3

are obtained. The reducing matrix T is

T =

0.982 0.109 0.120

0.028 0.891 0.219

0.091 0.100 0.963

0.066 1.000 0.149

0.983 0.060 0.056

0.126 0.382 0.821

0.189 0.764 0.080

0.040 0.082 0.977

0.945 0.140 0.083

0.018 0.065 0.908

0.024 0.938 0.118

0.938 0.039 0.076

. (28)

By applying Eq.(20), we reduce R to B which is shown in Table 3. Note that there

are three product groups, g1, g2, and g3. Next, we proceed with the correlation graph

creation step. By applying Eq.(22), we have a correlation graph, as shown in Figure 2,

and the following normalized correlation matrix:

W =

0.000 0.440 0.497

0.504 0.000 0.503

0.496 0.560 0.000

. (29)

16

Table 3: The reduced rating matrix B

g1 g2 g3

u1 19.294 4.855 5.395

u2 3.236 14.031 4.666

u3 15.086 3.144 5.292

u4 5.872 14.212 2.711

u5 1.529 9.353 17.738

u6 17.806 2.979 7.763

u7 3.162 12.549 3.673

u8 3.186 5.487 16.551

u9 15.697 3.491 3.552

u10 2.952 5.870 14.682

Figure 2: Correlation graph.

In the random walks step, we apply Eq.(26) iteratively for each user. For instance, after255

convergence, we have V9 =
[

0.395 0.432 0.440
]T

. Finally, in the re-transformation

step, we transform Vi to Si, 1 ≤ i ≤ 10, by Eq.(27). For example, V9 is transformed

to S9 for user u9. The components of S9 are shown in Table 4. Since p6 possesses

the biggest preference value, 0.126, in S9, p6 is the first recommendation to user u9,

followed by p4, p3, etc.260

17

Table 4: The derived S9 for user u9

p1 p2 p3 p4 p5 p6

0.109 0.108 0.110 0.115 0.099 0.126

p7 p8 p9 p10 p11 p12

0.097 0.105 0.106 0.095 0.102 0.095

6. Experimental Results

To evaluate the performance of our proposed self-constructing clustering (SCC)

based approach, we conduct a set of experiments on several benchmark data sets. For

convenience, we call our approach SCC in the remaining of this section. We also

compare our SCC approach with some other collaborative filtering recommender sys-

tems. Three metrics are adopted for comparison on recommendation accuracy, de-

gree of agreement (DOA) [17], mean absolute error [50], and root mean squared error

(RMSE) [33, 50]. A 5-fold cross validation is adopted for our experiments. In each

experiment, the entries in a data set are split randomly into 5 different subsets. Then

5 runs are performed. Each time, four of the 5 subsets are used for training and the

remaining one is used for testing. The results of the 5 runs are then averaged. Let P
be the set of all products, Li be the set containing the products user ui has rated in the

training set, and Ti be the set containing the products user ui has rated in the testing

set. It is required that none of Li is empty, i.e., Li 6= ∅, 1 ≤ i ≤ N . DOA is defined by

DOA =

∑

ui∈U

DOAi

|U| (30)

where U is the set of all the users, |U| is the size of U , and DOAi measures for user

ui the percentage of product pairs ranked in the correct order with respect to the total

number of product pairs. DOAi is computed as follows. Let check orderi be defined

by

check orderi(pj , pk) =

1, if PP j
i ≥ PP k

i

0, otherwise

(31)

18

where PP j
i and PP k

i indicate the predicted preferences for user ui of products pj and

pk, respectively. Then DOAi is formulated as

DOAi =

∑

pj∈Ti∧pk∈NWi

check orderi(pj , pk)

|Ti| × |NWi|
(32)

where

NWi = P − (Li ∪ Ti) (33)

which is the set of products user ui has neither rated in the training set nor in the testing

set. Note that a high DOA value indicates the superiority of a recommender system.

An ideal recommender system results in a 100% DOA, i.e., DOA = 1.0. To compute

MAE or RMSE, we have to convert predicted preferences to corresponding predicted

scores. Let r̂ij be the predicted score corresponding to the predicted preference of

product pj for user ui. Then r̂ij is computed by

r̂ij = ra,i +

N
∑

k=1∧k 6=i

[Sim(ui, uk)×(rkj − ra,k)]

N
∑

k=1∧k 6=i

Sim(ui, uk)

(34)

where ra,i is the average of the ratings in Li, ra,k is the average of the ratings in Lk,

rkj is the rating for product j in Lk, and Sim(ui, uk) indicates the similarity between

user ui and user uk defined by the Cosine of the predicted preference lists Si and Sk:

Sim(ui, uk) =
Si·Sk√

Si·Si

√
Sk·Sk

(35)

where · is the inner product operator for vectors. Then MAE and RMSE are defined as

follows:

MAE =

N
∑

i=1

M
∑

j=1∧rij∈Ti

|rij − r̂ij |

N
∑

i=1

|Ti|
, (36)

RMSE =

√

√

√

√

√

√

√

√

N
∑

i=1

M
∑

j=1∧rij∈Ti

(rij − r̂ij)2

N
∑

i=1

|Ti|
. (37)

19

Apparently, a low MAE or RMSE value indicates the superiority of a recommender

system. An ideal recommender system results in no errors, i.e., MAE = 0 and or265

RMSE = 0. Note that in each of the following experiments, the predicted preference

lists are derived from the training set and all DOA, MAE, and RMSE are measured on

the testing set. Also, no overlapping exists between the training set and the testing set

in any experiment.

6.1. Data Sets270

Five data sets, MovieLens, Yahoo Movie, Amazon Video, BookCrossing, and Epin-

ions, are used for the experiments. The MovieLens data set [51] was made publicly

available by GroupLens Research which operates a movie recommender. It contains

943 users, 1,682 products (movies), and 100,000 user ratings. In other words, N = 943

and M = 1, 682. Each entry in the data set is represented as a triple (ui, pj , rij)275

where rij ∈ {1, 2, 3, 4, 5}. Therefore, there are 100,000 such entries in the Movie-

Lens data set. The Yahoo Movie data set contains the Yahoo! Movies community’s

preferences for various movies [52]. It contains 7,642 users, 11,916 products, and

221,367 user ratings. Each entry in the data set is represented as a triple (ui, pj , rij)

where rij ∈ {1, 2, 3, 4, 5}. The Amazon Video data set contains a small fraction of280

the Amazon Instant video products review which spans s period of 18 years including

143.7 million reviews up to July 2014 [53]. It contains 2,978 users, 31,102 prod-

ucts, and 99,816 user ratings. Each entry in the data set is represented as a triple

(ui, pj , rij) where rij ∈ {1, 2, 3, 4, 5}. The BookCrossing data set is a fraction of the

original which was collected by Cai-Nicolas Ziegler in a 4-week crawl from the Book-285

Crossing company [54]. It contains 4,981 users, 9,846 products (books), and 109,018

users ratings. Each entry in the data set is represented as a triple (ui, pj , rij) where

rij ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The Epinions data set was collected by Paolo Massa

in a 5-week crawl from the Epinion.com web site [55]. It contains 2,322 users, 4,571

products, and 136,984 user ratings. Each entry in the data set is represented as a triple290

(ui, pj , rij) where rij ∈ {1, 2, 3, 4, 5}. The characteristics of these five data sets are

summarized in Table 5

20

Table 5: Characteristics of the data sets used for experiments

of users # of products # of ratings

MovieLens 943 1682 100000

Yahoo Movie 7642 11916 221367

Amazon Video 2978 31102 99816

BookCrossing 4981 9846 109018

Epinions 2322 4571 136984

6.2. Results and Discussion

We show the effectiveness, both accuracy and efficiency, of our approach, SCC, by

comparing it with some other collaborative filtering methods, including ItemRank [17],295

iExpand [30], PRM2 [33], BiFu [34], and ICRRS [36]. As described earlier, ItemRank

does not employ any dimensionality reduction technique at all, iExpand uses LDA to

group the products into clusters, PRM2 applies SVD to produce a low-dimensional

representation of the original user-product space, BiFu applies K-means to cluster the

users and products, and ICRRS uses a reduction technique which decouples credibility300

assessment of the cast evaluations from the ranking itself. For a fair comparison, we

wrote programs for ItemRank, iExpand, PRM2, BiFu, ICRRS, and SCC. All the pro-

grams were written in C++ in Visual Studio 2013. We used a computer with Intel(R)

Core(TW) i7-4790K CPU, 4.00GHz, 32GB of RAM, and 64 bits windows 7 to run the

programs. For the sake of fairness, we used the same number of clusters for grouping305

the users or products in SCC, iExpand, and BiFu. Since LDA and K-means require the

number of clusters to be decided in advance, for each case, we ran SCC first to obtain

a desired number of clusters and this number was then used for clustering in iExpand

and BiFu. Table 6 shows the number of clusters the involved users and products are

partitioned into for SCC, iExpand, and BiFu. For example, the products of the Movie-310

Lens data set are partitioned into 25 clusters for iExpand, BiFu, and SCC, and the users

are partitioned into 5 clusters for BiFu and SCC.

Table 7, Table 8, and Table 9 show comparisons on MAE, RMSE, and DOA, re-

spectively, among ItemRank, iExpand, PRM2, BiFu, ICRRS, and SCC. Note that in

21

Table 6: The number of clusters for the involved users and products

Products Users

(iExpand, BiFu, SCC) (BiFu, SCC)

MovieLens 25 5

Yahoo Movie 24 7

Amazon Video 26 14

BookCrossing 56 24

Epinions 73 33

Table 7: Comparisons among different methods on MAE for five data sets

ItemRank iExpand PRM2 BiFu ICRRS SCC

MovieLens 0.757 0.836 0.757 0.782 1.188 0.757

Yahoo Movie 0.753 0.826 0.754 0.773 1.263 0.754

Amazon Video 1.061 1.080 1.061 1.071 1.900 1.061

BookCrossing 1.210 1.192 1.205 1.250 1.680 1.206

Epinions 0.804 0.952 0.805 0.866 1.244 0.805

Table 8: Comparisons among different methods on RMSE for five data sets

ItemRank iExpand PRM2 BiFu ICRRS SCC

MovieLens 0.960 1.042 0.959 1.013 1.408 0.960

Yahoo Movie 1.038 1.114 1.039 1.215 1.522 1.039

Amazon Video 1.352 1.334 1.345 1.433 2.354 1.345

BookCrossing 1.595 1.566 1.587 1.722 2.096 1.588

Epinions 1.044 1.196 1.044 1.191 1.464 1.044

22

Table 9: Comparisons among different methods on DOA for five data sets

ItemRank iExpand PRM2 BiFu ICRRS SCC

MovieLens 0.853 0.730 0.615 0.583 0.704 0.976

Yahoo Movie 0.939 0.697 0.567 0.542 0.512 0.979

Amazon Video 0.652 0.721 0.506 0.516 0.495 0.841

BookCrossing 0.715 0.655 0.509 0.515 0.516 0.989

Epinions 0.746 0.576 0.494 0.494 0.485 0.907

Table 10: Comparisons among different methods on efficiency (sec) for five data sets

ItemRank iExpand PRM2 BiFu ICRRS SCC

MovieLens 43.83 95.76 13.65 30.67 1.26 0.26

Yahoo Movie 17359.42 4924.84 33.59 5399.62 156.86 7.47

Amazon Video 43678.72 1331.25 16.34 13777.72 56.87 8.99

BookCrossing 9131.29 800.01 16.30 2946.20 29.69 9.48

Epinions 837.08 513.24 20.72 487.90 5.82 3.20

these tables, the value obtained by the best method for each case is shown in boldface.315

For MAE and RMSE, the smaller the value a method obtains, the better the method

performs. On the contrary, for DOA, the larger the value a method obtains, the better

the method performs. As can be seen, ItemRank and SCC perform pretty well in terms

of MAE and RMSE for all the five data sets. For example, both ItemRank and SCC

have the lowest value, 1.061, in MAE for the Amazon Video data set, and both have the320

lowest value, 1.044, in RMSE for the Epinions data set. PRM2 performs pretty well in

MAE and RMSE for most of the data sets, and so does iExpand for some of the data

sets. As for DOA, SCC performs best for all the five data sets. For example, SCC has

0.979, which is the highest among the methods, in DOA for the Yahoo Movie data set.

Table 10 shows comparisons on execution time, in seconds, among different methods.325

We can see that SCC runs much faster than the other methods. Note that in ItemRank,

the dimensionality involved is the number of products, M , so the size of the correla-

tion matrix used in Eq.(4) is M×M . For example, the size is 31102×31102 for the

Amazon Video data set. Handling this large matrix consumes a lot of time. As a result,

23

Table 11: Breakdown of the execution time for ItemRank

size CGC RW total (sec)

MovieLens 1682×1682 1.25 42.58 43.83

Yahoo Movie 11916×11916 147.29 17212.13 17359.42

Amazon Video 31102×31102 699.89 42978.83 43678.72

BookCrossing 9846×9846 47.38 9083.91 9131.29

Epinions 4571×4571 5.14 831.95 837.08

ItemRank takes 43678.72 seconds for Amazon Video, as shown in the table. Instead,330

SCC applies the self-constructing clustering to reduce the dimensionality, grouping the

31,102 products into only 26 product groups. So the size of the correlation matrix used

in Eq.(26) is reduced to 26×26. As a result, SCC could run very fast, in 8.99 seconds,

for the Amazon Video data set. BiFu and iExpand perform dimensionality reduction

by K-means and LDA, respectively, which are heavily time-consuming. Therefore,335

iExapnd and BiFu run much slower than SCC. For example, iExpand takes 1331.25

seconds and BiFu takes 13777.72 seconds, while SCC only takes 8.99 seconds, for

the Amazon Video data set. PRM2 and ICRRS employ different reduction techniques.

However, they still run slower than SCC, as shown in Table 10.

The correlation matrix W in Eq.(4) has the size of M×M and that in Eq.(26)340

has the size of q×q. Therefore, intuitively, SCC might run (M
q

)2 times faster than

ItemRank. Consider MovieLens as an example. SCC might run (1682

25
)2 ≈ 4500

faster than ItemRank for MovieLens. However, from Table 10, SCC only runs 43.83
0.18

≈
244 times faster than ItemRank. One reason is that the other steps involved also take

time. Table 11 and Table 12 show the breakdown of the execution time for ItemRank345

and SCC, respectively. Note that the size column in these tables indicates the size

of the correlation matrix involved. Recall that ItemRank has two steps: correlation

graph creation (CGC) and random walks (RW), and SCC has five steps: user labeling

(UL), dimensionality reduction (DR), correlation graph creation (CGC), random walks

(RW), and re-transformation (RT). Consider the case of MovieLens. In the total 43.83350

seconds, ItemRank spent 1.25 seconds in the CGC step and 42.58 seconds in the RW

24

Table 12: Breakdown of the execution time for SCC

size UL DR CGC RW RT total (sec)

MovieLens 25×25 0.03 0.07 0.00 0.05 0.11 0.26

Yahoo Movie 24×24 1.94 3.59 0.01 0.22 1.70 7.47

Amazon Video 26×26 2.45 4.48 0.00 0.11 1.93 8.99

BookCrossing 56×56 1.88 4.21 0.03 0.80 2.56 9.48

Epinions 73×73 0.50 1.24 0.03 0.65 0.79 3.20

step. Among the total 0.26 seconds of SCC, 0.03 seconds was spent in the UL step,

0.07 seconds in the DR step, nearly 0.0 seconds in the CGC step, 0.05 seconds in the

RW step, and 0.11 seconds in the RT step. If we look into the RW column in both

tables, the ratio of these columns is 42.58
0.05

≈ 850 which is much bigger than 244. Note355

that in addition to the correlation matrix, there are other factors involved in Eq.(4)

and Eq.(26). These factors account for the gap between 4,500 and 850 for the case of

MovieLens.

Choosing an appropriate value for ρ in SCC is problem dependent and often should

go through a trial and error process. As mentioned in Section 4, the choice of ρ may360

affect the result of our clustering algorithm. A bigger ρ results in smaller clusters and

increases the number of clusters. Therefore, as ρ increases, the number of product

groups, q, obtained in the dimensionality reduction step also increases. As analyzed in

Section 4, the complexity of SCC is proportional to Nq2 and NqM . Therefore, as ρ

increases, the execution time also increases. For example, if we increase ρ a little bit365

for Yahoo Movie, q increases from 24 to 30. The execution time therefore increases

from 7.47 seconds to 8.43 seconds. However, we have found that MAE, RMSE, and

DOA are not sensitive to q or ρ. For Yahoo Movie, when q increases from 24 to 30,

MAE, RMSE, and DOA almost keep unchanged.

7. Conclusion370

In a collaborative filtering recommender system, such as ItemRank, products are

regarded as features. However, there are usually quite a lot of products involved in

25

E-commerce, and it would be very inefficient if every product needs to be considered

before making recommendations. We have presented an approach which applies a self-

constructing clustering algorithm to reduce the dimensionality related to the number of375

products. As a result, the processing time by our approach for making recommen-

dations is much reduced. Experimental results have shown that the efficiency of the

recommender system is greatly improved without compromising the recommendation

quality.

Acknowledgments380

This work was supported by the Ministry of Science and Technology under the

grants MOST-103-2221-E-110-047-MY2 and MOST-104-2221-E-110-052-MY2, by

“Aim for the Top University Plan” of the National Sun Yat-Sen University and Ministry

of Education, and by a grant jointly sponsored by National Sun Yat-Sen University and

National University of Kaohsiung. The authors would like to express their gratitude to385

the anonymous referees and Associate Editor for their constructive comments which

greatly helped improve the quality of the manuscript.

References

[1] C. Porcel, J. Moreno, E. Herrera-Viedma, A multi-disciplinar recommender sys-

tem to advice research resources in university digital libraries, Expert Systems390

with Applications 36 (2009) 12520–12528.

[2] F. Ricci, L. Rokach, B. Shapira, Introduction to recommender systems handbook,

Recommender Systems Handbook, Springer, 2011.

[3] A. Gatzioura, M. Sànchez-Marrè, A case-based recommendation approach for

market basket data, IEEE Intelligent Systems 30 (1) (2014) 20–27.395

[4] M. Balabanović, Y. Shoham, Fab: Content-based, collaborative recommendation,

Communications of ACM 40 (3) (1997) 66–72.

26

[5] P. Melville, R. J. Mooney, R. Nagarajan, Content-boosted collaborative filtering

for improved recommendations, in: 18th National Conference on Artificial Intel-

ligence, Edmonton, Canada, 2002, pp. 187–192.400

[6] S.-L. Huang, Designing utility-based recommender systems for e-commerce:

Evaluation of preference-elicitation methods, Electronic Commerce Research and

Applications 10 (2011) 398–407.

[7] L. Liu, N. Mehandjiev, D.-L. Xu, Context similarity metric for multidimensional

service recommendation, International Journal of Electronic Commerce 18 (1)405

(2013) 73–104.

[8] M. K. Condliff, D. D. Lewis, D. Madigan, Bayesian mixed-effects models for

recommender systems, in: ACM SIGIR Workshop on Recommender Systems –

Algorithms and Evaluation, 1999.

[9] I. Rish, An empirical study of the naive bayes classifier, in: International Joint410

Conferences on Artificial Intelligence(IJCAI) Workshop on Empirical Methods

in AI, 2002, pp. 41–46.

[10] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, Grouplens: An open

architecture for collaborative filtering of netnews, in: ACM 1994 Conference on

Computer Supported Cooperative Work, 1994.415

[11] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, J. Riedl,

Grouplens: Applying collaborative filtering to usenet news, Communications of

the ACM 40 (3) (1997) 77–87.

[12] B. M. Sarwar, G. Karypis, J. A. Konstan, J. T. Riedl, Application of dimension-

ality reduction in recommender systems – a case study, in: ACM WEBKDD420

workshop, 2000.

[13] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, Journal of Machine

Learning Research 3 (2003) 993–1022.

27

[14] J. L. Herlocker, J. A. Konstan, L. G. Terveen, J. T. Riedl, Evaluating collabora-

tive filtering recommender systems, ACM Transactions on Information Systems425

22 (1) (2004) 5–53.

[15] S. Funk, Netflix, A modified SVD algorithm tends to

make a mess of sparsely observed movies or users,

http://sifter.org/˜simon/journal/20061211.html.

[16] F. Fouss, A. Pirotte, J.-M. Renders, M. Saerens, Random-walk computation of430

similarities between nodes of a graph with application to collaborative recom-

mendation, IEEE Transactions on Knowledge and Data Engineering 19 (3) (2007)

355–369.

[17] A. Pucci, M. Gori, M. Maggini, A random-walk based scoring algorithm applied

to recommender engines, Lecture Notes in Computer Science – Advances in Web435

Mining and Web Usage Analysis 4811 (2007) 127–146.

[18] R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in: Neural Infor-

mation Processing Systems 20 (NIPS’07), 2008, pp. 1257–1264.

[19] N. N. Liu, M. Zhao, Q. Yang, Probabilistic latent preference analysis for collab-

orative filtering, in: ACM Conference on Information and Knowledge Manage-440

ment, 2009, pp. 759–766.

[20] K.-J. Kim, H. Ahn, Collaborative filtering with a user-item matrix reduction tech-

nique, International Journal of Electronic Commerce 16 (1) (2011) 107–128.

[21] M. Jiang, P. Cui, R. Liu, Q. Yang, Fei, W. Zhu, S. Yang, Social contextual recom-

mendation, in: 21st ACM international conference on Information and knowledge445

management, 2012, pp. 45–54.

[22] C. Porcel, A. Tejeda-Lorente, M. Martinez, E. Herrera-Viedma, A hybrid recom-

mender system for the selective dissemination of research resources in a technol-

ogy transfer office, Information Sciences 184 (2012) 1–19.

28

[23] A. N. Nikolakopoulos, M. Kouneli, J. Garofalakis, A novel hierarchical approach450

to ranking-based collaborative filtering, Communications in Computer and In-

formation Science – Engineering Applications of Neural Networks 384 (2013)

50–59.

[24] G. Guo, J. Zhang, D. Thalmann, N. Yorke-Smith, Leveraging prior ratings for

recommender systems in e-commerce, Electronic Commerce Research and Ap-455

plications 13 (2014) 440–455.

[25] H. Cui, M. Zhu, Collaboration filtering recommendation optimization with user

implicit feedback, Journal of Computational Information Systems 10 (14) (2014)

5855–5862.

[26] B. M. Sarwar, G. Karypis, J. Konstan, J. Riedl, Recommender systems for large-460

scale e-commerce: Scalable neighborhood formation using clustering, in: 5th

International Conference on Computer and Information Technology, 2002.

[27] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, Z. Chen, Scalable col-

laborative filtering using cluster-based smoothing, in: ACM SIGIR Conference,

2005.465

[28] K. Honda, A. Notsu, H. Ichihashi, Collaborative filtering by user-item cluster-

ing based on structural balancing approach, International Journal of Computer

Science and Network Security 8 (12) (2008) 190–195.

[29] Q. Ba, X. Li, Z. Bai, Clustering collaborative filtering recommendation system

based on SVD algorithm, IEEE International Conference on Software Engineer-470

ing and Service Science (2013) 963–967.

[30] Q. Liu, E. Chen, H. Xiong, C. H. Q. Ding, J. Chen, Enhancing collaborative

filtering by user interest expansion via personalized ranking, IEEE Transactions

on Systems, Man, and Cybernetics – Part B: Cybernetics 42 (1) (2012) 218–233.

[31] Y. Cai, H. fung Leung, Q. Li, H. Min, J. Tang, J. Li, Typicality-based collaborative475

filtering recommendation, IEEE Transactions on Knowledge and Data Engineer-

ing 26 (3) (2014) 766–779.

29

[32] M. Sarwat, J. J. Levandoski, A. Eldawy, M. F. Mokbel, LARS*: An efficient and

scalable location-aware recommender system, IEEE Transactions On Knowledge

And Data Engineering 26 (6) (2014) 1384–1399.480

[33] X. Qian, H. Feng, G. Zhao, T. Mei, Personalized recommendation combining user

interest and social circle, IEEE Transactions on Knowledge and Data Engineering

26 (7) (2014) 1763–1777.

[34] D. Zhang, C.-H. Hsu, M. Chen, Q. Chen, N. Xiong, J. Lloret, Cold-start rec-

ommendation using bi-clustering and fusion for large-scale social recommender485

systems, IEEE Transactions on Emerging Topics in Computing 2 (2) (2014) 239–

250.

[35] J. MacQueen, Some methods for classification and analysis of multivariate obser-

vations, in: 5-th Berkeley Symposium on Mathematical Statistics and Probability,

Vol. 1, 1967, pp. 281–297.490

[36] M. Allahbakhsh, A. Ignjatovic, An iterative method for calculating robust rating

scores, IEEE Transactions on Parallel and Distributed Systems 26 (2) (2015) 340–

350.

[37] M. Gori, A. Pucci, ItemRank: A random-walk based scoring algorithm for rec-

ommender engines, in: IJCAI, 2007, pp. 2766–2771.495

[38] Z. Gyȯngyi, H. Garcia-Molina, J. Pedersen, Combating web spam with trustrank,

in: 30th International Conference on Very Large Data Bases (VLDB), Morgan

Kaufmann, 2004, pp. 576–587.

[39] S.-J. Lee, C.-S. Ouyang, A neuro-fuzzy system modeling with self-constructing

rule generation and hybrid SVD-based learning, IEEE Transactions on Fuzzy500

Systems 11 (3) (2003) 341–353.

[40] J.-Y. Jiang, R.-J. Liou, S.-J. Lee, A fuzzy self-constructing feature clustering al-

gorithm for text classification, IEEE Transactions on Knowledge and Data Engi-

neering 23 (3) (2011) 335–349.

30

[41] N. Slonim, N. Tishby, The power of word clusters for text classification, in: 23rd505

European Colloquium on Information Retrieval Research (ECIR-01), 2001.

[42] R. Bekkerman, R. El-Yaniv, N. Tishby, Y. Winter, Distributional word clusters

versus words for text categorization, The Journal of Machine Learning Research

3 (3) (2003) 1183–1208.

[43] H. Li, T. Jiang, K. Zhang, Efficient and robust feature extraction by maximum510

margin criterion, IEEE Transactions on Neural Networks 17 (1) (2006) 157–165.

[44] J. Yan, B. Zhang, N. Liu, S. Yan, Q. Cheng, W. Fan, Q. Yang, W. Xi, Z. Chen,

Effective and efficient dimensionality reduction for large-scale and streaming data

preprocessing, IEEE Transactions on Knowledge and Data Engineering 18 (3)

(2006) 320–333.515

[45] V. S. Tseng, C.-P. Kao, A novel similarity-based fuzzy clustering algorithm by

integrating PCM and mountain method, IEEE Transactions on Fuzzy Systems

15 (6) (2007) 1188–1196.

[46] Z. Zhang, H. Cheng, S. Zhang, W. Chen, Q. Fang, Clustering aggregation based

on genetic algorithm for documents clustering, in: IEEE Congress on Evolution-520

ary Computation, 2008, pp. 3156–3161.

[47] Z. Huang, W. Chung, H. Chen, A graph model for e-commerce recommender sys-

tems, Journal of the American Society for Information Science and Technology

55 (3) (2004) 259–274.

[48] D. Harel, Y. Koren, On clustering using random walks, Lecture Notes in Com-525

puter Science – Foundations of Software Technology and Theoretical Computer

Science 2245 (2001) 18–41.

[49] H. Yildirim, M. S. Krishnamoorthy, A random walk method for alleviating the

sparsity problem in collaborative filtering, in: 2008 ACM conference on Recom-

mender systems, 2008, pp. 131–138.530

31

[50] D. Wu, G. Zhang, J. Lu, A fuzzy preference tree-based recommender system for

personalized business-to-business e-services, IEEE Transactions on Fuzzy Sys-

tems 23 (1) (2015) 29–43.

[51] Movielens dataset, http://www.grouplens.org/node/73#attachments.

[52] Yahoo movie dataset, https://www.yahoo.com/movies/.535

[53] Amazon video dataset, http://www.amazon.com/.

[54] Bookcrossing dataset, http://www.bookcrossing.com/.

[55] Epinions dataset, http://www.epinions.com/.

32

Graphical Abstract

Rating matrix of

users and products

User labeling:

Assigning a label to each

user by clustering

Dimensionality reduction:

Reducing dimensionality by

clustering products into

product groups

Correlation graph creation:

Showing inter-relationship

among product groups by a

graph

Random walks:

Deriving a preference list of

product groups for each

user

Re-transformation:

Recommending a

preference list of products

for each user

Preference lists of products

Random walks:

Deriving preference lists of

product groups for users

Re-transformation:

Transforming preference lists

of product groups to

preference lists of products

Ranked lists of

recommended products to

users

Figure 1: Overview of our approach.

1

Highlights of the Paper

• Developing an efficient collaborative filtering recommender system for E-commerce.

• Applying a self-constructing clustering algorithm to reduce the dimensionality related to the

products.

• Reducing the huge correlation graph to a much smaller graph for faster computation.

• Demonstrating that efficiency is greatly Improved without degradation of the recommenda-

tion quality.

1

