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Abstract- Multiple string matching has a wide range of applications 

such as network intrusion detection systems, spam filters, 

information retrieval systems, and bioinformatics. To accelerate 

multiple string matching, many hardware approaches are proposed 

to accelerate string matching. Among the hardware approaches, 

memory architectures have been widely adopted because of their 

flexibility and scalability. A conventional memory architecture 

compiles multiple string patterns into a state machine and performs 

string matching by traversing the corresponding state transition 

table. Due to the ever-increasing number of attack patterns, the 

memory used for storing the state transition table increased 

tremendously. Therefore, memory reduction has become a crucial 

issue in optimizing memory architectures. In this paper, we 

propose two parallel string matching algorithms which adopt 

perfect hashing to compact a state transition table. Different 

from most state-of-the-art approaches implemented on 

specific hardware such as TCAM, FPGA, or ASIC, our 

proposed approaches are easily implemented on commodity 

DRAM and extremely suitable to be implemented on GPUs. 
The proposed algorithms reduce up to 99.5% memory requirements 

for storing the state transition table compared to the traditional two-

dimensional memory architecture. By studying existing approaches, 

our results obtain significant improvements in memory efficiency. 

Keywords-perfect hashing; string matching; deterministic finite 

automaton 

I. INTRODUCTION 

Multiple string matching is widely used in many applications 

such as network intrusion detection systems (NIDS), spam filters, 

information retrieval systems, and bioinformatics to find all 

locations of multiple patterns simultaneously. To accelerate 

multiple string matching, many hardware architectures 

[1][8][9][14][19][21] are proposed. Among the proposed 

architectures, the Aho-Corasick (AC) algorithm is widely 

adopted in memory architectures because it uses linear time to 

perform multiple string matching. A traditional memory 

architecture for multiple string matching works as follows. First, 

multiple string patterns are compiled into a single deterministic 

finite automaton (DFA) using the AC algorithm. Then, the 

corresponding state transition table of the DFA is stored in a 

memory. Finally, multiple string matching is performed by 

traversing the DFA.  

Traditional memory architecture uses a two-dimensional 

memory to store the corresponding state transition table of the 

DFA shown in Figure 1. The figure depicts each row as 

representing a state which contains 256 columns to store the next 

state information for each ASCII alphabet and a column to store 

match vectors. In addition, the state and char registers storing 

information of the current state and the input character are used 

to look up the next state information from the state transition table. 

 

Figure1. Traditional memory architecture 

With growing number of attack patterns, the memory required 

for use of storing the corresponding state transition table 

increased tremendously. Considering the memory architecture in 

Figure 1, each row needs 256 x 4 (1K) bytes to store the next state 

information and one byte to store a match vector that indicates 

which pattern is matched. In other words, a state machine with 

one million states needs approximate 1G bytes of memory for 

storing the state transition table. Therefore, reducing the required 

memory for storing the state transition table has become a crucial 

issue.  

There are two ways to reduce the memory requirement. One 

is to reduce the size of an automaton while the other is to compact 

the storage of an automaton. Delayed DFA (D2FA) [20] is 

proposed to remove duplicated transitions by introducing 

“default” transitions. A compact data structure [10] is proposed 

to reduce a DFA by merging non-equivalent states. A memory-

efficient algorithm [4] is proposed to reduce an AC state machine 

by merging non-equivalent states. The B-FSM based pattern 
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matching (BFPM) scheme [8] is based on the concept of so-called 

state transition rules which specify the relationship of each state 

transition and their corresponding next state information. To 

compress state transition rules, BFPM introduces wildcard 

symbol “*” to represent “don’t care” condition in their rule sets. 

BFPM prioritizes the transition rules and adopts the Balanced 

Routing Table (BART) search algorithm for exact-, prefix- and 

range-match searches. To improve storage efficiency, the BFPM 

adopts a hash function and limits the maximum number of hash 

collision of any state transition by a bound of 4. However, the 

processing of hash collisions may increases memory access and 

degrades system performance. Thus, by extending the work of 

BFPM, a cached deterministic finite automaton (CDFA) [21] is 

proposed to reduce transitions in an AC_DFA, while a next state 

addressing (NSA) scheme is proposed to efficiently store 

transitions using less memory. Nevertheless, the NSA scheme 

still uses two-dimensional memory to store the multiple 

transitions from a certain state which has multiple next states. 

When such states are increased, the memory efficiency of NSA is 

decreased. A bit-split memory architecture [9] is proposed to split 

an AC_DFA finite state machine into a set of small AC_DFA and 

reduces the total memory requirement. Still, the bit-split memory 

architecture uses two-dimensional memories to store state 

transition tables. Bitmap compression and path compression [13] 

are proposed to achieve compact storage of an AC state machine 

and has better performance on worst cases. Even though the 

computational cost of the proposed compression scheme remains 

high. CompactDFA [1] also introduces wildcard symbol “*” to 

minimize the memory of an AC_DFA by encoding all transitions 

to a specific state as a single prefix. The scheme resolves the 

string matching problem by applying the longest prefix matching 

problem with a little overhead in the number of bits of state 

encoding. Since CompactDFA addresses the pattern matching 

problem by applying the longest prefix matching problem such 

as the IP-lookup problem. In addition, CompactDFA stores the 

compressed rule sets on Ternary Content Addressable Memory 

(TCAM) which permits rapid table lookups through longest 

prefix matches. Furthermore, a HEXA [19] approach is proposed 

to significantly reduce memory by a compact, and to be viewed 

as a historical representation of state transition. However, 

TCAMs are expensive in chip area and power consumption. 

Nevertheless, another way to reduce memory is to compact 

the two-dimensional memory using hashing techniques. However, 

common hashing algorithms are noted for their hashing collision 

problem which requires timing and hardware overhead to resolve. 

A progressive perfect hashing (P2-hashing) [22] algorithm is 

proposed to store an AC automaton in a compact hash table 

without collisions. The main idea of the P2-hashing algorithm is 

to divide the AC transitions into multiple sets according to state 

numbers and incrementally put these sets into a hash table. If a 

hash collision happens during the placement of a transition in one 

set, the already-placed transitions in this set are removed and the 

state number of the set is renamed. Then, a new trial starts until 

all transition sets are put into a hash table. However, the 

construction time of the perfect hash table is not deterministic. 

In our previous work, the Parallel Failureless Aho-Corasick 

(PFAC) [3] algorithm is proposed to parallelize string matching 

processes on GPUs. Compared to state-of-the-art approaches, the 

PFAC state machine has the minimum number of transitions 

because it removes all failure transitions as well as the self-loop 

transitions to the initial state. In other words, the state transition 

table is sparse and most entries of the two-dimensional table are 

empty. Continually, we propose to use a static perfect hashing to 

compress the two-dimensional sparse table and achieve 

significant memory reduction [5].  

The main contributions of this paper are summarized as 

follows. 

1. We propose two parallel string matching algorithms which 

adopt a hardware-friendly perfect hashing algorithm [17] to 

compact a state transition table. The perfect hashing 

algorithm stores the valid transitions in a compact hash table 

and takes constant time to generate the hash index and access 

the hash table without collisions.  

2. We have implemented the proposed memory architecture on 

graphic processing units (GPU) and evaluated the 

performance of the proposed architecture using attack 

patterns from Snort [21] V2.8 and input packets from 

DEFCON [6]. Our architecture achieves up to 99.5% of 

memory reduction compared to the traditional two-

dimensional memory architectures. The experimental results 

show that the proposed algorithm outperforms state-of-the-art 

memory reduction architectures on memory efficiency. 

II. BACKGROUND 

A. Aho-Corasick algorithm 

Among the proposed pattern matching algorithms, the Aho-

Corasick (AC) algorithm has been widely adopted because of its 

ability of matching multiple patterns simultaneously. The AC 

algorithm introduces a new transition called failure transition to 

replace all backtracking transitions of a DFA. For example, 

Figure 2 shows an AC state machine of the three patterns, 

“SFTP”, “PPS”, and “FTPS”, where the solid lines represent 

valid transitions and the dotted lines represent failure transitions. 

However, the AC algorithm is not suitable for hardware 

implementation because taking failure transitions may incur 

cycle penalties for state traversing.  
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Figure 2. AC state machine of "SFTP", "PPS", and "FTPS" 

 

B. Parallel Failureless Aho-Corasick algorithm 

In our previous work, we propose a Parallel Failureless Aho-

Corasick (PFAC) [3] algorithm which achieves significant 

throughput on GPUs. The library and source code of the PFAC 

algorithm are accessible in Google Code 

(http://code.google.com/p/pfac/)[16]. 

Using PFAC has two steps. First, attack patterns are compiled 

into a PFAC state machine. And then, each byte of an input 

stream is assigned an individual thread to traverse the PFAC state 

machine. Figure 3 shows the PFAC architecture where each 

thread traverses the same state machine. The most important 

property of the PFAC architecture is that each thread of PFAC is 

only responsible for identifying the pattern starting at the thread’s 

starting position. Whenever a thread cannot find the beginning of 

a pattern at its starting position, it terminates immediately without 

taking failure transitions. In other words, each thread of PFAC 

runs in the best time O(1) and the worst time O(m) where m is the 

longest pattern length. Therefore, we can eliminate all failure 

transitions as well as the self-loop transition to the initial state in 

the traditional AC state machine. Precisely speaking, a PFAC 

state machine of n states contains only n-1 valid transitions. In 

other words, the transition-to-state ratio of the PFAC automaton 

is less than 1 which indicates that the PFAC automaton is an 

intrinsic sparse automaton. For example, Figure 4 shows the 

PFAC state machine of the three patterns, “SFTP”, “FTPS”, and 

“PPS”, which has 12 states and only 11 valid transitions left. 

Compared to Figure 2, all backtracking transitions and the self-

loop transition to the initial state are all removed. Compared to 

state-of-the-art architectures, a PFAC state machine has 

minimum number of valid transitions. Another important 

property of PFAC is that each final state of the PFAC machine 

represents a unique pattern without handling multiple outputs. 

Therefore, we eliminate output table accesses by reordering the 

number of final states to represent matching vectors. The 

encoding technique is described as follows. For a PFAC state 

machine which has n final states (patterns), the number of final 

states is encoded from 1 to n, and all internal states including the 

initial state are numbered from n+1. As shown in Figure 4, the 

final states of the patterns “SFTP”, “FTPS”, and “PPS” are 

numbered from 1 to 3 while the other states including the initial 

state are numbered from 4. Whenever the PFAC machine reaches 

a state whose number is smaller than the initial state, we know 

that the machine reaches a final state and directly outputs the 

number of the final state without looking up the output table. 

 

Figure 3. PFAC architecture which allocates each byte of the input 

stream via an individual thread 

 

Figure 4. PFAC state machine of “SFTP”, “FTPS”, and “PPS” 

In order to achieve the best result, the PFAC algorithm stores 

the state transition table in a two-dimensional memory because 

only one memory access is required to look up the next state 

information that includes a given state and an input character. 

However, it’s extremely space-inefficient to use a two-

dimensional memory to store the sparse PFAC automaton. 

To compress the PFAC state transition table, our basic idea is 

to use a perfect hash algorithm to store only valid transitions in a 

hash table as shown in Figure 5. The hash table has two fields to 

store valid keys and the corresponding next state information. To 

query the next state information of an input key (transition), the 

hash index is first generated by the perfect hash function and then 

the key stored in the hash table is retrieved to compare with the 

input key. If they are equal, the next state is delivered to update 

the state value. Otherwise, the state value is set as a trap state and 

then we stop traversing the state machine. 

F T P S F T P P S X X X X X X X X X X 

. . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . 

.  .  .  .  .  



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2674664, IEEE
Transactions on Parallel and Distributed Systems

 
Figure 5: Perfect-hashing based memory architecture 

Unlike traditional hash functions which may map two or more 

keys to the same hash value, a perfect hash function maps each 

key (valid transition) to a distinct hash value without collisions. 

However, the cost of computing the hash index and accessing the 

hash table would degrade the performance. As shown in Figure 

5, the time required to query a key is equal to the amount of the 

time computing the hash index and the time looking up the hash 

table. Although many perfect hashing algorithms are available in 

literature, most of them require multiple memory accesses to 

obtain the accurate hash index from a hash table lookup. 

Therefore, choosing an efficient perfect hashing algorithm is 

crucial to optimize the performance of the architecture. 

Note that many applications need to build a hash table on the 

fly, as in our case, the content in the hash table is known in 

advance so that a static perfect hash function can be applied.   

III. HARDWARE-FRIENDLY PERFECT HASHING ALGORITHMS 

Among the proposed perfect hashing algorithms, a hardware-

friendly perfect hashing algorithm [17] is proposed to store a 

static sparse table without collisions. The main idea of the perfect 

hashing algorithm is to shift the rows (or columns) of a sparse 

two-dimensional table until no two keys appear in the same 

position. And then, the sparse two-dimensional table is 

compacted to a dense one-dimensional table. The main advantage 

of the perfect hashing algorithm is its linear construction time of 

hash table and constant time to acquire the hash index. Although 

the perfect hash function does not guarantee to achieve minimal 

space theoretically, it’s well-suited to be implemented on 

hardware with a little modification.  

In this section, we first discuss two modifications of the 

perfect hash algorithm in [17], Row-Shifting Perfect Hashing 

(RSPH) and Column-Shifting Perfect Hashing (CSPH). Then 

follow up with discussions on how to integrate RSPH and CSPH 

into string matching algorithms. 

A. Row-Shifting Perfect Hashing (RSPH) 

The procedure of constructing the hash table using RSPH is 

as follows. 

i. Start with width w of a two-dimensional key table and 

place each valid key k at location (row, col), where row 

and col are equal to quotient and remainder of the key 

divided by the width w, respectively. We use the 

following expressions to denote the two operations. 

row = ⌊k / w⌋                   

col = k mod w                   

 

ii. Rows are prioritized by the number of keys in it and 

slide rows by order of priority. 

1. First, slide the row to left first in order for the first 

key in the row be aligned at the first column. 

2. Then, slide the row to right until each column has 

only one key and record the offset in an array which 

is defined as RO (abbreviated from Row Offset) table. 

iii. Compact the two-dimensional array into a row. 

We illustrate the procedure of RSPH using the example in 

Figure 6. In Figure 6, we have the key set, S = {2, 4, 10, 11, 13, 

14, 20, 21, 22, 25, 27} which represent valid keys in the 

corresponding positions. First, we set a two-dimensional key 

table of width 8 (w=8) and put each key k in S at the location 

(row, col), where row = ⌊k / 8⌋, col = k mod 8. For example in 

Figure 6(a), the key 20 is put into the location (row, col) = 

(⌊20 / 8⌋, 20 mod 8) = (2, 4). In the second step, we first shift 

each row to left and then shift right until each column has only 

one key and record the offset from the first column in the RO 

array. The order of a row to be moved is prioritized by the number 

of keys in it. For example, row 1 has the highest priority because 

row 1 has 4 keys in it. As shown in Figure 6(b), row 1 is first 

shifted left so that the key 10 is aligned at column 0 and record 

the offset, -2 in RO[1]. Then, rows 2, 0 and 3 are shifted to proper 

positions so that no collisions occur in the same column. The 

offset of each row is recorded in the RO array. Finally, the two-

dimensional table is collapsed to a one-dimensional hash key 

table. In Figure 6(b), the memory space for storing the 11 keys is 

reduced from 32 to 16 elements, where 12 elements are for 

storing keys and 4 elements for recording the offsets of rows. 

Different than the original algorithm in [17], we propose to 

slide each row to left first and then slide right to the proper 

position. The reason is due to the fact that the first 32 symbols of 

ASCII are non-printable characters and most valid transitions do 

not contain non-printable characters. Therefore, using our RSPH 

method can achieve better load factor than the original algorithm 

in [17]. 

 

 
(a) Put keys into a two-dimensional key table of width 8 
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(b) Results of RSPH 

Figure 6. Example of creating a perfect hash table by RSPH 

On the other hand, given an input key, k, the procedure of 

validating the input key is as follows.  

i. row = ⌊k / w⌋; 
ii. col = k mod w; 

iii. index = RO[row] + col; 

iv. If HK[index] == k 

   k is a valid key; 

else  

   k is an invalid key; 

Given an input key, k, the first and second steps calculate the 

position (row, col) of k in the original table. Because RSPH uses 

the RO array to store the offset of each row, the third step 

calculates the index of the query key in the hash table by 

summing RO[row] and col. The last step validates the query key 

by comparing the query key with the value stored in HK[index]. 

For example, the index of the key 14 is equal to RO[⌊14/8⌋] + 14 

mod 8 = RO[1] + 6 = -2 + 6 = 4. Because HK[4] is equal to 14, 

we know that the key 14 is a valid key and belongs to the key set 

S. Consider the other key 19. The index of the key 19 is equal to 

RO[⌊19/8⌋] + 19 mod 8 = RO[2] + 3 = 1 + 3 = 4. Because HK[4] 

is not 19, we know that 19 is not a valid key. 

B. Column-Shifting Perfect Hashing (CSPH) 

The procedure of the CSPH is as follows. 

i. Start with a width w of two-dimensional key table and 

place each valid key k at location (row, col), where row 

and col are equal to quotient and remainder of the key 

divided by the width w, respectively. We use the 

following expressions to denote the two operations. 

row = ⌊k / w⌋                   

col = k mod w                   

 

ii. Columns are prioritized by the number of keys in it and 

slide columns by order of priority. 

1. First, slide the column up first to let the first key in 

the column be aligned at the first row. 

2. Then, slide the column down until each row has only 

one key and record the offset in an array which is 

defined as CO (abbreviated from Column Offset) 

table. 

iii. Compact the two-dimensional array into a column.  

Figure 7 demonstrates the results of CSPH. Each column 

slides up and down to find a proper position that no collision 

occurs in the same row. The offsets of columns are recorded in 

the CO array. Finally, the two-dimensional table collapses into a 

one-dimensional hash key table. The memory space for storing 

the 11 keys is reduced from 32 to 19 elements, where 11 elements 

are for storing keys and 8 elements for recording the offsets of 

columns. 

 

Figure 7. Results of CSPH 

 

On the other hand, given an input key, k, the procedure of 

validating the input key is as follows. 

i. row = ⌊k / w⌋; 
ii. col = k mod w; 

iii. index = CO[col] + row; 

iv. If HK[index] == k 

   k is a valid key; 

else  

   k is an invalid key; 

Because CSPH uses the CO array to store the offset of each 

column, the index is obtained by summing the CO[col] and row. 

For example, the index of key 14 is equal to CO[14 mod 8] + 

⌊14/8⌋ = CO[6]+1 = 7+1 = 8. Then, we find that HK[8] is equal 

to 14. Therefore, 14 is a valid key.  

IV. PERFECT-HASHING BASED MEMORY ARCHITECTURE 

In this section, we propose two basic perfect-hashing based 

memory architectures and their modifications for space and time 

optimization. 

A. Row-Shifting Perfect-Hashing Memory Architecture 
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Figure 8 shows the Row-Shifting Perfect-Hashing Memory 

Architecture (RSPHMA). In Figure 8, the NS table (abbreviated 

from Next State) is used to store the next state information which 

corresponds to each key (valid transition) stored in the HK table. 

The input key (transition) is composed of a current state (stored 

in state) and an input character (stored in char). The comparator 

is used to compare the input key with the key stored in the HK 

table. If the input key matches the key stored in the HK table, it 

means that the input key (transition) is a valid transition and the 

current state is updated by the next state information stored in NS. 

Otherwise, the input key is not a valid transition and the current 

state is updated as a trap state which indicates there is no valid 

next state for the current state and input character. The PHF block 

generates the hash index.  

 
Figure 8. Row-Shifting Perfect-Hashing Memory Architecture 

(RSPHMA) 

The procedure to query the next state in RSPHMA is as 

follows. 

i. row = ⌊k / w⌋; 
ii. col = k mod w; 

iii. index = RO[row] + col; 

iv. If HK[index] == k 

   k is a valid key; 

else 

   k is an invalid key; 

v. If k is a valid key 

   nextState = NS[index]; 

else 

   nextState = trap state; 

 
In Figure 8, we find that the HK table used for storing keys 

consumes a lot of memory. In addition, the cost of modulation 

and division computation in PHF is expensive. Therefore, we 

propose two modifications to optimize the RSPHMA: one is to 

reduce the memory of HK to improve memory efficiency while 

the other is to reduce the complexity of PHF to generate hash 

index. The space-efficient and time-efficient RSPHMA are 

described as follows. 

B. Space-efficient RSPHMA 

In Figure 8, the HK table is used for storing keys which is 

composed of current states and input characters. The keys stored 

in HK are used to verify whether an input key is a valid key 

(transition) or not. In Figure 6(b), if there are two distinct keys 

having the same index, the two keys must locate in different rows 

in the key table. The proof of the proposition is as follows. 

PROPOSITION 1. In Row-Shifting Perfect-Hashing algorithm, if 

there are two distinct keys having the same index, the two keys 

must locate in different rows in the key table. 

Proof. For the sake of contradiction, suppose that if there are two 

distinct keys having the same index, the two keys must locate in 

the same row in the key table. In Row-Shifting Perfect-Hashing 

algorithm, the two keys are as follows. 

key1 = row * width + column1 

key2 = row * width + column2 

Since key1 is distinct from key2, column1 is distinct from 

column2.  

Furthermore, in Row-Shifting Perfect-Hashing algorithm, the 

indices of the two keys are calculated as follows where RO is the 

table storing offsets of each row.  

index1 = RO[row] + column1 

index2 = RO[row] + column2 

Since column1 is distinct from column2, index1 is distinct from 

index 2. The result contradicts our assumption that if there are 

two distinct keys having the same index, the two keys must locate 

in the same row.                                      

For example, the two keys 14 and 19 mapping to the same 

position (the fifth element) of the hash table locate in the second 

and third rows, respectively. In other words, the correctness of a 

key can be verified by checking the row of a key instead of 

checking the whole key. Therefore, the hash table can be further 

reduced by storing the row of keys instead of the whole keys. 

Furthermore, in order to reduce the complexity of PHF, the width 

of key table is set to power of two, 512, 1024, or 2048 typically. 

Therefore, the operations of modulation and division can be 

replaced by mask and shifter, respectively. Figure 9 shows the 

space-efficient RSPHMA where the HK table only stores the row 

number of keys. In Figure 9, the right-shifter is used to shift the 

input key to get the row number of the input key. For example, if 

the width of the key table is 1,024, the right-shifter shifts the input 

key 10 bits. In other words, the hash key is reduced by 10 bits. 

It’s noted that by increasing the width of the key table, it reduces 

the width of hash key but increases the HK size and decreases the 

load factor, the ratio of the number of valid keys to the HK size.  
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Figure 9. Space-efficient RSPHMA 

The procedure to query the next state in the space-efficient 

RSPHMA is as follows. 

i. row = k ≫ log
2
w; 

ii. col = k mod w; 

iii. index = RO[row] + col; 

iv. If HK[index] == row 

   k is a valid key; 

else 

   k is an invalid key; 

v. If k is a valid key 

   nextState = NS[index]; 

else 

   nextState = trap state; 

 

C. Time-efficient RSPHMA 

From the above discussion, a less complicated perfect hash 

function can improve the performance of the proposed memory 

architecture. If the width of the key table is set to 256, the row of 

a key is equal to the state number. Therefore, the HK table stores 

state numbers as hash keys. Because the HK table stores state 

numbers as hash keys, the calculations of row and col in PHF can 

be eliminated and replaced by state and char. However, setting 

the width of the key table to 256 increases the width of the HK 

table as well as the size of the RO table. 

Figure 10 shows the time-efficient RSPHMA where the HK 

table stores state numbers as hash keys. The state and char are 

directly used to generate the index without modulation and 

division operations.  

 

Figure 10. Time-efficient RSPHMA 

The procedure to query the next state in the time-efficient 

RSPHMA is as follows. 

i. index = RO[state] + char; 

ii. If HK[index] == state 

k is a valid key; 

else  

k is an invalid key; 

iii. If k is a valid key 

nextState = NS[index]; 

       else  

nextState = trap state; 

 

D. Column-shifting perfect-hashing memory architecture 

Instead of shifting row, shifting column is another way to 

construct hashing table in [17]. Consider the original two-

dimensional state table which has 256 columns, using column-

shifting to construct hash table intuitively has two benefits. The 

first benefit is the size of memory named CO to record column 

offset is equal to 256 x 4 bytes which is much smaller than the 

memory used to store row offset in RSPHMA. In RSPHMA, the 

size of memory named RO used to store row offset is proportional 

to the number of states. 

The second benefit is that the size of hash key is only one-

byte long. Since the hash keys stored in HK are used to verify 

whether an input key is a valid key (transition) or not. In Figure 

7, if there are two distinct keys having the same index, the two 

keys must locate in different columns in the key table. The proof 

of the proposition is as follows. 

PROPOSITION 2. In Column-Shifting Perfect-Hashing algorithm, 

if there are two distinct keys having the same index, the two keys 

must locate in different columns in the key table. 

Proof. For the sake of contradiction, suppose that if there are two 

distinct keys having the same index, the two keys must locate in 

the same column in the key table. In Column-Shifting Perfect-

Hashing algorithm, the two keys are as follows. 

key1 = row1 * width + column 
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key2 = row2 *width + column 

Since key1 is distinct from key2, row1 is distinct from row2.  

Furthermore, in Column-Shifting Perfect-Hashing algorithm, the 

indices of the two keys are calculated as follows where CO is the 

table storing offsets of each column.  

index1 = CO[column] + row1 

index2 = CO[column] + row2 

Since row1 is distinct from row2, index1 is distinct from index 2. 

The result contradicts our assumption that if there are two distinct 

keys having the same index, the two keys must locate in the same 

column.                                            

For example, the two keys 14 and 19 mapping to the same 

position (the fourth element) of the hash table locate in the third 

and fourth columns, respectively. In other words, the correctness 

of a key can be verified by checking the column number of the 

key rather than checking the whole key value. Particularly, if the 

number of column is 256, we can minimize the size of the HK 

table to exact one-byte long. Compared to the time-efficient 

RSPHMA, the width of HK table is reduced from four-bytes long 

to one-byte long.  

Although the column-shifting algorithm has two benefits 

compared to the row-shifting algorithm. The column-shifting 

algorithm has a major drawback in which the load factor is not 

satisfied. The load factor represents as the ratio of the number of 

keys over the number of hash entries. In perfect hashing 

algorithms, the load factor of a perfect hash table is always less 

than or equal to one. The load factor close to one means a dense 

hash table is constructed. On the contrary, a hash table with a 

small load factor means the hash table is sparse.  

In our application, the load factor of column-shifting is not 

satisfied due to the characteristic that the depth of the two-

dimensional table is much larger than its width. Therefore, it is 

more difficult for column-shifting algorithm to find positions 

without collisions.  

Figure 11 shows the Column-Shifting Perfect-Hashing 

Memory Architecture (CSPHMA). 

 
Figure 11. Column-Shifting Perfect-Hashing Memory Architecture 

(CSPHMA) 

The procedure to query the next state in the CSPHMA is as 

follows. 

i. row = ⌊k / w⌋; 
ii. col = k mod w; 

iii. index = CO[col] + row; 

iv. If HK[index] == k 

   k is a valid key; 

else 

   k is an invalid key; 

v. If k is a valid key 

   nextState = NS[index]; 

else 

   nextState = trap state; 

V. GPU IMPLEMENTATIONS AND OPTIMIZATION 

In recent years, GPUs have attracted a lot of attention due to 

its tremendous parallel computing ability and very high memory 

bandwidth. Several works [16][13][11][7][18] are proposed to 

accelerate exact and regular expression pattern matching using 

GPUs.  

As discussed in Section II, our previous work, PFAC [3] 

stores the state transition table in a two-dimensional memory 

whose size equals the number of states multiplied by 1K bytes 

(256 column x 4 bytes/column) to achieve best performance. For 

a state machine of one million states, the memory architecture 

needs a size 1GBytes two-dimensional memory to store the 

corresponding state transition table. With the increasing number 

of patterns, the state transition table will grow too large to fit into 

the GPU memory. Therefore, to increase the scalability of PFAC 

to accommodate more patterns, we integrate RSPHMA and 

CSPHMA to PFAC using CUDA[15] on NVIDIA GPUs.  

Compared to the two-dimensional memory architecture, the 

cost of using perfect hashing includes (1) hash index generation, 

(2) HK table access, and (3) NS table access. We observe that the 

perfect hashing architecture is a memory-bound task that has 

three memory accesses including RO (or CO), HK, and NS tables. 

To alleviate the cost of memory accesses on GPUs, we discuss 
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several optimization techniques as follows. 

A. Reducing the complexity of hash index computation 

As shown in Figure 6, the calculation of row and col needs 

division and modulus operations. However, to alleviate the cost 

for managing division and modulus operations, we can set the 

width of the key table, w, as power of 2. Then, the division and 

modulus operations can be replaced by shift-right and bitwise-

AND operation, respectively. 

In addition, the time-efficient RSPHMA sets the width of the 

key table as 256, the division and modulus operations can be 

removed and the row and col can be replaced by state and char, 

respectively. Because the computation of hash indices is reduced, 

the performance can be improved.  

B. Merging HK and NS tables 

In order to reduce the memory accesses which are expensive 

in GPU computation, we can merge HK and NS tables to increase 

performance. Then, the hash key and next state information can 

be read as one memory access and further performance can be 

improved. Consider an AC state machine of n states, the size of 

the traditional two-dimensional table is n×256. If the width of the 

key table is set to 1,024, the depth of the two-dimensional key 

table is reduced to 
n

4
. Because the number of rows is reduced to 

𝑛

4
, the row indices stored in the hash table as keys can be further 

reduced by 2 bits. Therefore, if we set the width of the key table 

to 1,024, we can divide an integer of 32 bits as two columns of 

17 bits and 15 bits. The column of 17 bits is used to store the next 

state information while the column of 15 bits is used to store the 

row of key. In this configuration, the size of the state machine is 

limited to 131,072 (217) states. On the other hand, if we adopt the 

time-efficient RSPHMA to achieve maximum performance, the 

best way is to use 16 bits to store keys and 16 bits to store next 

states. In such configuration, the size of the state machine is 

limited to 65,536 (216) states. In our experiments, the proposed 

RSPH and CSPH have two kinds of GPU implementations, one 

is for smaller state machine which has less than 216 (65,536) states, 

and the other is for larger state machine which has more than 216 

(65,536) states. The former one merges the current state and next 

state information as a 32-bits key to achieve better performance 

and smaller hash table size while the latter one separates the 

current state and next state information to accommodate the state 

machines having more than 216 (65,536) states.    

C. Binding hash table and offset table to texture memory 

The memory hierarchy of GPU provides on-chip cached 

texture memory to take the benefits of spatial and temporal 

locality of date reference. To achieve higher bandwidth, we bind 

the hash table as well as the RO and CO tables to texture memory 

instead of off-chip global memory. Although the application of 

pattern matching exhibits weak locality of data reference, still 

10% improvement in throughput is achieved. 

D. Pushing frequent date into shared memories 

Among the memory hierarchy of CUDA, shared memory is 

the fastest memory, but is very limited. Recall that the PFAC 

issues continuous threads to each input character. Therefore, a 

thread has the chance to read the symbols which the consequent 

threads have read from global memory. Thus, before starting to 

traverse a state machine, every thread in a block puts a portion of 

input characters from global memory to shared memory. And 

then, neighboring threads can read input characters from shared 

memory instead from global memory. In addition, we observe 

that most threads terminate after reading the first character. To 

improve performance, we also put the first row of the state 

transition table into shared memory. 

In the following, we explain the RSPHMA using a piece of 

code as shown in Figure 12. In the fourth and fifth line, each 

thread moves two characters from global memory to shared 

memory. Assume BLOCK_SIZE is 512, the shared memory size 

for storing input texts is only 1024 bytes. If the maximum pattern 

length is less than or equal to BLOCK_SIZE, we can ensure that 

shared memory is sufficient no matter how long the input texts. 

If the maximum pattern length is greater than BLOCK_SIZE, we 

can solve the problem by increasing the number of characters 

moved from global memory to shared memory. This section is 

part of implementation details and omitted in the pseudo code. 

According to our experimental environment, as long as the 

maximum pattern length is less than or equal to 4096 bytes, 

shared memory is sufficient to store its input texts in a block. 

From lines 6 to 8, the threads whose tid are 0 to 255 move the 

first row of the state transition table into shared memory. And 

then, all threads in the same block are synchronized at line 9 to 

ensure that the data transfer from global memory to shared 

memory is completed. After synchronization, line 10 generates 

the starting position, pos of each thread and line 11 retrieves the 

first input character from shared memory. Line 12 delivers the 

next state information of the initial state from shared memory. 

In our implementation, a thread terminates anytime when it 

encounters a trap state which is specified as -1. In Figure 12, line 

13 checks the next state of the initial state. If the variable state is 

greater than or equal to zero, the thread proceeds with the process 

from line 14. On the contrary, if the state variable is -1 which 

represents a trap state, the thread terminates immediately. Lines 

14-16 check whether the state is a final state. In our 

implementation, if a state machine has n final states, the n final 

states are encoded from zero to n-1. Therefore, if the state 

variable is less than n, the state is a final state and then is assigned 

to the match array which is also stored in shared memory for 

speedup. The while loop in lines 18-38 continues traversing the 

state machine until a trap state is met. The key is generated by 

combining the state and input character at line 21. Lines 22 and 

23 calculate row and col variables, respectively. Line 24 

calculates the hash index by adding col and the row offset which 

is retrieved from the texture memory. If the hash index is greater 

than or equal to the hash table size, a trap state is set at line 26; 
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otherwise, line 28 retrieves hash value from the hash table stored 

in texture memory. The row information in a hash key located at 

the lower 15 bits of a hashValue is compared with the row of an 

input key at line 29. If the comparison returns true, line 30 

updates the state variable as the next state information located at 

the higher 17 bits of the hashValue; otherwise, line 32 sets the 

state variable as a trap state and the thread terminates 

immediately at line 34. From lines 35 to 37, if the state is a final 

state, the state information is assigned to the match array. Finally, 

match results are moved from shared memory to global memory 

in line 42. 
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gbid = blockIdx.y * gridDim.x + blockIdx.x;  

tid = threadIdx.x; 

start = gbid * BLOCK_SIZE + tid ; 

sharedInput[tid] = globalInput[start]; 
sharedInput[tid+BLOCK_SIZE] = globalInput[start+BLOCK_SIZE]; 

if (tid < 256) { 

   s_s0Table[tid] = d_s0Table[tid]; 

} 

__syncthreads(); 

pos = tid; 

inputChar = sharedInput[pos];  

state = s_s0Table [inputChar];  

if (state >= 0) {  

   if (state < num_final_state) {  

      s_match[tid] = state;  

   }  

   pos += 1;  

   while (1) {  

      if (pos >= boundary ) break;  

      inputChar = sharedInput [pos];  

      key = (state << 8) + inputChar;  

      row = key >> width_bit;  

      col = key & ((1<<width_bit)-1);  

      index = tex1Dfetch(tex_RO, row) + col;  

      if (index >= HTSize)  

         state = -1; //trap state 

      else {  

         hashValue= tex1Dfetch(tex_HT, index);  

         if ((hashValue & 0x7FFF) == row)  

            state=(hashValue >> 15) & 0x1FFFF ;  

         else  

            state = -1; //trap state 

      }  

      if (state == -1) break;  

      if (state < num_final_state) {  

         s_match[tid] = state;  

      }  

      pos += 1;  

   }  

} 

//move match result from shared memory to global memory 

d_match[start] = s_match[tid]; 

Figure 12. A piece of code in RSPHMA 

 

VI. EXPERIMENTAL RESULTS  

The experimental environment is composed of a host machine 

and a device machine. The host machine is equipped with an 

Intel®  CoreTM i7-3770 running the Linux X86_64 operating 

system with 16GB DDR3 memory while the device machine is 

equipped with an Nvidia®  GeForce®  GTX680 GPU with 2,048 

MB GDDR5 memory and an Nvidia®  GeForce®  GTX TITAN X 

GPU with 12GB GDDR5 memory. The version of CUDA toolkit 

is 7.0. The test patterns are extracted from Snort V2.8 where the 

length of exact patterns varies between one to 243 characters long. 

We divide the Snort patterns into two sets; the large one contains 

10,076 patterns of total 187,329 characters, while the small one 

contains 1,998 patterns of total 41,997 characters. The former 

state machine has 126,776 states while the latter machine has 

27,754 states. The proposed architectures are tested using 

DEFCON [6] packets which contain large amounts of real attack 

patterns. The size of the extracted DEFCON packets is 256 MB. 

In Table I, we compare several recent published memory 

architectures [1][3][8][13][21] with our proposed RSPH and 

CSPH architectures. In addition, we also implement single-

threaded and multi-threaded AC and PFAC algorithms on CPU 

for comparisons.  

The GPU and CPU implementations are described as follows. 

1) RSPH: implementation of the Row-Shifting Perfect 

Hashing algorithm on GPU using single stream. The RSPH 

can handle both large and small pattern benchmarks. 

2) CSPH: implementation of the Column-Shifting Perfect 

Hashing algorithm on GPU using single stream. The CSPH 

can handle both large and small pattern benchmarks. 

3) PFAC: Our previous work on GPU [3] 

4) AC_CPU: Traditional single-threaded Aho-Corasick 

algorithm on CPUs 

5) AC_CPU_OMP: Traditional multi-threaded Aho-Corasick 

algorithm on CPUs parallelized by OpenMP 

6) PFAC_CPU: single-threaded Parallel Failureless Aho-

Corasick algorithm on CPUs 

7) PFAC_CPU_OMP: multi-threaded Parallel Failureless 

Aho-Corasick algorithm on CPUs parallelized by OpenMP 

In Table I, columns 2, 3, 4, 5, 6, 7, and 8 show number of rules, 

number of characters, number of states, number of transitions, 

total memory usage, memory efficiency, and load factor, while 

column 9 and 10 show the kernel throughput and system 

throughput, respectively. 

The following memory efficiency is defined to represent the 

memory requirements (Bytes) per character. 

memory efficiency =
memory size

number of characters
          (1) 

The kernel throughput and system throughput are defined as 

follows. 

kernel throughput =
input size

elapsed time of kernel launch
      (2) 
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system throughput =
input size

elapsed time of kernel launches and data transfers
       (3) 

As mentioned above, our previous work, PFAC [3] adopts a 

two-dimensional memory to store a PFAC state transition table 

whose size equals the number of states multiplied by 1K bytes 

(256 column x 4 bytes/column) to achieve the best performance. 

For example, considering the state machine of 27,754 states, the 

two-dimensional memory size is 27M bytes (27,754 x 1K bytes).  

In our experiments, the proposed RSPH and CSPH have two 

kinds of GPU implementations. One is for smaller state machine 

which has less than 216 (65,536) states, and the other is for larger 

state machine which has more than 216 (65,536) states. Then, we 

chose two sets of patterns, the larger one has 126,776 states, and 

the smaller one has 27,754 states. Since the smaller one has only 

27,754 states which can be encoded using 15 bits, we can merge 

the current state and next state information into a 32-bits word as 

a key. On the other hand, since the larger one has 126,776 states 

which has to be encoded using more than 16 bits, we cannot 

merge the current state and next state information as a 32-bits key. 

Therefore, the hash table for storing 126,776 states is twice the 

size of the one for storing 27,754 states. In addition, since the 

small one merges the current state and next state information as 

a 32-bits key, the performance of the small one is better than the 

large one which separates the current state and next state 

information. In addition, the small one allocates a 16-bits linear 

array to store match results that can save the data transmission 

time via PCIe while the large one allocates a 32-bits linear array 

to store match results. As a result, the small one has better system 

throughput than the large one. 

In terms of memory consumption, the proposed RSPH and 

CSPH architectures consume 217KB and 213KB of memory for 

processing the small rule set containing 1,998 rules, respectively. 

Both the RSPH and CSPH architectures achieve more than 99% 

of memory reduction compared to the two-dimensional memory 

architecture. For processing the Snort rule set of 10,076 rules, the 

CSPH consumes 781KB memory while the RSPH consumes 

1,485KB memory. The experimental results show that the CSPH 

achieves better memory reduction than the RSPH. 

In terms of memory efficiency, the CSPH outperforms most 

state-of-the-art memory compression techniques approaches 

[1][8][13] [21]. In addition, all these state-of-the-art approaches 

need specific hardware such as TCAM, FPGA or ASIC. For 

example, both CompactDFA[1] and BFPM[8] approaches 

introduce wildcard symbol “*” to represent “don’t care” 

condition in their rule sets to compress state transition rules. Both 

approaches share the same situation that a transition may 

simultaneously match multiple rules. In order to resolve the 

problem, the former approach, CompactDFA [1] resolves the 

problem by applying the longest prefix matching problem while 

the latter approach, BFPM [8] prioritizes the transition rules and 

adopts the Balanced Routing Table (BART) search algorithm for 

exact-, prefix- and range-match searches. In addition, both [1] 

and [8] approaches need specific hardware for storing and 

searching their compressed rule sets. The CompactDFA 

addresses the pattern matching problem by adopting the longest 

prefix matching problem such as the IP-lookup problem. In 

addition, CompactDFA stores the compressed rule sets on 

Ternary Content Addressable Memory (TCAM) which permits 

rapid table lookups through longest prefix matches. However, 

high speed TCAMs are extremely expensive with high power 

usage and take up quite a bit of silicon space. On the other hand, 

the BFPM stores its rule sets in a specific transition-rule memory 

implemented on FPGA or ASIC. 

Our proposed approaches are also based on the concept of 

state transition rules, but with two major differences compared to 

[1] and [8]. First, our approaches reduce the storage space for a 

PFAC [4] state machine which is much smaller than a traditional 

DFA, which has 256 transitions for each state and is reduced by 

the [1] and [8] approaches. Not to mention, the size of a PFAC 

state machine is generally less than 1% of a traditional DFA state 

machine. Second, our proposed approaches do not need specific 

hardware and can be easily implemented on commodity DRAM. 

This is more cost-effective than the [1] and [8] approaches which 

require specific hardware such as TCAM, FPGA or ASIC to 

accelerate longest prefix matching and wildcard “*” matching, 

respectively. 

In table I, AC_CPU denotes single-threaded CPU 

implementation of traditional Aho-Corasick algorithm while 

AC_CPU_OMP denotes multi-threaded CPU implementation of 

traditional Aho-Corasick algorithm optimized by OpenMP. 

PFAC_CPU denotes single-threaded CPU implementation of 

Parallel Failureless Aho-Corasick algorithm while 

PFAC_CPU_OMP denotes multi-threaded CPU implementation 

of Parallel Failureless Aho-Corasick algorithm optimized by 

OpenMP. In terms of kernel and system throughputs, multi-

threaded PFAC_CPU_OMP achieves an average of 6.9 and 3.4 

times faster than single-threaded PFAC_CPU and traditional AC 

algorithm, respectively. On the other hand, the proposed RSPH 

performed on TITAN X achieves an average of 25.5 and 10.4 

times faster than PFAC_CPU_OMP on kernel throughput for 

processing the small and large pattern sets, respectively. However, 

compared with the best multi-threaded PFAC_CPU_OMP, the 

proposed GPU implementations cannot have significant 

improvement due to the bottleneck of data transmission via PCIe. 

 

VII. CONCLUSIONS 

In this paper, we have proposed two means of parallel string 

matching algorithms which adopts perfect hashing to compact a 

state transition table. Different from most state-of-the-art 

approaches which need specific hardware such as TCAM, FPGA, 

or ASIC, our proposed approaches do not need specific hardware 

and can be easily implemented on commodity DRAM. Our 
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proposed algorithms are extremely suitable to be implemented on 

GPUs. The time and space complexity of the proposed algorithms 

have been evaluated and compared with state-of-the-art 

approaches as well as the traditional AC algorithm on multicore 

CPUs. Experimental results show that the proposed perfect-

hashing based parallel algorithms achieve significant memory 

reduction and performance when performed on NVIDIA GPUs.

 

TABLE I. COMPARISONS WITH STATE-OF-THE-ART MEMORY REDUCTION APPROACHES 

Name 
# of 

Rules 

# of 

characters 

# of 

states 

# of 

transitions 

Memory 

size  

(bytes) 

Memory 

efficiency 

Kernel 

Throughput 

(Gbps) 

System 

Throughput 

(Gbps) 

Platform 

RSPH 10,076 187,329 126,776 126,775 1,485KB 8.12B 55.73 14.89 

NVIDIA 

GTX680 

CSPH 10,076 187,329 126,776 126,775 781KB 4.27B 50.56 14.44 

PFAC 10,076 187,329 126,776 126,775 126MB 693B 83.32 16.39 

RSPH 1,998 41,997 27,754 27,753 217KB 5.29B 108.83 25.87 

CSPH 1,998 41,997 27,754 27,753 213KB 5.21B 95.52 24.74 

PFAC 1,998 41,997 27,754 27,753 27MB 677B 143.37 27.46 

RSPH 10,076 187,329 126,776 126,775 1,485KB 8.12B 136.50 17.55 

NVIDIA 

TITAN X 

CSPH 10,076 187,329 126,776 126,775 781KB 4.27B 120.26 17.03 

PFAC 10,076 187,329 126,776 126,775 126MB 693B 124.58 17.28 

RSPH 1,998 41,997 27,754 27,753 217KB 5.29B 333.92 29.18 

CSPH 1,998 41,997 27,754 27,753 213KB 5.21B 262.94 30.07 

PFAC 1,998 41,997 27,754 27,753 27MB 677B 385.46 31.04 

AC_CPU 10,076 187,329 126,776 126,775 126MB 693B 2.01 2.01 

Intel Core 

i7-3770 

AC_CPU_OMP 10,076 187,329 126,776 126,775 126MB 693B 1.72 1.72 

PFAC_CPU 10,076 187,329 126,776 126,775 126MB 693B 4.13 4.13 

PFAC_CPU_OMP 10,076 187,329 126,776 126,775 126MB 693B 13.90 13.90 

AC_CPU 1,998 41,997 27,754 27,753 27MB 677B 2.59 2.59 

AC_CPU_OMP 1,998 41,997 27,754 27,753 27MB 677B 2.08 2.08 

PFAC_CPU 1,998 41,997 27,754 27,753 27MB 677B 5.23 5.23 

PFAC_CPU_OMP 1,998 41,997 27,754 27,753 27MB 677B 18.03 18.03 

B-FSM[8]  

(4 subsets) 
39.5K 25.2K n/a n/a 188KB 7.46B n/a 2 ASIC/FPGA 

CDFA[21]  

(4 subsets) 
1,785 29.0K n/a n/a 181KB 6.2B n/a 11.7 ASIC/FPGA 

Bitmap 

Compression[13] 
1.5K 18.2K n/a n/a 2.8MB 154B n/a 7.6 ASIC 

Path 

Compression[13] 
1.5K 18.2K n/a n/a 1.1MB 60B n/a 7.6 ASIC 
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