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Abstract—Intelligent Transportation Systems have recently re-
ceived great deal of attention and Vehicular networks and its ap-
plications represent a major part of ITS. Many vehicular network
applications require accurate location information to improve
their performance. Over the past years, many researchers worked
on state prediction/estimation techniques in tracking, navigation
applications for mobile ad hoc networks and wireless sensor
networks. Yet, few were into the field of Vehicular networks. In
this paper, We study five different movement prediction models
and their efficiency and effectiveness for VANETs. We compare
them using both real vehicle mobility traces of taxi cabs and
generated mobility traces from SUMO.

I. INTRODUCTION

Smart Vehicular NETworks (SVNET) is one of the major

component of Intelligent transportation systems (ITS). Vehic-

ular network is vital to provide safety, assistance to drivers,

and traffic control, etc. In many Vehicular NETworks appli-

cations, accurate location information is essential. Wireless

network management, routing, mobility management, service

discovery, and collision avoidance protocols would enhance

their capabilities with a prior knowledge of the vehicle next

location. To the best of our knowledge, limited work has

been done towards understanding the insight of movement

prediction for vehicular networks.

To estimate the position of a vehicle, several geographical

localization based systems can be used, such as Global Posi-

tioning system (GPS), Global System for Mobile communica-

tion (GSM) and Triangulation. Yet, the accuracy of the GPS

data is still an issue within VANETs based applications.

Most of the available prediction models are based on

mobility patterns or probability modeling such as the Kalman

filter and it’s extensions. The Kalman filter (KF) require a

linear system model and Gaussian noise to preform optimally.

On the other hand, Extended Kalman filter (EKF) works

on linearisation of the non-linear system using Taylor series

expansion. As for the Unscent Kalman filter (UKF), it avoids

linearisation by having a set of sigma points and the use of

Unscent Transformation. Another model named Particle filter

(PF), which uses a large number of particles with recursive

Monte Carlo method. With the recent advances in the field

of computing, it became easier to use complex mathematical

models that led many researchers to use Bayesian models for

tracking, navigation and prediction [1].

The main goal of this study is to evaluate the performance

of movement prediction techniques in term of their efficiency

and effectiveness for VANETs.

The remainder of this paper is organized as follows: In

section II, we review existing vehicle movement prediction

methods. Section III describes the Kalman filter based predic-

tion technique for vehicular movement along with the general

dynamic model of the vehicle. Then we describe the four

prediction models in section IV to section VII. We report on

the performance of the five models and discuss the results

from simulation in Section IX, and Section X concludes our

paper.

II. RELEATED WORK

In the literature, many works have been propsed for local-

ization and tracking in mobile networks and wireless sensor

networks [2]. Nevertheless, few of them were toward pre-

dicting vehicle movements in VANET. Movement prediction

techniques can be divided into three categories: Determinis-

tic, History-based, and Stochastic models [3]. Deterministic

prediction, uses the vehicle kinetics to compute the future

position of a vehicle. While history-based prediction, the

model would learn from repeated movement patterns to predict

future position. As for stochastic models, the focus is on

correcting the prediction error using probabilities.

A survey on filtering techniques for vehicles tracking was

presented by Floudas et.al. [4]. While, Burbey et.al. [5],

introduced a location prediction method using prediction-

by-partial match data compression PPM. They used IEEE

802.11 wireless access logs to obtain time and positioning

data. Their results showed high success rate in predicting

locations in first and third order models, given the time.

Feng et.al. [6] used stochastic techniques for a future location

prediction model using Kalman filter with real traffic traces

and GPS information. Jaiswal et.al. [7] proposed a location

prediction algorithm for vehicular movement using extended

Kalman filter using city and highway mobility traces. They

have compared EKF against the Kalman filter, which showed

that EKF gives high accuracy in compared to KF location

prediction. Wang et.al. [8] introduced a fixed-gain alpha-beta

filter for location estimation in wireless sensor networks. They

compared between alpha-beta and Kalman filter approach,

which showed that alpha-beta method is done with reasonably

good performance and lower computational complexity. On

the study of particle filters, a survey on Sequential Monte

carlo methods was studied in [9] and [10]. While, Gustafsson

et.al. described a general framework for particle filters in

positioning, navigation and target tracking in [11]. A particle
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filter based with adaptive markove chain and monte carlo

method is introduced to improve the positiong accuracy of

GPS receiver in [12].

In this paper, we focus on Stochastic techniques for Vehicu-

lar movement prediction including the Kalman filter, Extended

Kalman filter, Unscent Kalman filter, Particle filter, and Alpha

Beta Gamma filter.

III. KALMAN FILTER BASED PREDICTION MODEL KF

A Kalman filter [13] is a set of mathematical equations

that efficiently estimate the state of a linear system that min-

imizes the estimated error covariance to reach optimization.

In VANET, the vehicle state vector x is defined by the set

of data [px, vx, ax, py, vy, ay], which describes the vehicle’s

movement at time t. Where px, vx, ax correspond to the lati-

tude point, velocity and acceleration, and py, vy, ay correspond

to the longitude parameters of a vehicle. To measure the

change in the state of the vehicle within Δt, we use the kinetic

equation of motion.

x = x0 + v.Δt+ 0.5.a2.Δt

v = v0 + a.Δt

Where x0 is the initial state of the vehicle, v for the velocity,

and a is the acceleration of the vehicle (assuming constant

acceleration at time t).

The Kalman filter works in two steps recursively at each

time step Δt: Time update, which predict the next estimation

of a current state, and Measurement update that adjusts the

current state estimation with actual measurements at time t,
they are defined as :

A. Time update (Predict):

x̂−k = Ax̂k−1 +Buk + wk−1 (1)

P−k = APk−1A
T +Q (2)

Where wk represent a normal probability distribution of the

process white noise, u is the control input vector (assumed

zero as acceleration are considered states), P−k is the priori

estimate error covariance matrix, and Q is the process noise

covariance. To produce the priori estimated state x−k at time

interval k, the matrix x is multiplied by the state model A.

x =

⎡
⎣pv
a

⎤
⎦A =

⎡
⎣1 t 0.5t2

0 1 t
0 0 1

⎤
⎦Q =

[
Qx 0
0 Qy

]

B. Measurement update (Correct):

Kk = P−k HT (HP−k HT +R)−1 (3)

x̂k = x̂−k +Kk(zk −Hx̂−k ) (4)

Pk = (I −KkH)P−k (5)

In the measurements update step, which is also referred to as

the correction step, x̂k is the posteriori state estimation at time

step k, Pk−1 is the posteriori estimate error covariance matrix,

H is the measurement equation, R is the measurements noise,

which is in our paper equal to the GPS measurement noise,

and Kn is the Kalman Gain matrix. To update the estimated

value of xk, we use the GPS measurement zk.

R =

[
Rx 0
0 Ry

]
H =

[
1 0 0 0 0 0
0 0 0 1 0 0

]

The Kalman filter performance is dependent on how accu-

rate is the state dynamics and the measurements of the GPS

data, which are described as the error in process, measure-

ments Q and R respectively [14]. In our comparison we treated

them in ad hoc manner by tuning their values.

IV. EXTENDED KALMAN FILTER BASED PREDICTION

MODEL EKF

The Kalman filter in the previous section works on estimat-

ing the state of a linear-time equation. Whereas the EKF try

to approximate a nonlinear equation by linearization through

Taylor series expansion [15]. EKF linearize the nonlinear

system by partial differentiation using the Jacobian matrix to

estimate the state of a system. To predict the next state of a

system, a priori estimation x̂−k and the error covariance P−k
are calculated as follows:

x̂−k = f(x̂−k−1, uk, wk) (6)

P−k = FkPk−1F
T
k +WkQtW

T
k

Where Fk, Wk are the Jacobian matrix of the nonlinear

system f(.) and w is the partial differentiation of function

f(.) to the process noise (7). The covariance matrix of the

state noise is represented by Qk−1.

Fk =
f(x̂−k−1, 0, 0)

x
, Wk =

f(x̂−k−1, 0, 0)

w
(7)

and are initially assumed as

F =

⎡
⎣1 t t2/2
0 1 t
0 0 1

⎤
⎦W =

⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦

In the correction step, the Kalman gain Kk is used to

calculate the a posteriori estimate of the system dynamics and

the error covariance Pk as:

Kk = P−k HT (HP−k HT + VkRV T
k )−1

x̂k = x̂−k +Kk(zk − h(x̂−k , vk))

Pk = (I −KkH)P−k

Similarly, the matrix H is the Jacobian matrix of the

function h partial differentiation and V represent the

Jacobian matrix of the measurement noise v. The initial error

covariance P0 is set to a large value.

H =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
P0 =

[
1000 0
0 1000

]
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Where Kk(zk − h(x̂−k , vk)) is the innovation equation that

calculate the difference between predicted and real measure-

ments.

V. UNSCENT KALMAN FILTER BASED PREDICTION MODEL

UKF

The Unscent Kalman filter [16] avoids to linearize around

the mean as the EKF by having a set of sigma points represent

the Gaussian random variable of the state vector. The UKF is

based on Unscented Transformation (UT). It uses the nonlinear

equation f(.) (6) of the vehicle state vector x with n number

of states to compute a set of sigma points matrix X as follows:

χ0 = x̂, λ = α2(n+ κ)− n (8)

χi = x̂+ (
√
(n+ λ)Px)i i = 1, ...n

χi+n = x̂− (
√

(n+ λ)Px)i−n i = n+ 1, .., 2n

Where i is the ith column or row of the matrix square root of x̂
and P , which are the mean and covariance of the state vector,

respectively. The symbol λ is a scaling factor with influencing

constants α, κ of how far the sigma points from the mean and

is usually set to a very small value. Then transform each sigma

point through the nonlinear function and compute the Gaussian

of their transformation and weight. The weights are calculated

as follows:

w0
m =

λ

n+ λ
(9)

w0
c = w0

m + (1− α2 + β), β = 2

wi
m = wi

c =
1

2(n+ λ)
i = 1, .., 2n

The Unscent Kalman filter model differs from EKF in the

prediction by computing sigma point mean and covariance at

each time step t. Each sigma point is initiated through the

process model

χ̂t = f(χt−1, ut)

The predicted mean and covariance is given by

x̂−t =
2n∑
i=0

wi
mχ̂i

t

P̂t
−
=

2n∑
i=0

wi
c(χ̂

i
t − x̂t

−)(χ̂i
t − x̂t

−)T +Rt

As for the measurements update equations in the UKF, it is

computed as follows:

Ẑt = h(X̂t), ẑt =
2n∑
i=0

wi
mẐi

t (10)

St =
2n∑
i=0

wi
c(Ẑ

i
t − ẑt)(Ẑi

t − ẑt)
T +Qi

P̂ x,z
t =

2n∑
i=0

wi
c(X̂

i
t − ˆ̂

tx)(Ẑi
t − ẑt)

T

Where each point Ẑt is instantiate through the observation

model h(.), ẑt is the predicted observation, St is the innovation

covariance and the cross covariance matrix is P̂ x,z
t . In the

final step of updating and correcting the estimated mean and

covariance, using the following equations

Kt = P̂ x,z
t S−1

t

x̂t = x̂t
− +Kt(zt − ẑt)

Pt = P̂t −KtStK
T
t

VI. ALPHA BETA GAMMA FILTER BASED PREDICTION

MODEL α-β-γ

All previous models have high computational costs, which

could be an issue for some applications. As for fixed-gain

Alpha beta gamma filters, this is not an issue since they

only involve small computational cost [17]. The prediction

equations for the alpha beta gamma filter with respect to

position and velocity is defined as follows:

xt+1 = xt + Tvt +
1

2
Tat (11)

vt+1 = vt + Tat

and the kinematic variables are updated by weighting the

innovation at each time step t

xt+1 = xt+1 + α(zt − xt+1) (12)

vt+1 = vt+1 +
β

T
(zt − xt+1)

at+1 = at +
γ

2T 2
(zt − xt+1)

Where zt is the observation (GPS data) at time t. The

bounds of α, β and γ is constraint by

0 < α < 2 (13)

0 < β < 4− 2α

0 < γ <
4αβ

2− α

VII. PARTICLE FILTER BASED PREDICTION MODEL PF

The evolution of particle filters in the research area started

with a paper by Gordon et.al. [18]. Particle filters are sequen-

tial Monte Carlo methods based on the weight representation

of probability densities of any given state model. Monte Carlo

methods is a general class which convert closed form statistical

quantities to distributed samples and using their average for

estimation [19]. The distributed samples are referred to as

particles. In the following we generally describe how the

particle filter algorithm works.

Initially, we generate a set of random samples

(xi
1 : i = 1, .., N) from the PDF p(x0) and set the weight of

each sample to wi
1 = 1/N . Where the equation of the PDF

construction is obtained recursively as follows:

p(xk|zk−1) =

∫
p(xk|xk−1)︸ ︷︷ ︸
dynamic model

p(xk−1|zk−1)︸ ︷︷ ︸
prior

dxk−1
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At each time step k + 1, for each particle we sam-

ple the prior xi
k of PDF using the system model xi

k =
fk−1(x

i
k−1, wk − 1i), Where wi is the PDF of the system

noise p(w).
p(xi

k) = p(xi
k|xk−1)

Using the measurement yk, we can form the weight of particles

based on a likelihood equation of each prior sample.

w∗ik = wk − 1ip(zt|xi
t)

Then we normalize the weight by

wi
k =

w∗ik∑N
j=1 w

∗j
k

The posterior probability density is then calculated by

p(x0:k|z1:k) =
N∑
i=1

wi
kδ(x0:k − xi

0:k)

where δ(.) is the Dirac delta function. After a while

the basic particle filter will suffer from degeneracy or

sampleimpoverishment. Meaning that all but few parti-

cles will have negligible weights. To solve this problem,

researchers introduced resampling methods such as Sampling

Importance Resampling(SIR). The basic idea of resampling

technique is to replace the light-weighted sample with the

high-weighted ones. This step can be done when needed either

in predefined time step or by finding the effective number of

particles [20] as

Neff =
1∑N

i=1(w
i
k)

2

In this case, the resampling is preformed when the number of

effective particles is below the total number of particles. Some

of the most commonly used resampling methods is Systematic

resampling [21] among others.

VIII. PERFORMANCE EVALUATION

The performance of the five different prediction techniques

have been implemented in MATLAB on a Mac machine with

2.4 GHz Intel Core i7. In our simulation, each vehicle is

equipped with a prediction model and a GPS measurement

sensor. For the prediction of vehicle movement, we set the state

of the vehicle dynamics to include position (xk, yx), velocity

and acceleration.

Using two different sets of mobility traces. The first set is

a real vehicle mobility trace from Roma, Italy and the second

set is generated mobility trace using SUMO simulator and

OpenStreet Map (OSM).

• SUMO Traces Comparing the different prediction meth-

ods using generated mobility traces from SUMO and

OpenStreetMap. A mobility trace of 100 vehicle ran-

domly moving with speed between 0-20m/s , following

the roads constraints of Ottawa city. Readings were taken

every 1 seconds and includes the vehicle position x and

y as well as its speed s at time t.

• real mobility traces Simulation have been done in more

challenging scenario, using real mobility traces from taxi

cabs in Rome. Comparing the five different filters per-

formance using dataset of mobility traces of taxi cabs in

Rome, Italy [22].The dataset include the taxi GPS latitude

and longitude, readings were taken every 15 seconds.

We evaluated the performance of the prediction models using

the following metrics:

• DE compute the Euclidean distance error between mea-

sured and predicted location

Derror =
√

(xk − x̂k) + (yk − ŷk) (14)

• RMSE compute the square root of the mean square error

between measured and predicted location.

RMSE =

√√√√ 1

N

N∑
k=1

(xk − x̂k) (15)

In the following we illustrate our comparison results be-

tween KF, EKF, UKF, PF and ABG filter. The results show

accuracy and robustness of the different methods.
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Extended Kalman filter position estimation 97 vehicles 450 sec run

Fig. 1: Complete movement prediction of 100 vehicle in

duration of 500 sec. for SUMO generated mobility trace
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Fig. 2: True trajectory comparison with estimated trajectory

of KF, EKF, UKF, abg , PF for SUMO trace

As seen in Figure 1 to 4, we evaluate the different models

using a generated mobility trace from SUMO. We set the

number of particles to be 300 for this comparison and the

alpha beta gamma λ value to be 0.01. In Figure 1, we show the

complete EKF prediction path of 97 vehicles in Urban scenario

from a generated mobility trace using SUMO. To clearly

see the comparison of the different models in the previous

scenario, a close comparison is illustrated in Figure 2 of a
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vehicle path. In which, we show the performance of the UKF

and PF is better than both EKF, KF, ABG. This is due to the

fact that PF and UKF uses set of samples and sigma points to

estimate the movement of a vehicle. Even though, PF and UKF

are computationally expansive, the accuracy of those models

are higher than the others in nonlinear dynamic systems such

as VANET. Another observation is that the prediction of KF

and ABG report badly in specific points when the vehicle turn

on path. This is due to that both KF and ABG estimation is

mainly done by propagation a linear state using the motion

model and to recuperate from it takes some time after couple

iterations.

In Figure 3, a comparison on the Distance Error DE is

presented, where again UKF and PF showed better result in

compared to KF, EKF, ABG. It is noticed that PF has high

distance error after almost half the way of the prediction.

This is due to the problem introduced in Section VII, which

is the degeneracy or sample impoverishment. In which all

but few particles will have negligible weights and effect the

performance of the filter. Thus, an efficient resampling strategy

is required to better estimate the vehicle movement.

TABLE I: Average RMSE for sumo mobility trace

KF EKF UKF abg PF

83.8178 34.0501 34.0479 90.0924 2.2789

As for the average RMSE of all models is given by Table I,

showing that EKF and KF perform worse than UKF and

Particle filters. As for alpha beta gamma filter, it reports worse

than all other filters. Nevertheless, Particle filters still require

relatively higher computation cost than the other filters to

estimate the movement of vehicle, which could be an issue for

some VANET applications where speed and time is essential.

In Figure 4, we compared the total number of distance

errors with a distance threshold θ. As it shows that most of

the prediction error is less that 10 meters. Which is still very

high for a vehicle movement prediction and should be further

studied to reduce the error.

TABLE II: Average RMSE for real taxi cabs mobility trace

KF EKF UKF abg PF

396.2993 133.0352 133.0331 2821.1033 12.1653

The result of the different prediction models with a more

challenging scenario of real mobility traces in Figures 5 to

6. We ran the simulation multiple times over 200 taxi cabs.

In Figure 5, the movement prediction of all five models for

one taxi cab is presented, which shows that the PF preformed

with high accuracy in compared to the others prediction. In

which, Kalman filter reported the wors, because KF fail predict

the quick changes in the taxi movement. To better show the

difference of the five models, we show the distance error

measurement in Figure 6.
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Fig. 3: Distance Error comparison of KF, EKF, UKF, abg, and

PF for SUMO trace
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Fig. 5: Prediction of the vehicle’s next position for mobility

traces of taxi cabs in Rome, Italy

As seen Particle filter illustrate the lowest distance error

because of the sampling technique, which randomly selected

around the prior distribution. This technique will overcome the

quick changes in any vehicle movement. As for the average

RMSE of all models is given by Table II. One can also notice

that the number of particles or samples used in the prediction

can effect the outcome accuracy as shown in Figure 7. We used

different number of particles (100, 300, 500) in predicting the

movement of a vehicle in real mobility trace in the duration
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Fig. 6: Distance error DE for mobility traces of taxi cab in

Rome, Italy
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Fig. 7: Particle filter distance error DE comparison with

different number of particles

of 16 minutes. In which we derive that the more number of

particles assigned to the prediction, the more accurate results

is produced.

IX. CONCLUSION

This paper presents a performance evaluation of prediction

techniques using KF, EKF, UKF, PF, and ABG for VANET.

It has been shown through simulation results that the Particle

filter outperforms Kalman filter, and Extended Kalman filter.

Also, Unscent Kalman filter showed almost equal performance

to the Particle filter. As for alpha-beta-gamma, it failed to

accurately predict the vehicle movement in comparison to

the other methods. Our comparison was based on different

mobility traces of real taxi cabs and generated mobility from

SUMO. It is also noteworthy that even though particle filters

showed high accuracy in predicting the vehicle movement,

it still requires higher computational cost that should be

investigated further.
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