
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

Perfect Hashing Based Parallel Algorithms for Multiple

String Matching on Graphic Processing Units

Cheng-Hung Lin
Dept. of Electrical Engineering

National Taiwan Normal

University

Taipei, Taiwan

brucelin@ntnu.edu.tw

Jin-Cheng Li
Dept. of Computer Science

National Tsing-Hua University

Hsinchu, Taiwan

lgc800430@yahoo.com.tw

 Chen-Hsiung Liu
Dept. of Computer Science

National Tsing-Hua University

Hsinchu, Taiwan

lgen7604@gmail.com

Shih-Chieh Chang
Dept. of Computer Science

National Tsing-Hua University

Hsinchu, Taiwan

scchang@cs.nthu.edu.tw

Abstract- Multiple string matching has a wide range of applications

such as network intrusion detection systems, spam filters,

information retrieval systems, and bioinformatics. To accelerate

multiple string matching, many hardware approaches are proposed

to accelerate string matching. Among the hardware approaches,

memory architectures have been widely adopted because of their

flexibility and scalability. A conventional memory architecture

compiles multiple string patterns into a state machine and performs

string matching by traversing the corresponding state transition

table. Due to the ever-increasing number of attack patterns, the

memory used for storing the state transition table increased

tremendously. Therefore, memory reduction has become a crucial

issue in optimizing memory architectures. In this paper, we

propose two parallel string matching algorithms which adopt

perfect hashing to compact a state transition table. Different

from most state-of-the-art approaches implemented on

specific hardware such as TCAM, FPGA, or ASIC, our

proposed approaches are easily implemented on commodity

DRAM and extremely suitable to be implemented on GPUs.
The proposed algorithms reduce up to 99.5% memory requirements

for storing the state transition table compared to the traditional two-

dimensional memory architecture. By studying existing approaches,

our results obtain significant improvements in memory efficiency.

Keywords-perfect hashing; string matching; deterministic finite

automaton

I. INTRODUCTION

Multiple string matching is widely used in many applications

such as network intrusion detection systems (NIDS), spam filters,

information retrieval systems, and bioinformatics to find all

locations of multiple patterns simultaneously. To accelerate

multiple string matching, many hardware architectures

[1][8][9][14][19][21] are proposed. Among the proposed

architectures, the Aho-Corasick (AC) algorithm is widely

adopted in memory architectures because it uses linear time to

perform multiple string matching. A traditional memory

architecture for multiple string matching works as follows. First,

multiple string patterns are compiled into a single deterministic

finite automaton (DFA) using the AC algorithm. Then, the

corresponding state transition table of the DFA is stored in a

memory. Finally, multiple string matching is performed by

traversing the DFA.

Traditional memory architecture uses a two-dimensional

memory to store the corresponding state transition table of the

DFA shown in Figure 1. The figure depicts each row as

representing a state which contains 256 columns to store the next

state information for each ASCII alphabet and a column to store

match vectors. In addition, the state and char registers storing

information of the current state and the input character are used

to look up the next state information from the state transition table.

Figure1. Traditional memory architecture

With growing number of attack patterns, the memory required

for use of storing the corresponding state transition table

increased tremendously. Considering the memory architecture in

Figure 1, each row needs 256 x 4 (1K) bytes to store the next state

information and one byte to store a match vector that indicates

which pattern is matched. In other words, a state machine with

one million states needs approximate 1G bytes of memory for

storing the state transition table. Therefore, reducing the required

memory for storing the state transition table has become a crucial

issue.

There are two ways to reduce the memory requirement. One

is to reduce the size of an automaton while the other is to compact

the storage of an automaton. Delayed DFA (D2FA) [20] is

proposed to remove duplicated transitions by introducing

“default” transitions. A compact data structure [10] is proposed

to reduce a DFA by merging non-equivalent states. A memory-

efficient algorithm [4] is proposed to reduce an AC state machine

by merging non-equivalent states. The B-FSM based pattern

NS256 MV

state

char

next state match vector

… NS2 NS1

D
eco

d
er

256:1 MUX

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

matching (BFPM) scheme [8] is based on the concept of so-called

state transition rules which specify the relationship of each state

transition and their corresponding next state information. To

compress state transition rules, BFPM introduces wildcard

symbol “*” to represent “don’t care” condition in their rule sets.

BFPM prioritizes the transition rules and adopts the Balanced

Routing Table (BART) search algorithm for exact-, prefix- and

range-match searches. To improve storage efficiency, the BFPM

adopts a hash function and limits the maximum number of hash

collision of any state transition by a bound of 4. However, the

processing of hash collisions may increases memory access and

degrades system performance. Thus, by extending the work of

BFPM, a cached deterministic finite automaton (CDFA) [21] is

proposed to reduce transitions in an AC_DFA, while a next state

addressing (NSA) scheme is proposed to efficiently store

transitions using less memory. Nevertheless, the NSA scheme

still uses two-dimensional memory to store the multiple

transitions from a certain state which has multiple next states.

When such states are increased, the memory efficiency of NSA is

decreased. A bit-split memory architecture [9] is proposed to split

an AC_DFA finite state machine into a set of small AC_DFA and

reduces the total memory requirement. Still, the bit-split memory

architecture uses two-dimensional memories to store state

transition tables. Bitmap compression and path compression [13]

are proposed to achieve compact storage of an AC state machine

and has better performance on worst cases. Even though the

computational cost of the proposed compression scheme remains

high. CompactDFA [1] also introduces wildcard symbol “*” to

minimize the memory of an AC_DFA by encoding all transitions

to a specific state as a single prefix. The scheme resolves the

string matching problem by applying the longest prefix matching

problem with a little overhead in the number of bits of state

encoding. Since CompactDFA addresses the pattern matching

problem by applying the longest prefix matching problem such

as the IP-lookup problem. In addition, CompactDFA stores the

compressed rule sets on Ternary Content Addressable Memory

(TCAM) which permits rapid table lookups through longest

prefix matches. Furthermore, a HEXA [19] approach is proposed

to significantly reduce memory by a compact, and to be viewed

as a historical representation of state transition. However,

TCAMs are expensive in chip area and power consumption.

Nevertheless, another way to reduce memory is to compact

the two-dimensional memory using hashing techniques. However,

common hashing algorithms are noted for their hashing collision

problem which requires timing and hardware overhead to resolve.

A progressive perfect hashing (P2-hashing) [22] algorithm is

proposed to store an AC automaton in a compact hash table

without collisions. The main idea of the P2-hashing algorithm is

to divide the AC transitions into multiple sets according to state

numbers and incrementally put these sets into a hash table. If a

hash collision happens during the placement of a transition in one

set, the already-placed transitions in this set are removed and the

state number of the set is renamed. Then, a new trial starts until

all transition sets are put into a hash table. However, the

construction time of the perfect hash table is not deterministic.

In our previous work, the Parallel Failureless Aho-Corasick

(PFAC) [3] algorithm is proposed to parallelize string matching

processes on GPUs. Compared to state-of-the-art approaches, the

PFAC state machine has the minimum number of transitions

because it removes all failure transitions as well as the self-loop

transitions to the initial state. In other words, the state transition

table is sparse and most entries of the two-dimensional table are

empty. Continually, we propose to use a static perfect hashing to

compress the two-dimensional sparse table and achieve

significant memory reduction [5].

The main contributions of this paper are summarized as

follows.

1. We propose two parallel string matching algorithms which

adopt a hardware-friendly perfect hashing algorithm [17] to

compact a state transition table. The perfect hashing

algorithm stores the valid transitions in a compact hash table

and takes constant time to generate the hash index and access

the hash table without collisions.

2. We have implemented the proposed memory architecture on

graphic processing units (GPU) and evaluated the

performance of the proposed architecture using attack

patterns from Snort [21] V2.8 and input packets from

DEFCON [6]. Our architecture achieves up to 99.5% of

memory reduction compared to the traditional two-

dimensional memory architectures. The experimental results

show that the proposed algorithm outperforms state-of-the-art

memory reduction architectures on memory efficiency.

II. BACKGROUND

A. Aho-Corasick algorithm

Among the proposed pattern matching algorithms, the Aho-

Corasick (AC) algorithm has been widely adopted because of its

ability of matching multiple patterns simultaneously. The AC

algorithm introduces a new transition called failure transition to

replace all backtracking transitions of a DFA. For example,

Figure 2 shows an AC state machine of the three patterns,

“SFTP”, “PPS”, and “FTPS”, where the solid lines represent

valid transitions and the dotted lines represent failure transitions.

However, the AC algorithm is not suitable for hardware

implementation because taking failure transitions may incur

cycle penalties for state traversing.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

Figure 2. AC state machine of "SFTP", "PPS", and "FTPS"

B. Parallel Failureless Aho-Corasick algorithm

In our previous work, we propose a Parallel Failureless Aho-

Corasick (PFAC) [3] algorithm which achieves significant

throughput on GPUs. The library and source code of the PFAC

algorithm are accessible in Google Code

(http://code.google.com/p/pfac/)[16].

Using PFAC has two steps. First, attack patterns are compiled

into a PFAC state machine. And then, each byte of an input

stream is assigned an individual thread to traverse the PFAC state

machine. Figure 3 shows the PFAC architecture where each

thread traverses the same state machine. The most important

property of the PFAC architecture is that each thread of PFAC is

only responsible for identifying the pattern starting at the thread’s

starting position. Whenever a thread cannot find the beginning of

a pattern at its starting position, it terminates immediately without

taking failure transitions. In other words, each thread of PFAC

runs in the best time O(1) and the worst time O(m) where m is the

longest pattern length. Therefore, we can eliminate all failure

transitions as well as the self-loop transition to the initial state in

the traditional AC state machine. Precisely speaking, a PFAC

state machine of n states contains only n-1 valid transitions. In

other words, the transition-to-state ratio of the PFAC automaton

is less than 1 which indicates that the PFAC automaton is an

intrinsic sparse automaton. For example, Figure 4 shows the

PFAC state machine of the three patterns, “SFTP”, “FTPS”, and

“PPS”, which has 12 states and only 11 valid transitions left.

Compared to Figure 2, all backtracking transitions and the self-

loop transition to the initial state are all removed. Compared to

state-of-the-art architectures, a PFAC state machine has

minimum number of valid transitions. Another important

property of PFAC is that each final state of the PFAC machine

represents a unique pattern without handling multiple outputs.

Therefore, we eliminate output table accesses by reordering the

number of final states to represent matching vectors. The

encoding technique is described as follows. For a PFAC state

machine which has n final states (patterns), the number of final

states is encoded from 1 to n, and all internal states including the

initial state are numbered from n+1. As shown in Figure 4, the

final states of the patterns “SFTP”, “FTPS”, and “PPS” are

numbered from 1 to 3 while the other states including the initial

state are numbered from 4. Whenever the PFAC machine reaches

a state whose number is smaller than the initial state, we know

that the machine reaches a final state and directly outputs the

number of the final state without looking up the output table.

Figure 3. PFAC architecture which allocates each byte of the input

stream via an individual thread

Figure 4. PFAC state machine of “SFTP”, “FTPS”, and “PPS”

In order to achieve the best result, the PFAC algorithm stores

the state transition table in a two-dimensional memory because

only one memory access is required to look up the next state

information that includes a given state and an input character.

However, it’s extremely space-inefficient to use a two-

dimensional memory to store the sparse PFAC automaton.

To compress the PFAC state transition table, our basic idea is

to use a perfect hash algorithm to store only valid transitions in a

hash table as shown in Figure 5. The hash table has two fields to

store valid keys and the corresponding next state information. To

query the next state information of an input key (transition), the

hash index is first generated by the perfect hash function and then

the key stored in the hash table is retrieved to compare with the

input key. If they are equal, the next state is delivered to update

the state value. Otherwise, the state value is set as a trap state and

then we stop traversing the state machine.

F T P S F T P P S X X X X X X X X X X

.

.

.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

Figure 5: Perfect-hashing based memory architecture

Unlike traditional hash functions which may map two or more

keys to the same hash value, a perfect hash function maps each

key (valid transition) to a distinct hash value without collisions.

However, the cost of computing the hash index and accessing the

hash table would degrade the performance. As shown in Figure

5, the time required to query a key is equal to the amount of the

time computing the hash index and the time looking up the hash

table. Although many perfect hashing algorithms are available in

literature, most of them require multiple memory accesses to

obtain the accurate hash index from a hash table lookup.

Therefore, choosing an efficient perfect hashing algorithm is

crucial to optimize the performance of the architecture.

Note that many applications need to build a hash table on the

fly, as in our case, the content in the hash table is known in

advance so that a static perfect hash function can be applied.

III. HARDWARE-FRIENDLY PERFECT HASHING ALGORITHMS

Among the proposed perfect hashing algorithms, a hardware-

friendly perfect hashing algorithm [17] is proposed to store a

static sparse table without collisions. The main idea of the perfect

hashing algorithm is to shift the rows (or columns) of a sparse

two-dimensional table until no two keys appear in the same

position. And then, the sparse two-dimensional table is

compacted to a dense one-dimensional table. The main advantage

of the perfect hashing algorithm is its linear construction time of

hash table and constant time to acquire the hash index. Although

the perfect hash function does not guarantee to achieve minimal

space theoretically, it’s well-suited to be implemented on

hardware with a little modification.

In this section, we first discuss two modifications of the

perfect hash algorithm in [17], Row-Shifting Perfect Hashing

(RSPH) and Column-Shifting Perfect Hashing (CSPH). Then

follow up with discussions on how to integrate RSPH and CSPH

into string matching algorithms.

A. Row-Shifting Perfect Hashing (RSPH)

The procedure of constructing the hash table using RSPH is

as follows.

i. Start with width w of a two-dimensional key table and

place each valid key k at location (row, col), where row

and col are equal to quotient and remainder of the key

divided by the width w, respectively. We use the

following expressions to denote the two operations.

row = ⌊k / w⌋

col = k mod w

ii. Rows are prioritized by the number of keys in it and

slide rows by order of priority.

1. First, slide the row to left first in order for the first

key in the row be aligned at the first column.

2. Then, slide the row to right until each column has

only one key and record the offset in an array which

is defined as RO (abbreviated from Row Offset) table.

iii. Compact the two-dimensional array into a row.

We illustrate the procedure of RSPH using the example in

Figure 6. In Figure 6, we have the key set, S = {2, 4, 10, 11, 13,

14, 20, 21, 22, 25, 27} which represent valid keys in the

corresponding positions. First, we set a two-dimensional key

table of width 8 (w=8) and put each key k in S at the location

(row, col), where row = ⌊k / 8⌋, col = k mod 8. For example in

Figure 6(a), the key 20 is put into the location (row, col) =

(⌊20 / 8⌋, 20 mod 8) = (2, 4). In the second step, we first shift

each row to left and then shift right until each column has only

one key and record the offset from the first column in the RO

array. The order of a row to be moved is prioritized by the number

of keys in it. For example, row 1 has the highest priority because

row 1 has 4 keys in it. As shown in Figure 6(b), row 1 is first

shifted left so that the key 10 is aligned at column 0 and record

the offset, -2 in RO[1]. Then, rows 2, 0 and 3 are shifted to proper

positions so that no collisions occur in the same column. The

offset of each row is recorded in the RO array. Finally, the two-

dimensional table is collapsed to a one-dimensional hash key

table. In Figure 6(b), the memory space for storing the 11 keys is

reduced from 32 to 16 elements, where 12 elements are for

storing keys and 4 elements for recording the offsets of rows.

Different than the original algorithm in [17], we propose to

slide each row to left first and then slide right to the proper

position. The reason is due to the fact that the first 32 symbols of

ASCII are non-printable characters and most valid transitions do

not contain non-printable characters. Therefore, using our RSPH

method can achieve better load factor than the original algorithm

in [17].

(a) Put keys into a two-dimensional key table of width 8

Perfect

Hash

Function

key
next

state
state char

key (transition)

next state

hash index

hash table

comparator

 Trap state

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

(b) Results of RSPH

Figure 6. Example of creating a perfect hash table by RSPH

On the other hand, given an input key, k, the procedure of

validating the input key is as follows.

i. row = ⌊k / w⌋;
ii. col = k mod w;

iii. index = RO[row] + col;

iv. If HK[index] == k

 k is a valid key;

else

 k is an invalid key;

Given an input key, k, the first and second steps calculate the

position (row, col) of k in the original table. Because RSPH uses

the RO array to store the offset of each row, the third step

calculates the index of the query key in the hash table by

summing RO[row] and col. The last step validates the query key

by comparing the query key with the value stored in HK[index].

For example, the index of the key 14 is equal to RO[⌊14/8⌋] + 14

mod 8 = RO[1] + 6 = -2 + 6 = 4. Because HK[4] is equal to 14,

we know that the key 14 is a valid key and belongs to the key set

S. Consider the other key 19. The index of the key 19 is equal to

RO[⌊19/8⌋] + 19 mod 8 = RO[2] + 3 = 1 + 3 = 4. Because HK[4]

is not 19, we know that 19 is not a valid key.

B. Column-Shifting Perfect Hashing (CSPH)

The procedure of the CSPH is as follows.

i. Start with a width w of two-dimensional key table and

place each valid key k at location (row, col), where row

and col are equal to quotient and remainder of the key

divided by the width w, respectively. We use the

following expressions to denote the two operations.

row = ⌊k / w⌋

col = k mod w

ii. Columns are prioritized by the number of keys in it and

slide columns by order of priority.

1. First, slide the column up first to let the first key in

the column be aligned at the first row.

2. Then, slide the column down until each row has only

one key and record the offset in an array which is

defined as CO (abbreviated from Column Offset)

table.

iii. Compact the two-dimensional array into a column.

Figure 7 demonstrates the results of CSPH. Each column

slides up and down to find a proper position that no collision

occurs in the same row. The offsets of columns are recorded in

the CO array. Finally, the two-dimensional table collapses into a

one-dimensional hash key table. The memory space for storing

the 11 keys is reduced from 32 to 19 elements, where 11 elements

are for storing keys and 8 elements for recording the offsets of

columns.

Figure 7. Results of CSPH

On the other hand, given an input key, k, the procedure of

validating the input key is as follows.

i. row = ⌊k / w⌋;
ii. col = k mod w;

iii. index = CO[col] + row;

iv. If HK[index] == k

 k is a valid key;

else

 k is an invalid key;

Because CSPH uses the CO array to store the offset of each

column, the index is obtained by summing the CO[col] and row.

For example, the index of key 14 is equal to CO[14 mod 8] +

⌊14/8⌋ = CO[6]+1 = 7+1 = 8. Then, we find that HK[8] is equal

to 14. Therefore, 14 is a valid key.

IV. PERFECT-HASHING BASED MEMORY ARCHITECTURE

In this section, we propose two basic perfect-hashing based

memory architectures and their modifications for space and time

optimization.

A. Row-Shifting Perfect-Hashing Memory Architecture

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

Figure 8 shows the Row-Shifting Perfect-Hashing Memory

Architecture (RSPHMA). In Figure 8, the NS table (abbreviated

from Next State) is used to store the next state information which

corresponds to each key (valid transition) stored in the HK table.

The input key (transition) is composed of a current state (stored

in state) and an input character (stored in char). The comparator

is used to compare the input key with the key stored in the HK

table. If the input key matches the key stored in the HK table, it

means that the input key (transition) is a valid transition and the

current state is updated by the next state information stored in NS.

Otherwise, the input key is not a valid transition and the current

state is updated as a trap state which indicates there is no valid

next state for the current state and input character. The PHF block

generates the hash index.

Figure 8. Row-Shifting Perfect-Hashing Memory Architecture

(RSPHMA)

The procedure to query the next state in RSPHMA is as

follows.

i. row = ⌊k / w⌋;
ii. col = k mod w;

iii. index = RO[row] + col;

iv. If HK[index] == k

 k is a valid key;

else

 k is an invalid key;

v. If k is a valid key

 nextState = NS[index];

else

 nextState = trap state;

In Figure 8, we find that the HK table used for storing keys

consumes a lot of memory. In addition, the cost of modulation

and division computation in PHF is expensive. Therefore, we

propose two modifications to optimize the RSPHMA: one is to

reduce the memory of HK to improve memory efficiency while

the other is to reduce the complexity of PHF to generate hash

index. The space-efficient and time-efficient RSPHMA are

described as follows.

B. Space-efficient RSPHMA

In Figure 8, the HK table is used for storing keys which is

composed of current states and input characters. The keys stored

in HK are used to verify whether an input key is a valid key

(transition) or not. In Figure 6(b), if there are two distinct keys

having the same index, the two keys must locate in different rows

in the key table. The proof of the proposition is as follows.

PROPOSITION 1. In Row-Shifting Perfect-Hashing algorithm, if

there are two distinct keys having the same index, the two keys

must locate in different rows in the key table.

Proof. For the sake of contradiction, suppose that if there are two

distinct keys having the same index, the two keys must locate in

the same row in the key table. In Row-Shifting Perfect-Hashing

algorithm, the two keys are as follows.

key1 = row * width + column1

key2 = row * width + column2

Since key1 is distinct from key2, column1 is distinct from

column2.

Furthermore, in Row-Shifting Perfect-Hashing algorithm, the

indices of the two keys are calculated as follows where RO is the

table storing offsets of each row.

index1 = RO[row] + column1

index2 = RO[row] + column2

Since column1 is distinct from column2, index1 is distinct from

index 2. The result contradicts our assumption that if there are

two distinct keys having the same index, the two keys must locate

in the same row.

For example, the two keys 14 and 19 mapping to the same

position (the fifth element) of the hash table locate in the second

and third rows, respectively. In other words, the correctness of a

key can be verified by checking the row of a key instead of

checking the whole key. Therefore, the hash table can be further

reduced by storing the row of keys instead of the whole keys.

Furthermore, in order to reduce the complexity of PHF, the width

of key table is set to power of two, 512, 1024, or 2048 typically.

Therefore, the operations of modulation and division can be

replaced by mask and shifter, respectively. Figure 9 shows the

space-efficient RSPHMA where the HK table only stores the row

number of keys. In Figure 9, the right-shifter is used to shift the

input key to get the row number of the input key. For example, if

the width of the key table is 1,024, the right-shifter shifts the input

key 10 bits. In other words, the hash key is reduced by 10 bits.

It’s noted that by increasing the width of the key table, it reduces

the width of hash key but increases the HK size and decreases the

load factor, the ratio of the number of valid keys to the HK size.

state char

next state key

NS HK

comparator

mod

div

+

input key (transition)

col

row

RO

index

PHF

trap state

HK

size

nextState

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

Figure 9. Space-efficient RSPHMA

The procedure to query the next state in the space-efficient

RSPHMA is as follows.

i. row = k ≫ log
2
w;

ii. col = k mod w;

iii. index = RO[row] + col;

iv. If HK[index] == row

 k is a valid key;

else

 k is an invalid key;

v. If k is a valid key

 nextState = NS[index];

else

 nextState = trap state;

C. Time-efficient RSPHMA

From the above discussion, a less complicated perfect hash

function can improve the performance of the proposed memory

architecture. If the width of the key table is set to 256, the row of

a key is equal to the state number. Therefore, the HK table stores

state numbers as hash keys. Because the HK table stores state

numbers as hash keys, the calculations of row and col in PHF can

be eliminated and replaced by state and char. However, setting

the width of the key table to 256 increases the width of the HK

table as well as the size of the RO table.

Figure 10 shows the time-efficient RSPHMA where the HK

table stores state numbers as hash keys. The state and char are

directly used to generate the index without modulation and

division operations.

Figure 10. Time-efficient RSPHMA

The procedure to query the next state in the time-efficient

RSPHMA is as follows.

i. index = RO[state] + char;

ii. If HK[index] == state

k is a valid key;

else

k is an invalid key;

iii. If k is a valid key

nextState = NS[index];

 else

nextState = trap state;

D. Column-shifting perfect-hashing memory architecture

Instead of shifting row, shifting column is another way to

construct hashing table in [17]. Consider the original two-

dimensional state table which has 256 columns, using column-

shifting to construct hash table intuitively has two benefits. The

first benefit is the size of memory named CO to record column

offset is equal to 256 x 4 bytes which is much smaller than the

memory used to store row offset in RSPHMA. In RSPHMA, the

size of memory named RO used to store row offset is proportional

to the number of states.

The second benefit is that the size of hash key is only one-

byte long. Since the hash keys stored in HK are used to verify

whether an input key is a valid key (transition) or not. In Figure

7, if there are two distinct keys having the same index, the two

keys must locate in different columns in the key table. The proof

of the proposition is as follows.

PROPOSITION 2. In Column-Shifting Perfect-Hashing algorithm,

if there are two distinct keys having the same index, the two keys

must locate in different columns in the key table.

Proof. For the sake of contradiction, suppose that if there are two

distinct keys having the same index, the two keys must locate in

the same column in the key table. In Column-Shifting Perfect-

Hashing algorithm, the two keys are as follows.

key1 = row1 * width + column

state char

next state row of key

NS HK

comparator

mod

>>

+

input key (transition)

col

row

RO

index

PHF

trap state

HK

size

nextState

state char

next state state

NS HK

comparator

+

input key (transition)

char

state

RO

index

PHF

trap state

HK

size

nextState

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

key2 = row2 *width + column

Since key1 is distinct from key2, row1 is distinct from row2.

Furthermore, in Column-Shifting Perfect-Hashing algorithm, the

indices of the two keys are calculated as follows where CO is the

table storing offsets of each column.

index1 = CO[column] + row1

index2 = CO[column] + row2

Since row1 is distinct from row2, index1 is distinct from index 2.

The result contradicts our assumption that if there are two distinct

keys having the same index, the two keys must locate in the same

column.

For example, the two keys 14 and 19 mapping to the same

position (the fourth element) of the hash table locate in the third

and fourth columns, respectively. In other words, the correctness

of a key can be verified by checking the column number of the

key rather than checking the whole key value. Particularly, if the

number of column is 256, we can minimize the size of the HK

table to exact one-byte long. Compared to the time-efficient

RSPHMA, the width of HK table is reduced from four-bytes long

to one-byte long.

Although the column-shifting algorithm has two benefits

compared to the row-shifting algorithm. The column-shifting

algorithm has a major drawback in which the load factor is not

satisfied. The load factor represents as the ratio of the number of

keys over the number of hash entries. In perfect hashing

algorithms, the load factor of a perfect hash table is always less

than or equal to one. The load factor close to one means a dense

hash table is constructed. On the contrary, a hash table with a

small load factor means the hash table is sparse.

In our application, the load factor of column-shifting is not

satisfied due to the characteristic that the depth of the two-

dimensional table is much larger than its width. Therefore, it is

more difficult for column-shifting algorithm to find positions

without collisions.

Figure 11 shows the Column-Shifting Perfect-Hashing

Memory Architecture (CSPHMA).

Figure 11. Column-Shifting Perfect-Hashing Memory Architecture

(CSPHMA)

The procedure to query the next state in the CSPHMA is as

follows.

i. row = ⌊k / w⌋;
ii. col = k mod w;

iii. index = CO[col] + row;

iv. If HK[index] == k

 k is a valid key;

else

 k is an invalid key;

v. If k is a valid key

 nextState = NS[index];

else

 nextState = trap state;

V. GPU IMPLEMENTATIONS AND OPTIMIZATION

In recent years, GPUs have attracted a lot of attention due to

its tremendous parallel computing ability and very high memory

bandwidth. Several works [16][13][11][7][18] are proposed to

accelerate exact and regular expression pattern matching using

GPUs.

As discussed in Section II, our previous work, PFAC [3]

stores the state transition table in a two-dimensional memory

whose size equals the number of states multiplied by 1K bytes

(256 column x 4 bytes/column) to achieve best performance. For

a state machine of one million states, the memory architecture

needs a size 1GBytes two-dimensional memory to store the

corresponding state transition table. With the increasing number

of patterns, the state transition table will grow too large to fit into

the GPU memory. Therefore, to increase the scalability of PFAC

to accommodate more patterns, we integrate RSPHMA and

CSPHMA to PFAC using CUDA[15] on NVIDIA GPUs.

Compared to the two-dimensional memory architecture, the

cost of using perfect hashing includes (1) hash index generation,

(2) HK table access, and (3) NS table access. We observe that the

perfect hashing architecture is a memory-bound task that has

three memory accesses including RO (or CO), HK, and NS tables.

To alleviate the cost of memory accesses on GPUs, we discuss

state char

next state key

NS HK

comparator

mod

div

+

input key (transition)

col

row

CO

index PHF

trap state

HK

size

nextState

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

several optimization techniques as follows.

A. Reducing the complexity of hash index computation

As shown in Figure 6, the calculation of row and col needs

division and modulus operations. However, to alleviate the cost

for managing division and modulus operations, we can set the

width of the key table, w, as power of 2. Then, the division and

modulus operations can be replaced by shift-right and bitwise-

AND operation, respectively.

In addition, the time-efficient RSPHMA sets the width of the

key table as 256, the division and modulus operations can be

removed and the row and col can be replaced by state and char,

respectively. Because the computation of hash indices is reduced,

the performance can be improved.

B. Merging HK and NS tables

In order to reduce the memory accesses which are expensive

in GPU computation, we can merge HK and NS tables to increase

performance. Then, the hash key and next state information can

be read as one memory access and further performance can be

improved. Consider an AC state machine of n states, the size of

the traditional two-dimensional table is n×256. If the width of the

key table is set to 1,024, the depth of the two-dimensional key

table is reduced to
n

4
. Because the number of rows is reduced to

𝑛

4
, the row indices stored in the hash table as keys can be further

reduced by 2 bits. Therefore, if we set the width of the key table

to 1,024, we can divide an integer of 32 bits as two columns of

17 bits and 15 bits. The column of 17 bits is used to store the next

state information while the column of 15 bits is used to store the

row of key. In this configuration, the size of the state machine is

limited to 131,072 (217) states. On the other hand, if we adopt the

time-efficient RSPHMA to achieve maximum performance, the

best way is to use 16 bits to store keys and 16 bits to store next

states. In such configuration, the size of the state machine is

limited to 65,536 (216) states. In our experiments, the proposed

RSPH and CSPH have two kinds of GPU implementations, one

is for smaller state machine which has less than 216 (65,536) states,

and the other is for larger state machine which has more than 216

(65,536) states. The former one merges the current state and next

state information as a 32-bits key to achieve better performance

and smaller hash table size while the latter one separates the

current state and next state information to accommodate the state

machines having more than 216 (65,536) states.

C. Binding hash table and offset table to texture memory

The memory hierarchy of GPU provides on-chip cached

texture memory to take the benefits of spatial and temporal

locality of date reference. To achieve higher bandwidth, we bind

the hash table as well as the RO and CO tables to texture memory

instead of off-chip global memory. Although the application of

pattern matching exhibits weak locality of data reference, still

10% improvement in throughput is achieved.

D. Pushing frequent date into shared memories

Among the memory hierarchy of CUDA, shared memory is

the fastest memory, but is very limited. Recall that the PFAC

issues continuous threads to each input character. Therefore, a

thread has the chance to read the symbols which the consequent

threads have read from global memory. Thus, before starting to

traverse a state machine, every thread in a block puts a portion of

input characters from global memory to shared memory. And

then, neighboring threads can read input characters from shared

memory instead from global memory. In addition, we observe

that most threads terminate after reading the first character. To

improve performance, we also put the first row of the state

transition table into shared memory.

In the following, we explain the RSPHMA using a piece of

code as shown in Figure 12. In the fourth and fifth line, each

thread moves two characters from global memory to shared

memory. Assume BLOCK_SIZE is 512, the shared memory size

for storing input texts is only 1024 bytes. If the maximum pattern

length is less than or equal to BLOCK_SIZE, we can ensure that

shared memory is sufficient no matter how long the input texts.

If the maximum pattern length is greater than BLOCK_SIZE, we

can solve the problem by increasing the number of characters

moved from global memory to shared memory. This section is

part of implementation details and omitted in the pseudo code.

According to our experimental environment, as long as the

maximum pattern length is less than or equal to 4096 bytes,

shared memory is sufficient to store its input texts in a block.

From lines 6 to 8, the threads whose tid are 0 to 255 move the

first row of the state transition table into shared memory. And

then, all threads in the same block are synchronized at line 9 to

ensure that the data transfer from global memory to shared

memory is completed. After synchronization, line 10 generates

the starting position, pos of each thread and line 11 retrieves the

first input character from shared memory. Line 12 delivers the

next state information of the initial state from shared memory.

In our implementation, a thread terminates anytime when it

encounters a trap state which is specified as -1. In Figure 12, line

13 checks the next state of the initial state. If the variable state is

greater than or equal to zero, the thread proceeds with the process

from line 14. On the contrary, if the state variable is -1 which

represents a trap state, the thread terminates immediately. Lines

14-16 check whether the state is a final state. In our

implementation, if a state machine has n final states, the n final

states are encoded from zero to n-1. Therefore, if the state

variable is less than n, the state is a final state and then is assigned

to the match array which is also stored in shared memory for

speedup. The while loop in lines 18-38 continues traversing the

state machine until a trap state is met. The key is generated by

combining the state and input character at line 21. Lines 22 and

23 calculate row and col variables, respectively. Line 24

calculates the hash index by adding col and the row offset which

is retrieved from the texture memory. If the hash index is greater

than or equal to the hash table size, a trap state is set at line 26;

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

otherwise, line 28 retrieves hash value from the hash table stored

in texture memory. The row information in a hash key located at

the lower 15 bits of a hashValue is compared with the row of an

input key at line 29. If the comparison returns true, line 30

updates the state variable as the next state information located at

the higher 17 bits of the hashValue; otherwise, line 32 sets the

state variable as a trap state and the thread terminates

immediately at line 34. From lines 35 to 37, if the state is a final

state, the state information is assigned to the match array. Finally,

match results are moved from shared memory to global memory

in line 42.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

gbid = blockIdx.y * gridDim.x + blockIdx.x;

tid = threadIdx.x;

start = gbid * BLOCK_SIZE + tid ;

sharedInput[tid] = globalInput[start];
sharedInput[tid+BLOCK_SIZE] = globalInput[start+BLOCK_SIZE];

if (tid < 256) {

 s_s0Table[tid] = d_s0Table[tid];

}

__syncthreads();

pos = tid;

inputChar = sharedInput[pos];

state = s_s0Table [inputChar];

if (state >= 0) {

 if (state < num_final_state) {

 s_match[tid] = state;

 }

 pos += 1;

 while (1) {

 if (pos >= boundary) break;

 inputChar = sharedInput [pos];

 key = (state << 8) + inputChar;

 row = key >> width_bit;

 col = key & ((1<<width_bit)-1);

 index = tex1Dfetch(tex_RO, row) + col;

 if (index >= HTSize)

 state = -1; //trap state

 else {

 hashValue= tex1Dfetch(tex_HT, index);

 if ((hashValue & 0x7FFF) == row)

 state=(hashValue >> 15) & 0x1FFFF ;

 else

 state = -1; //trap state

 }

 if (state == -1) break;

 if (state < num_final_state) {

 s_match[tid] = state;

 }

 pos += 1;

 }

}

//move match result from shared memory to global memory

d_match[start] = s_match[tid];

Figure 12. A piece of code in RSPHMA

VI. EXPERIMENTAL RESULTS

The experimental environment is composed of a host machine

and a device machine. The host machine is equipped with an

Intel® CoreTM i7-3770 running the Linux X86_64 operating

system with 16GB DDR3 memory while the device machine is

equipped with an Nvidia® GeForce® GTX680 GPU with 2,048

MB GDDR5 memory and an Nvidia® GeForce® GTX TITAN X

GPU with 12GB GDDR5 memory. The version of CUDA toolkit

is 7.0. The test patterns are extracted from Snort V2.8 where the

length of exact patterns varies between one to 243 characters long.

We divide the Snort patterns into two sets; the large one contains

10,076 patterns of total 187,329 characters, while the small one

contains 1,998 patterns of total 41,997 characters. The former

state machine has 126,776 states while the latter machine has

27,754 states. The proposed architectures are tested using

DEFCON [6] packets which contain large amounts of real attack

patterns. The size of the extracted DEFCON packets is 256 MB.

In Table I, we compare several recent published memory

architectures [1][3][8][13][21] with our proposed RSPH and

CSPH architectures. In addition, we also implement single-

threaded and multi-threaded AC and PFAC algorithms on CPU

for comparisons.

The GPU and CPU implementations are described as follows.

1) RSPH: implementation of the Row-Shifting Perfect

Hashing algorithm on GPU using single stream. The RSPH

can handle both large and small pattern benchmarks.

2) CSPH: implementation of the Column-Shifting Perfect

Hashing algorithm on GPU using single stream. The CSPH

can handle both large and small pattern benchmarks.

3) PFAC: Our previous work on GPU [3]

4) AC_CPU: Traditional single-threaded Aho-Corasick

algorithm on CPUs

5) AC_CPU_OMP: Traditional multi-threaded Aho-Corasick

algorithm on CPUs parallelized by OpenMP

6) PFAC_CPU: single-threaded Parallel Failureless Aho-

Corasick algorithm on CPUs

7) PFAC_CPU_OMP: multi-threaded Parallel Failureless

Aho-Corasick algorithm on CPUs parallelized by OpenMP

In Table I, columns 2, 3, 4, 5, 6, 7, and 8 show number of rules,

number of characters, number of states, number of transitions,

total memory usage, memory efficiency, and load factor, while

column 9 and 10 show the kernel throughput and system

throughput, respectively.

The following memory efficiency is defined to represent the

memory requirements (Bytes) per character.

memory efficiency =
memory size

number of characters
 (1)

The kernel throughput and system throughput are defined as

follows.

kernel throughput =
input size

elapsed time of kernel launch
 (2)

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

system throughput =
input size

elapsed time of kernel launches and data transfers
 (3)

As mentioned above, our previous work, PFAC [3] adopts a

two-dimensional memory to store a PFAC state transition table

whose size equals the number of states multiplied by 1K bytes

(256 column x 4 bytes/column) to achieve the best performance.

For example, considering the state machine of 27,754 states, the

two-dimensional memory size is 27M bytes (27,754 x 1K bytes).

In our experiments, the proposed RSPH and CSPH have two

kinds of GPU implementations. One is for smaller state machine

which has less than 216 (65,536) states, and the other is for larger

state machine which has more than 216 (65,536) states. Then, we

chose two sets of patterns, the larger one has 126,776 states, and

the smaller one has 27,754 states. Since the smaller one has only

27,754 states which can be encoded using 15 bits, we can merge

the current state and next state information into a 32-bits word as

a key. On the other hand, since the larger one has 126,776 states

which has to be encoded using more than 16 bits, we cannot

merge the current state and next state information as a 32-bits key.

Therefore, the hash table for storing 126,776 states is twice the

size of the one for storing 27,754 states. In addition, since the

small one merges the current state and next state information as

a 32-bits key, the performance of the small one is better than the

large one which separates the current state and next state

information. In addition, the small one allocates a 16-bits linear

array to store match results that can save the data transmission

time via PCIe while the large one allocates a 32-bits linear array

to store match results. As a result, the small one has better system

throughput than the large one.

In terms of memory consumption, the proposed RSPH and

CSPH architectures consume 217KB and 213KB of memory for

processing the small rule set containing 1,998 rules, respectively.

Both the RSPH and CSPH architectures achieve more than 99%

of memory reduction compared to the two-dimensional memory

architecture. For processing the Snort rule set of 10,076 rules, the

CSPH consumes 781KB memory while the RSPH consumes

1,485KB memory. The experimental results show that the CSPH

achieves better memory reduction than the RSPH.

In terms of memory efficiency, the CSPH outperforms most

state-of-the-art memory compression techniques approaches

[1][8][13] [21]. In addition, all these state-of-the-art approaches

need specific hardware such as TCAM, FPGA or ASIC. For

example, both CompactDFA[1] and BFPM[8] approaches

introduce wildcard symbol “*” to represent “don’t care”

condition in their rule sets to compress state transition rules. Both

approaches share the same situation that a transition may

simultaneously match multiple rules. In order to resolve the

problem, the former approach, CompactDFA [1] resolves the

problem by applying the longest prefix matching problem while

the latter approach, BFPM [8] prioritizes the transition rules and

adopts the Balanced Routing Table (BART) search algorithm for

exact-, prefix- and range-match searches. In addition, both [1]

and [8] approaches need specific hardware for storing and

searching their compressed rule sets. The CompactDFA

addresses the pattern matching problem by adopting the longest

prefix matching problem such as the IP-lookup problem. In

addition, CompactDFA stores the compressed rule sets on

Ternary Content Addressable Memory (TCAM) which permits

rapid table lookups through longest prefix matches. However,

high speed TCAMs are extremely expensive with high power

usage and take up quite a bit of silicon space. On the other hand,

the BFPM stores its rule sets in a specific transition-rule memory

implemented on FPGA or ASIC.

Our proposed approaches are also based on the concept of

state transition rules, but with two major differences compared to

[1] and [8]. First, our approaches reduce the storage space for a

PFAC [4] state machine which is much smaller than a traditional

DFA, which has 256 transitions for each state and is reduced by

the [1] and [8] approaches. Not to mention, the size of a PFAC

state machine is generally less than 1% of a traditional DFA state

machine. Second, our proposed approaches do not need specific

hardware and can be easily implemented on commodity DRAM.

This is more cost-effective than the [1] and [8] approaches which

require specific hardware such as TCAM, FPGA or ASIC to

accelerate longest prefix matching and wildcard “*” matching,

respectively.

In table I, AC_CPU denotes single-threaded CPU

implementation of traditional Aho-Corasick algorithm while

AC_CPU_OMP denotes multi-threaded CPU implementation of

traditional Aho-Corasick algorithm optimized by OpenMP.

PFAC_CPU denotes single-threaded CPU implementation of

Parallel Failureless Aho-Corasick algorithm while

PFAC_CPU_OMP denotes multi-threaded CPU implementation

of Parallel Failureless Aho-Corasick algorithm optimized by

OpenMP. In terms of kernel and system throughputs, multi-

threaded PFAC_CPU_OMP achieves an average of 6.9 and 3.4

times faster than single-threaded PFAC_CPU and traditional AC

algorithm, respectively. On the other hand, the proposed RSPH

performed on TITAN X achieves an average of 25.5 and 10.4

times faster than PFAC_CPU_OMP on kernel throughput for

processing the small and large pattern sets, respectively. However,

compared with the best multi-threaded PFAC_CPU_OMP, the

proposed GPU implementations cannot have significant

improvement due to the bottleneck of data transmission via PCIe.

VII. CONCLUSIONS

In this paper, we have proposed two means of parallel string

matching algorithms which adopts perfect hashing to compact a

state transition table. Different from most state-of-the-art

approaches which need specific hardware such as TCAM, FPGA,

or ASIC, our proposed approaches do not need specific hardware

and can be easily implemented on commodity DRAM. Our

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

proposed algorithms are extremely suitable to be implemented on

GPUs. The time and space complexity of the proposed algorithms

have been evaluated and compared with state-of-the-art

approaches as well as the traditional AC algorithm on multicore

CPUs. Experimental results show that the proposed perfect-

hashing based parallel algorithms achieve significant memory

reduction and performance when performed on NVIDIA GPUs.

TABLE I. COMPARISONS WITH STATE-OF-THE-ART MEMORY REDUCTION APPROACHES

Name
of

Rules

of

characters

of

states

of

transitions

Memory

size

(bytes)

Memory

efficiency

Kernel

Throughput

(Gbps)

System

Throughput

(Gbps)

Platform

RSPH 10,076 187,329 126,776 126,775 1,485KB 8.12B 55.73 14.89

NVIDIA

GTX680

CSPH 10,076 187,329 126,776 126,775 781KB 4.27B 50.56 14.44

PFAC 10,076 187,329 126,776 126,775 126MB 693B 83.32 16.39

RSPH 1,998 41,997 27,754 27,753 217KB 5.29B 108.83 25.87

CSPH 1,998 41,997 27,754 27,753 213KB 5.21B 95.52 24.74

PFAC 1,998 41,997 27,754 27,753 27MB 677B 143.37 27.46

RSPH 10,076 187,329 126,776 126,775 1,485KB 8.12B 136.50 17.55

NVIDIA

TITAN X

CSPH 10,076 187,329 126,776 126,775 781KB 4.27B 120.26 17.03

PFAC 10,076 187,329 126,776 126,775 126MB 693B 124.58 17.28

RSPH 1,998 41,997 27,754 27,753 217KB 5.29B 333.92 29.18

CSPH 1,998 41,997 27,754 27,753 213KB 5.21B 262.94 30.07

PFAC 1,998 41,997 27,754 27,753 27MB 677B 385.46 31.04

AC_CPU 10,076 187,329 126,776 126,775 126MB 693B 2.01 2.01

Intel Core

i7-3770

AC_CPU_OMP 10,076 187,329 126,776 126,775 126MB 693B 1.72 1.72

PFAC_CPU 10,076 187,329 126,776 126,775 126MB 693B 4.13 4.13

PFAC_CPU_OMP 10,076 187,329 126,776 126,775 126MB 693B 13.90 13.90

AC_CPU 1,998 41,997 27,754 27,753 27MB 677B 2.59 2.59

AC_CPU_OMP 1,998 41,997 27,754 27,753 27MB 677B 2.08 2.08

PFAC_CPU 1,998 41,997 27,754 27,753 27MB 677B 5.23 5.23

PFAC_CPU_OMP 1,998 41,997 27,754 27,753 27MB 677B 18.03 18.03

B-FSM[8]

(4 subsets)
39.5K 25.2K n/a n/a 188KB 7.46B n/a 2 ASIC/FPGA

CDFA[21]

(4 subsets)
1,785 29.0K n/a n/a 181KB 6.2B n/a 11.7 ASIC/FPGA

Bitmap

Compression[13]
1.5K 18.2K n/a n/a 2.8MB 154B n/a 7.6 ASIC

Path

Compression[13]
1.5K 18.2K n/a n/a 1.1MB 60B n/a 7.6 ASIC

REFERENCE

[1] A. Bremler-Barr, D. Hay, Y. Koral, “CompactDFA: Generic State

Machine Compression for Scalable Pattern Matching,” in

INFOCOM 2010. The 29th Conference on Computer

Communications. IEEE, pp. 659-667, 2010.

[2] A. V. Aho and M. J. Corasick, "Efficient String Matching: an Aid

to Bibliographic Search," Commun. ACM, vol. 18, pp. 333-340,

1975.

[3] C.-H. Lin, C.-H. Liu, L.-S. Chien, S.-C. Chang, "Accelerating

Pattern Matching Using a Novel Parallel Algorithm on

GPUs," IEEE Transactions on Computers, vol. 62, no. 10, pp.

1906-1916, Oct. 2013

[4] C.-H. Lin and S.-C. Chang, "Efficient Pattern Matching Algorithm

for Memory Architecture" IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 19, No.1, pp.33 - 41, 2011.

[5] C.-H. Lin, C.-H. Liu, S.-C. Chang, and W.-K. Hon, "Memory-

Efficient Pattern Matching Architectures Using Perfect Hashing on

Graphic Processing Units," 31st Annual IEEE International

Conference on Computer Communications (INFOCOM), 2012.

[6] DEFCON, Available: http://cctf.shmoo.com

[7] G. Vasiliadis , M. Polychronakis, S. Antonatos ,

E. P. Markatos, and S. Ioannidis, “Regular Expression Matching on

Graphics Hardware for Intrusion Detection,” In Proc. 12th

International Symposium on Recent Advances in Intrusion

Detection, 2009.

[8] J. V. Lunteren, "High-Performance Pattern-Matching for Intrusion

Detection", INFOCOM 2006. 25th IEEE International Conference

on Computer Communications. Proceedings, pp. 1 - 13, April 2006.

[9] L. Tan and T. Sherwood, "A High Throughput String Matching

Architecture for Intrusion Detection and Prevention," in Computer

Architecture, 2005. ISCA '05. Proceedings. 32nd International

Symposium on, 2005, pp. 112-122.

[10] M. Becchi, and S. Cadambi, “Memory-Efficient Regular

Expression Search Using State Merging,” In Proc. of the 26th IEEE

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

International Conference on Computer Communications

(INFOCOM). 1064–1072, 2007.

[11] M. C. Schatz and C. Trapnell, “Fast Exact String Matching on the

GPU,” Technical report.

[12] M. Roesch. "Snort- Lightweight Intrusion Detection for networks,"

in Proceedings of LISA99, the 15th Systems Administration

Conference, 1999.

[13] N. F. Huang, H. W. Hung, S. H. Lai, Y. M. Chu, and W. Y. Tsai, “A

Gpu-based Multiple-Pattern Matching Algorithm for Network

Intrusion Detection Systems,” in Proc. 22nd International

Conference on Advanced Information Networking and Applications

(AINA), 2008, pp. 62–67.

[14] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, "Deterministic

Memory-Efficient String Matching Algorithms for Intrusion

Detection," in INFOCOM 2004. Twenty-third Annual Joint

Conference of the IEEE Computer and Communications Societies,

2004, pp. 2628-2639 vol.4.

[15] NVIDIA Corporation. NVIDIA CUDA programming Guide, 2010

Available: http://developer.nvidia.com

[16] PFAC library, Available: http://code.google.com/p/pfac/

[17] R. E. Tarjan and A. C.-C. Yao, "Storing a Sparse Table," Commun.

ACM, vol. 22, pp. 606-611, 1979.

[18] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, C. Estan,

“Evaluating GPUs for Network Packet Signature Matching,” in

Proc. of the International Symposium on Performance Analysis of

Systems and Software, ISPASS, 2009.

[19] S. Kumar, J. Turner, P. Crowley, and M. Mitzenmacher, “HEXA:

Compact Data Structures for Faster Packet Processing,” in Proc. of

IEEE ICNP'07, Beijing, China, October, 2007.

[20] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner,

“Algorithms to Accelerate Multiple Regular Expressions Matching

for Deep Packet Inspection,” in ACM SIGCOMM, 2006.

[21] T. Song, et al., "A Memory Efficient Multiple Pattern Matching

Architecture for Network Security," in INFOCOM 2008. The 27th

Conference on Computer Communications. IEEE, 2008, pp. 166-

170.

[22] Y. Xu, L. Ma, Z. Liu, and H. J. Chao, “A Multi-Dimensional

Progressive Perfect Hashing for High-Speed String Matching,” in

Proc. 17th ACM/IEEE Symposium on Architectures for Networking

and Communications Systems, 2011.

Cheng-Hung Lin (S’06-M’08) received the Ph.D. degree in

computer science from National Tsing Hua University in 2008.
He is currently an associate professor with the department of
electrical engineering, National Taiwan Normal University. His
current research interests include parallel computing, multicore
programming, and parallel algorithm design.

Jin-Cheng Li (S'13) received the B.S. degrees in computer

science from National Tsing-Hua University in 2013.He is
currently working towards the M.S. degree in the department of
computer science, National Tsing-Hua University. His research
interests include network intrusion detection, GPU
programming and related computer-aided design (CAD)
techniques.

Chen-Hsiung Liu received the B.S. and M.S. degrees in

computer science from National Tsing-Hua University in 2009
and 2011, respectively. In 2011, he joined MStar

Semiconductor, Inc. His research interests include network
intrusion detection, GPU programming and related computer-
aided design (CAD) techniques.

Shih-Chieh Chang (S’92–M’95) received the B.S. degree

in electrical engineering from National Taiwan University in
1987 and the Ph.D. degree from the University of California,
Santa Barbara in 1994. He worked at Synopsys,
Inc. in mountain view, CA, from 1995 to 1996. He is now a
professor in the department of computer science in National
Tsing-Hua University. Professor Shih-Chieh Chang is currently
the executive director of national program for intelligent
electronics in Taiwan and also an Associate Editor of ACM
Transaction on Design Automation of Electronic System. He
has published more than 100 technical papers and has served
in the several Program committees such as ICCAD, DAC,
ICCD, ISQED, and ASPDAC. His current research interests
include low power and low energy optimization, variation aware
optimization and tolerance, 3D design methodology.

http://www.ee.ntu.edu.tw/
http://www.ntu.edu.tw/
http://www.ucsb.edu/
http://www.ucsb.edu/
http://www.synopsys.com/
http://www.synopsys.com/
http://www.cs.nthu.edu.tw/

