
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

1

GPU Implementation of Bitplane Coding

with Parallel Coefficient Processing for

High Performance Image Compression
Pablo Enfedaque, Francesc Aulı́-Llinàs, Senior Member, IEEE, and Juan C. Moure

Abstract—The fast compression of images is a requisite in
many applications like TV production, teleconferencing, or digital
cinema. Many of the algorithms employed in current image com-
pression standards are inherently sequential. High performance
implementations of such algorithms often require specialized
hardware like field integrated gate arrays. Graphics Processing
Units (GPUs) do not commonly achieve high performance on
these algorithms because they do not exhibit fine-grain paral-
lelism. Our previous work introduced a new core algorithm for
wavelet-based image coding systems. It is tailored for massive
parallel architectures. It is called bitplane coding with parallel
coefficient processing (BPC-PaCo). This paper introduces the first
high performance, GPU-based implementation of BPC-PaCo. A
detailed analysis of the algorithm aids its implementation in
the GPU. The main insights behind the proposed codec are an
efficient thread-to-data mapping, a smart memory management,
and the use of efficient cooperation mechanisms to enable inter-
thread communication. Experimental results indicate that the
proposed implementation matches the requirements for high
resolution (4K) digital cinema in real time, yielding speedups
of 30× with respect to the fastest implementations of current
compression standards. Also, a power consumption evaluation
shows that our implementation consumes 40× less energy for
equivalent performance than state-of-the-art methods.

Index Terms—Image coding, SIMD computing, Graphics
Processing Unit (GPU), Compute Unified Device Architecture
(CUDA).

I. INTRODUCTION

ARGUABLY, the main goal of image coding systems

is to represent the samples (i.e., pixels) of an image

with the minimum number of bits possible, thereby achieving

compression. In addition to compression, current image codecs

provide other features such as region of interest coding, error

resilience, or capabilities for interactive transmission. The high

compression efficiency and novel features of the latest image

compression schemes, however, come at the expense of com-

putationally demanding algorithms. As a result, current codecs

Pablo Enfedaque and Francesc Aulı́-Llinàs are with the Department of
Information and Communications Engineering, Universitat Autònoma de
Barcelona, Spain (phone: +34 935811861; fax: +34 935813443; e-mail:
{pablo | fauli}@deic.uab.cat). Juan C. Moure is with the Department of
Computer Architecture and Operating Systems, Universitat Autònoma de
Barcelona, Spain (e-mail: juancarlos.moure@uab.es). This work has been
partially supported by the Universitat Autònoma de Barcelona, by the Spanish
Government (MINECO), by FEDER, and by the Catalan Government, un-
der Grants 472-02-2/2012, TIN2015-71126-R, TIN2014-53234-C2-1-R, and
2014SGR-691.

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Fig. 1: Main stages of the JPEG2000 coding pipeline: (1) data

transformation, (2) data coding through bitplane coding (BPC)

and arithmetic coding, and (3) bitstream reorganization. The

decoding process (depicted in gray) carries out the inverse

operations.

often require specialized hardware to meet the (real-time)

demands of applications such as digital cinema, surveillance,

or medical imaging. In such scenarios, the use of Graphics

Processing Units (GPUs) might be a solution to accelerate the

coding process in a cost- and energy-efficient way.

A representative coding scheme of modern image codecs is

that of the JPEG2000 standard (ISO/IEC 15444-1), which pro-

vides excellent coding performance and advanced features [1].

The coding pipeline of JPEG2000 is structured in three main

stages (see Fig. 1): data transformation, data coding, and

bitstream reorganization. The data transformation stage re-

moves the spatial redundancy of the image through the discrete

wavelet transform [2]. Data coding codes the transformed

samples, called coefficients, by means of exploiting visual

redundancy. Bitplane coding and arithmetic coding are two

efficient techniques to do so. The bitplane coder repetitively

scans the coefficients in a bit-by-bit fashion. These bits are

fed to the arithmetic coder, which produces the bitstream. The

last stage of the coding pipeline codes auxiliary information

and reorganizes the data. The techniques employed in the data

coding stage are fundamental to achieve compression, though

they need abundant computational resources. A common codec

approximately spends 80% of the total coding time in this

stage, whereas the first and the last stage take 15% and 5%

of the execution time, respectively [3].

Many Single Instruction, Multiple Data (SIMD) implemen-

tations of image codecs on GPU architectures are devised

to accelerate the coding process [4]–[16]. Their aim is to

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

2

TABLE I: Execution time (in seconds) of Kakadu, CUJ2K, and

JPEG2K when coding 3 images of different size in lossless

mode. Kakadu is executed in a Core Duo E8400 at 3 GHz,

whereas the GPU implementations are executed in a GeForce

GTX 480. These results are reproduced from [17] with the

permission of the authors.

image samples (×220)

12 28 39

Kakadu 1.65 7.05 8.3

CUJ2K 1.25 2.95 3.9

JPEG2K 0.72 2.35 2.75

extract massive data-level parallelism in the first and second

stage of the coding scheme to achieve higher computational

performance than implementations optimized for Central Pro-

cessing Units (CPUs). The operations carried out in the

data transformation stage are well-fitted to SIMD computing.

Many GPU implementations of such transforms can be found

in the literature [4]–[6], [11], [13]–[16]. To implement the

bitplane coder and the arithmetic coder efficiently in SIMD

architectures is a much greater challenge. The problem is to

extract fine-grained data-level parallelism from algorithms that

were not originally devised for SIMD. Due to this difficulty,

current GPU implementations of bitplane coding engines [7],

[9], [10], [12] are unable to fully extract the computational

power of the GPU architectures. Table I shows a comparison

presented in [17] reporting the execution time of JPEG2000

codecs optimized for CPUs and GPUs. Kakadu [18] is among

the fastest CPU implementations of the standard, whereas

CUJ2K [19] and JPEG2K [17] are the most competitive open-

source implementations for GPUs. The GPU employed in this

comparison has a peak performance approximately 10 times

superior to that of the employed CPU. Even so, the GPU

implementations achieve (at most) a 3× speedup with respect

to Kakadu.

Our previous work [20] introduced a bitplane coding engine

that unlocks the data dependencies of traditional algorithms.

In that work, the proposed bitplane coding with parallel coef-

ficient processing (BPC-PaCo) is introduced in the framework

of JPEG2000 without sacrificing any feature of the coding

system. The bitstream generated by BPC-PaCo is not compli-

ant with the standard since the parallel coefficient processing

modifies the way that the bitstream is constructed. Also, it

slightly penalizes coding performance, though in general the

efficiency loss is less than 2%. Our previous paper focused

on the image coding perspective of the method, analyzing its

features and coding performance. A preliminary version of

the implementation of the encoder in a GPU was introduced

in [21]. Herein, we introduce the optimized GPU implementa-

tion for both the encoder and decoder, and extend our previous

work with additional experimental results, a detailed analysis

of the implementation, and a revised writing. The comparison

of the proposed implementation with the most efficient CPU

and GPU implementations of JPEG2000 suggests that BPC-

PaCo is approximately 30 times faster and 40 times more

power-efficient than the best JPEG2000 implementations. This

increase in performance is because BPC-PaCo can exploit the

resources of the GPU more efficiently than the conventional

bitplane coding engine of JPEG2000. The experimental as-

sessment considers the level of divergence, parallelism, and

instructions executed of the codecs evaluated.

The rest of the paper is structured as follows. Section II

provides a general background of bitplane coding and GPU

architectures. Section III reviews BPC-PaCo and Section IV

describes the proposed implementation. Section V provides

experimental results. The last section summarizes this work.

II. BACKGROUND

A. Overview of bitplane image coding

Fig. 2 depicts an overview of the bitplane coding process of

JPEG2000. The image on the left represents the coefficients

produced by the data transformation stage. Then, the coding

system conceptually partitions the image into rectangular tiles

that contain a predefined number of coefficients. These tiles

are referred to as codeblocks. Although the size of the code-

block can vary, in general codeblocks of 64×64 are preferred

since they provide competitive coding efficiency. The bitplane

coding process is applied independently in each codeblock,

producing a bitstream per codeblock. All the bitstreams are

then re-organized in the third stage of the coding pipeline to

produce the final file.

The main insight of bitplane coding is to scan the coeffi-

cients in planes of bits. Bitplane j is defined as the collection

of bits in the jth position of the binary representation of the

coefficients (excluding the sign). Bitplane coding engines code

the bits of the coefficients from bitplane M − 1 to 0, with

M representing a sufficient number of bits to represent all

coefficients. This is depicted in the middle image of Fig. 2. The

bits of the bitplane are not processed sequentially. Instead, the

bits that are more likely to reduce the distortion of the image

are emitted to the output bitstream first. This is implemented

in practice via the so-called coding passes [22]. JPEG2000

employs three coding passes called significance propagation

pass (SPP), magnitude refinement pass (MRP), and cleanup

pass (CP). Each coding pass processes the bits of a set of

coefficients. The procedure ensures that all coefficients are

processed once in each bitplane by one –and only one– coding

pass.

Let us define the significance state of coefficient x as

S(x) = 1 when the first non-zero bit of its binary representa-

tion has already been emitted, and as S(x) = 0 otherwise.

When S(x) = 1 the coefficient is called significant. The

SPP processes the bits of non-significant coefficients that have

some immediate neighbor that is significant. This aims at

emitting first the bits of those coefficients that are more likely

to become significant in the current bitplane. These bits reduce

the most the distortion of the image. When a coefficient is

significant, its sign bit is emitted just after its significance

bit. The MRP is applied after the SPP, processing the bits of

coefficients that were significant in previous bitplanes. The CP

is the last coding pass applied in each bitplane, processing the

bits of non-significant coefficients that were not emitted in the

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

3

Fig. 2: Overview of the JPEG2000 bitplane coding process. Codeblocks containing 8×8 coefficients are depicted for simplicity.

The coefficients processed in the coding passes SPP, MRP, and CP are depicted in red, blue, and green, respectively.

SPP. As seen in the right image of Fig. 2, the three coding

passes utilize the same scanning order, though each processes

only the coefficients that fulfill the aforementioned conditions.

The scanning order of JPEG2000 partitions the codeblock in

sets of four rows, visiting the coefficient in each set from the

top-left to the bottom-right coefficient.

Two important mechanisms of bitplane coding strategies are

the context formation and the probability model. The context

of a coefficient is determined via the significance state, or

the sign, of its eight immediate neighbors (see Fig. 2, right-

top corner). The function that computes the context considers

the number and position of the significant neighbors and their

signs (when already coded). The probability model then em-

ploys this context to adaptively adjust the probabilities of the

bits emitted in each context. The bit and the probability are fed

to an arithmetic coder, generating a compressed representation

of the data.

Arithmetic coding is an entropy coding technique exten-

sively employed in the coding field due to its high effi-

ciency [23]. From an algorithmic point of view, an arithmetic

coder divides an arithmetic interval in two subintervals whose

sizes are proportional to the estimated probability of the coded

bit. The subinterval corresponding to the value of the bit

coded is chosen. Then the same procedure is repeated for

following bits. The transmission of any number within the

final interval, referred to as codeword, permits the decoding

of the original bits. As it is traditionally formulated, it renders

the coding algorithm as a causal system in which each bit can

not be coded without processing all the previous bits of that

codeblock.

B. Overview of Compute Unified Device Architecture (CUDA)

GPUs are massively parallel devices containing multiple

throughput-oriented SIMD units called streaming multiproces-

sors (SM). Modern GPUs have up to 24 SMs and each SM

can execute multiple 32-wide SIMD instructions simultane-

ously. The CUDA programming model defines a computation

hierarchy formed by threads, warps, and thread blocks. A

CUDA thread represents a single lane of a SIMD instruction.

Warps are sets of 32 threads that advance their execution in a

lockstep synchronous way as single SIMD operations. Control

flow divergence among the threads of the same warp results

in the sequential execution of the divergent paths and the

increase of the total number of instructions executed, so it

should be avoided. Thread blocks group warps, and each one

is assigned and run until completion in a specific SM. Warps

inside the same block are executed asynchronously but they

can cooperate sharing data via on-chip fast memories and can

synchronize using explicit barrier instructions.

From a programming point of view, the memory hierarchy

of GPUs is organized in 1) a space of local memory that is

private to each thread, 2) a space of shared memory that is

private to each thread block, and 3) a space of global memory

that is public to all threads. From a microarchitecture point of

view, the amount of local memory reserved for each thread is

located in the registers or in the off-chip memory, depending

on the available resources. GPUs also have two levels of cache.

In recent CUDA architectures, local memory located in the

off-chip memory has exclusive use of the level-1 (L1) cache.

The SM activity is defined as the time that each SM is

active during the execution of a CUDA program, also called

kernel. It is commonly expressed as an average percentage. A

SM is considered active if it has, at least, a warp assigned for

execution. A CUDA program may not occupy all the SMs of

the GPU. This may happen when the kernel does not launch

sufficient thread blocks. Also, high workload imbalances

caused by different execution times of the thread blocks may

reduce the SM activity and affect the overall performance. The

occupancy of active SMs is defined as the percentage of active

warps relative to the maximum supported by the SM. The

theoretical occupancy of a kernel is the maximum occupancy

when considering the static execution configuration. It can

be limited by the amount of shared memory and registers

assigned to each thread block. The achieved occupancy may be

lower than the theoretical when the warps have high variability

in their execution times or when they need to synchronize

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

4

Fig. 3: Illustration of the coding strategy of BPC-PaCo. The

currently coded coefficients are depicted in red and the coop-

eration between stripes is depicted in green. The codewords

generated by the arithmetic coders are depicted in blue.

frequently.

III. REVIEW OF BPC-PACO

Traditional implementations of bitplane coding engines code

the codeblocks independently and (possibly) in parallel. Un-

fortunately, this parallelism is not fine-grained enough and

the parallel control flows are too divergent to employ the

resources of the GPU efficiently. BPC-PaCo redefines the

mechanisms of traditional bitplane coding engines to promote

SIMD parallelism within the codeblock. The main idea behind

BPC-PaCo is to partition the codeblock in N vertical stripes,

each containing two columns of coefficients, that can be coded

in parallel. The coding process within the codeblock advances

its execution in a lock-step synchronous fashion for all stripes,

collaborating to share some data when necessary. The scanning

order, coding passes, context formation, probability model,

and arithmetic coding are redevised to permit such a parallel

processing.

Fig. 3 depicts the coding strategy of BPC-PaCo. The scan-

ning order in each stripe visits the coefficients from the top

to the bottom row and from the left to the right column. The

context formation for the SPP and CP sums the significance

state of the eight neighbors of the coefficient, i.e., C(x) =∑8
i=1 S(ni), with ni denoting the immediate neighbors of x.

The sign of the coefficient is emitted, when necessary, em-

ploying another set of contexts. These contexts are computed

via the sign (when already coded) of the top, right, bottom,

and left neighbors, employing simple comparisons and logical

operations. The bits emitted in the MRP are all coded with a

single context. The employed context formation approach has

been devised to reduce both computational load and control-

flow divergence. More details on its underlying ideas can be

found in [24], [25]. As shown in Fig. 3, the computation of the

contexts needs that stripes of the same codeblock communicate

among them.

Traditional probability models adjust the probabilities of

the emitted bits as more data are coded. The adaptation

is sequential. There are no simple solutions to update the

probabilities in parallel. To adapt the probabilities for each

stripe independently is not effective either because too little

data are coded, resulting in poor coding performance [22].

BPC-PaCo adopts an approach in which the probabilities

are not adjusted depending on the coded data but they are

precomputed off-line using a training set of images. These

stationary probabilities are stored in a lookup table (LUT) that

is known by the encoder and the decoder (so it is not included

in the codestream). Such a model exploits the fact that the

transformed coefficients have similar statistical behavior for

similar images [26]. Once the LUT is constructed, it can be

employed to code any image with similar features as those

in the training set. Evidently, different sensors (such as those

in the medical or remote sensing fields) produce images with

very different statistical behaviors, so individual LUTs need

to be computed for each [26].

The probability of a bit to be 0 or 1 is extracted from

the LUT using its context and bitplane. The bit and its

probability are fed to an arithmetic coder. BPC-PaCo employs

N independent arithmetic coders, one for each stripe of the

codeblock. This allows the synchronous parallel coding of the

bits emitted in each stripe. The main difficulty with such a

procedure is that the codewords produced by the N coders

must be combined in the bitstream in an optimized order so

that the bitstream can be partially transmitted and decoded

(see below).

Besides using multiple arithmetic coders, BPC-PaCo em-

ploys a coder that is simpler than that employed in traditional

systems. The main difference is that it generates multiple

fixed-length codewords instead of a single and long codeword

that has to be processed in small segments [23]. The fixed-

length codeword arithmetic coder is adopted by BPC-PaCo

because it reduces computational complexity and control flow-

divergence. Fig. 3 depicts the codewords generated by each

coder below each stripe. At the beginning, the arithmetic

interval of each coder is as large as the codeword. As more

bits are coded, the interval is reduced. When the minimum size

is reached, the codeword is exhausted and so it is dispatched

in a reserved position of the bitstream. Then, a new position

is reserved at the end of the bitstream for the to-be-coded

codeword. The reservation of this space needs cooperation

among stripes.

As described in [20], BPC-PaCo uses three coding passes.

We note that the more coding passes employed, the more

divergence that occurs in SIMD computing. This is because

the bit of the currently visited coefficient in each stripe may,

or may not, need to be emitted. The threads coding the

stripes in which the bit is not emitted are idle while the

others perform the required operations. Three coding passes

achieve competitive efficiency [22], though the method can

also use two passes without penalizing coding performance

significantly. This can be seen in Fig. 4, which reports the

coding performance achieved by BPC-PaCo when using two or

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

5

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
S

N
R

 d
if
fe

re
n

c
e

 (
in

 d
B

)

bitrate (in bps)

JPEG2000
BPC-PaCo (2 passes)
BPC-PaCo (3 passes)

Fig. 4: Coding performance comparison between JPEG2000

and BPC-PaCo with two and three coding passes.

three coding passes with respect to the performance achieved

by JPEG2000. The vertical axis of the figure is the peak

signal to noise ratio (PSNR) difference between BPC-PaCo

and JPEG2000. PSNR is a common metric to evaluate the

quality of the image. In general, differences of 1 dB in PSNR

are considered visually relevant, whereas differences below

1 dB are not commonly perceived by the human eye. The

horizontal axis of the figure is the bitrate, expressed in bits per

sample (bps). A low bitrate indicates a small size of the final

bitstream. As seen in the figure, BPC-PaCo with three coding

passes achieves a PSNR that is, at most, 0.5 dB below that

of JPEG2000. BPC-PaCo with two coding passes achieves a

slightly inferior coding performance, with peaks of at most 0.9

dB below that of JPEG2000. These results are generated for

an image of the corpus employed in the experimental section.

The results hold for other images of this and other corpora.

IV. ANALYSIS AND IMPLEMENTATION

This section details the implementation of BPC-PaCo in

CUDA. We consider the two- and three-pass version of the

algorithm since the use of only two passes helps to accelerate

the coding process. This requires two versions for the encoder

and two for the decoder. The first part of this section overviews

the common aspects to all versions of the codec, namely, work

decomposition, memory management, and cooperation mech-

anisms. Then, the particular algorithms for the two versions

of the encoder are presented. The decoder is discussed in the

last part.

A. Overview

Our implementation decomposes the work following the

intrinsic data partitioning of the algorithm. More precisely, a

CUDA warp is assigned to each codeblock, and each thread of

the warp processes a stripe within the codeblock. This thread-

to-data mapping exposes fine-grained parallelism and avoids

the use of explicit synchronization instructions among threads.

Since there are not data dependencies among codeblocks,

TABLE II: Occupancy and execution time achieved when

limiting the number of registers per thread from 16 to 128.

Results achieved with a GTX TITAN X when coding a

5120×5120 GeoEye satellite image. The codeblock size is

64×64.

registers 2 coding passes 3 coding passes

per thread occupancy time (in ms) occupancy time (in ms)

16 89% 32.81 89% 45.66

24 89% 17.97 89% 25.41

32 89% 17.07 89% 23.81

40 67% 19.10 66% 27.37

48 56% 21.10 54% 30.45

56 51% 22.44 48% 32.58

64 45% 24.35 42% 35.16

72 40% 26.57 37% 38.07

128 23% 39.23 22% 56.27

the thread block size can be adjusted without algorithmic

restrictions.

Key to maximize performance is the memory management.

The two larger and most frequently accessed data structures,

both in the encoder and the decoder, are the coefficients of

the codeblock and its bitstream. The most efficient strategy is

to store the coefficients in the local memory, making use of

the rapid on-chip registers, whereas the bitstream is stored in

the global memory. With a codeblock size of 64×64 and 32

threads per warp, each thread must hold 128 coefficients in

its local memory plus other temporary variables. This large

amount of local memory per thread demands a compromise.

There is a well-known tradeoff between the registers employed

per thread, the amount of register spilling traffic that is

redirected to the device memory, and the achieved occupancy.

The higher the number of registers per thread, the lower the

number of warps that can be executed simultaneously, and

also the lower the amount of local data accesses that must be

spilled to the device memory. Table II shows the occupancy

and the execution time achieved when limiting the number

of registers per thread at compilation time from 16 to 128.

Results for the two versions of the encoder are reported. The

results indicate that the lowest execution time is achieved

when using 32 registers per thread. In our implementation the

amount of data spilling appears to be moderate and it does

not significantly degrade the performance thanks to the high

thread-level parallelism achieved. These results also hold for

the decoder and for other images.

The bitstream of each codeblock is stored in the global

memory to save on-chip resources. As previously explained,

the bitstream contains individual codewords. While a code-

word is still in use, it is temporarily stored in the local

memory. Each codeword is used to code a variable number

of symbols. The different probabilities of the symbols causes

that codewords from different stripes are exhausted at different

instants. Therefore, when a codeword is exhausted, it is

written into the bitstream (commonly) in a non-coalesced way.

This means that to write codewords in the bitstream is an

expensive operation. Fortunately, this task is not carried out

frequently because many symbols are coded before a codeword

is exhausted. Our experience indicates that to use the global

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

6

memory to store the bitstream offers optimal performance for

the encoder. Once a codeword is written, it is not further used,

so the latency of the memory transaction is hidden due to the

high arithmetic intensity of the algorithm. The case for the

decoder is slightly different and is discussed below.

In addition to these data structures, BPC-PaCo utilizes two

ancillary structures, namely, a set of LUTs that store the static

probabilities for the coded symbols, and a status map that

keeps auxiliary information for each coefficient. The LUTs

are read-only and are heavily accessed, so they are put in the

constant memory of the device. The status map is employed to

know whether a coefficient is significant or not, and in what

coding pass it has to be coded. This information requires 2

or 3 bits per coefficient depending on whether 2 or 3 coding

passes are employed, respectively. These bits are stored in

the most significant bits of the coefficients since the number

of operative bits is always below 29 (i.e., M < 29) and its

representation employs 32 bits. We remark that this status

map could be avoided by means of explicitly computing the

coefficient status before coding each symbol. This computation

is trivial when using 2 coding passes, but it has a significant

impact in execution time when 3 coding passes are employed.

Our implementation uses such a status map for both versions

of the codec.

The cooperation of threads within the same warp is needed

for two purposes: 1) to compute the context of each coefficient,

and 2) to reserve the space of the codewords in the bitstream.

The former operation is implemented via shuffle instructions

using the coefficients of the stripes stored in the local memory.

A shuffle instruction fetches a value from the local memory

of another thread within the warp. This instruction was intro-

duced in Kepler architectures and its latency is the same as

that of accessing a register. The communication of threads

in older architectures needs to use a small buffer in the

shared memory [16]. The reservation of the codewords space

is implemented via vote and pop-count instructions. The vote

instruction allows all threads within the warp to evaluate a

condition, leaving the result in a register visible to all of them.

The pop-count instruction sums all non-zero bits of a register.

In addition to these two instructions, the reservation of space

for codewords utilizes a shared pointer to the last free position

of the bitstream, which is stored in the shared memory and

accessible for all threads. Further details of this cooperation

mechanism are described in Algorithm 4. We recall that no

special synchronization instructions are needed due to the

inherent synchronization of the threads within the warp.

B. Encoder with 2 passes

Algorithm 1 details the CUDA kernel implemented for the

two-pass encoder. The parameters of the algorithm are thread

identifier T , top-left codeblock coordinates (with respect to the

image) X and Y , and codeblock height H . First (in lines 2-8),

the coefficients of the stripe are read from the global memory,

which is denoted by G, and stored in the local memory,

which is denoted by L. The status map, referred to as S , is

initialized in the same loop. As seen in the algorithm, both

bits of S are initialized to 0. When the coefficient becomes

Algorithm 1 - BPC-PaCo Encoder (with 2 coding passes)
Parameters: thread T ∈ [0, 31], codeblock coordinates X,Y ,
and codeblock height H

1: allocate L[H][2] in local memory
2: for y ∈ {0, ..., H − 1} do
3: for x ∈ {0, 1} do
4: L[y][x]← G[Y + y][X + T ∗ 2 + x]
5: S[y][x][0]← 0
6: S[y][x][1]← 0
7: end for
8: end for
9: for j ∈ {M − 1, ..., 0} do

10: for y ∈ {0, ..., H − 1} do
11: for x ∈ {0, 1} do
12: L1,L2,L3 ← getNeighbors(T, y, x)
13: if S[y][x][0] = 0 then
14: Csig ← significanceContext(S,L1,L2,L3, y, x)
15: Psig ← Usig [Csig][j]
16: b← (|L[y][x]| ≫ j) & 1
17: encodeBit(b,Psig)
18: if b = 1 then
19: S[y][x][0]← 1
20: Csign ← signContext(L,L2, y, x)
21: Psign ← Usign[Csign][j]
22: s← L[y][x] < 0 ? 1 : 0
23: encodeBit(s,Psign)
24: end if
25: end if
26: end for
27: end for
28: refineMagnitude(L,S, j)
29: end for

Algorithm 2 - refineMagnitude
Parameters: local data L, status map S, and bitplane j

1: for y ∈ {0, ..., H − 1} do
2: for x ∈ {0, 1} do
3: if S[y][x][1] = 1 then
4: Pref ← Uref [j]
5: b← (|L[y][x]| ≫ j) & 1
6: encodeBit(b,Pref)
7: else if S[y][x][0] = 1 then
8: S[y][x][1]← 1
9: end if

10: end for
11: end for

Algorithm 3 - getNeighbors
Parameters: thread T ∈ [0, 31], and coefficient coordinates y, x

1: return (Φ(L[y − 1][x± 1], T ± 1),

Φ(L[y][x± 1], T ± 1),

Φ(L[y + 1][x± 1], T ± 1))

Algorithm 4 - encodeBit
Parameters: thread T ∈ [0, 31], bit b, and probability P
Initialization: B ← 0 (bitstream index) , Z ← 0 (size of the interval),
L← 0 (lower bound of the interval)

1: if Z = 0 then
2: L← 0
3: Z ← 2W − 1
4: v ← Ω(true)
5: B̂ ← B + Ψ(v ≪ (32− T))
6: B ← B + Ψ(v)
7: end if
8: if b = 0 then
9: Z ← Z · P

10: else
11: t← (Z · P) + 1
12: L← L + t

13: Z ← Z − t

14: end if
15: if Z = 0 then
16: G[B̂]← L

17: end if

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

7

significant, its first bit is set to 1 (in line 19) to facilitate

the context computation. The second bit of the status map

indicates whether the coefficient has to be coded in the SPP

or the MRP, so it is set to 1 (in line 8 of Algorithm 2) when

the coefficient needs to be refined. Note that, for simplicity, we

use SPP in this version of the coder to refer to the significance

coding (despite that the CP is not in use).

Line 9 in Algorithm 1 is the loop that iterates from bitplane

M − 1 to 0. M is computed beforehand by each warp

via a reduction operation. The SPP is applied in lines 10-

27, whereas the MRP, embodied in Algorithm 2, is applied

afterwards. The first operation (in line 12) of the SPP is to get

the neighbors within the adjacent stripes needed to compute

the context of the coefficient. This operation must be carried

out before the potentially divergent step of line 13 because

otherwise some threads may become inactive, being unable to

participate in the communication. The communication among

threads is done via the shuffle instruction, denoted by Φ(·)
in Algorithm 3. The function “getNeighbors(·)” fetches the

adjacent neighbors to L[y][x] that, depending on whether it is

in the left or right column of the stripe, needs the x + 1 or

x− 1 coefficient from the T − 1 or T +1 thread, respectively.

Algorithm 3 simplifies this with the operator ±.

After fetching the neighbors, the algorithm checks whether

the coefficient needs to be coded in the SPP or not. If so, the

“significanceContext(·)” function computes the significance

context, denoted by Csig , employing the eight adjacent neigh-

bors of the coefficient, as described in Section III. This func-

tion is not further detailed herein. Probability Psig is accessed

through Csig and bitplane j in the corresponding LUT, which is

referred to as Usig. The significance bit (computed in line 16,

with & denoting a bit-wise AND operation) and its proba-

bility are fed to the arithmetic coder embodied in procedure

“encodeBit(·)”. If the coefficient becomes significant (i.e., if

b = 1), then its sign has to be coded too. Lines 20-23 do so.

The operations are similar to the coding of the significance

bit.

The arithmetic interval employed by the arithmetic coder

is represented by L and Z in Algorithm 4. L is its lower

boundary and Z its size. The length of the codeword is denoted

by W , so both L and Z are integers in the range [0, 2W−1]. W
is W = 16 in our implementation, though other values are also

valid [23]. The interval division is carried out in lines 8-14.

When b = 0, the lower subinterval is kept, otherwise the upper

subinterval is kept. The codeword is exhausted when Z = 0.

As seen in line 16, then the codeword is put in position B̂ of

the bitstream. Note that B̂ is computed in lines 1-7 when a

new symbol is coded and the last codeword is exhausted (or

at the beginning of coding). The vote and pop-count functions

are denoted by Ω(·) and Ψ(·), respectively. Ω(·) is employed

to compute how many concurrent threads reserve space in the

bitstream. In line 5, Ψ(·) computes the number of threads with

higher priority than T (i.e., all those processing the stripes on

the left of the current). B is the length of the bitstream, stored

in the shared memory. It is updated in line 6 considering all

threads that have reserved a codeword in the bitstream.

Algorithm 5 - BPC-PaCo Encoder (with 3 coding passes)
Parameters: thread T ∈ [0, 31], codeblock coordinates X,Y ,
and codeblock height H

1: allocate L[H][2] in local memory
2: for y ∈ {0, ..., H − 1} do
3: for x ∈ {0, 1} do
4: L[y][x]← G[Y + y][X + T ∗ 2 + x]
5: S[y][x][0]← 0
6: S[y][x][1]← 0
7: S[y][x][2]← 1
8: end for
9: end for

10: for j ∈ {M − 1, ..., 0} do
11: for y ∈ {0, ..., H − 1} do
12: for x ∈ {0, 1} do
13: L1,L2,L3 ← getNeighbors(T, y, x)
14: if S[y][x][0] = 0 then
15: if any neighbor of L[y][x] has S[·][·][0] = 1 then
16: Csig ← significanceContext(S,L1,L2,L3, y, x)
17: Psig ← Usig [Csig][j]
18: b← (|L[y][x]| ≫ j) & 1
19: encodeBit(b,Psig)
20: if b = 1 then
21: S[y][x][0]← 1
22: Csign ← signContext(L,L2, y, x)
23: Psign ← Usign[Csign][j]
24: s← L[y][x] < 0 ? 1 : 0
25: encodeBit(s,Psign)
26: end if
27: else
28: S[y][x][2]← 1
29: end if
30: end if
31: end for
32: end for
33: refineMagnitude(L,S, j)
34: for y ∈ {0, ..., H − 1} do
35: for x ∈ {0, 1} do
36: L1,L2,L3 ← getNeighbors(T, y, x)
37: if S[y][x][2] = 1 then
38: S[y][x][2]← 0
39: Csig ← significanceContext(S,L1,L2,L3, y, x)
40: Psig ← Usig′ [Csig][j]
41: b← (|L[y][x]| ≫ j) & 1
42: encodeBit(b,Psig)
43: if b = 1 then
44: S[y][x][0]← 1
45: S[y][x][1]← 1
46: Csign ← signContext(L,L2, y, x)
47: Psign ← Usign′ [Csign][j]
48: s← L[y][x] < 0 ? 1 : 0
49: encodeBit(s,Psign)
50: end if
51: end if
52: end for
53: end for
54: end for

C. Encoder with 3 passes

Algorithm 5 details the CUDA kernel of the BPC-PaCo

encoder with three coding passes. It uses the same functions

as before. The structure of the algorithm is similar to that

of Algorithm 1 too. The main difference is that significance

coding is carried out in two different passes, the SPP and

the CP. The SPP is applied from line 11 to 32, whereas the

CP is carried out from line 34 to 53. As seen in lines 14

and 15, SPP only codes non-significant coefficients that have

some significant neighbor. The CP codes the remaining non-

significant coefficients.

The status map of this version of the encoder uses 3 bits per

coefficient. The first two have the same meaning as before. The

third flags the non-significant coefficients that are to be coded

in the CP. It is initialized to 1 at the beginning of coding (in

line 7) because only the CP is applied in the highest bitplane.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

8

The probabilities employed for SPP and CP are different, so

different LUTs are employed in each coding pass.

Clearly, the three-pass version of the encoder executes more

instructions than the two-pass version. The addition of a third

coding pass also increases the control-flow divergence, which

results in longer execution times. Table III reports the number

of instructions executed normalized by the problem size, the

warp efficiency, and the normalized execution time achieved

by both encoders. On average, the three-pass version executes

1.35× more instructions than the two-pass version, which

corresponds with the increase in execution time. The warp

efficiency is a metric to assess the control-flow divergence.

It is measured as the average percentage of active threads

per warp during execution time. The two-pass version of the

algorithm achieves a 49% warp efficiency since, on average,

half the threads in a coding pass are idle while the others

code the coefficients. The three-pass version of the algorithm

achieves a warp efficiency only 4% lower than that of the two-

pass version since the CP does not produce much divergence

among threads.

D. Decoder

The algorithmic structure and the cooperation mechanisms

of the decoder are the same as those of the encoder. The

bitstream is also stored in the global memory and the recon-

structed coefficients are kept in the local memory. Contrarily

to the encoder, the decoder reads the codewords from the

bitstream and uses them to decode the symbols. Again, the

codewords are read in a non-coalesced way, decreasing the

efficiency of the memory transactions. In this case, the memory

transactions can not be hidden by executing independent

arithmetic operations as effectively as in the encoder. This

is because the value of a codeword is required immediately

after fetching it. This is the cause behind the slightly longer

execution times of the decoder with respect to the encoder.

Table III reports the normalized execution time for both

versions of the decoder. On average, the two-pass version

of the decoder is 10.3% slower than the encoder, whereas

the three-pass version is 9.2% slower. Despite this decrease

in performance, our experience indicates that to store the

bitstream in the global memory is more efficient than to use

the shared memory or other strategies since they increase the

number of instructions executed and decrease the occupancy.

V. EXPERIMENTAL RESULTS

The proposed implementation is compared with Kakadu

v7.8 [18] and JPEG2K v1.0 [17]. As previously stated, Kakadu

is one of the fastest JPEG2000 implementations. It is a

C++ CPU multi-thread implementation heavily optimized via

assembler. JPEG2K is an open-source CUDA implementation

of JPEG2000. It is not optimized for the latest CUDA ar-

chitectures, but still offers the most competitive performance

among open-source implementations. BPC-PaCo and JPEG2K

are compiled with CUDA 7.5 and executed in five devices,

namely, a GTX TITAN X, GTX TITAN Black, GTX 480,

GTX 750, and a Tegra X1. Kakadu is executed in a workstation

with 4 Intel Xeon E5-4620 at 2.20 GHz (8 cores and 16

 0

 20

 40

 60

 80

 100

 120

M
s
a

m
p

le
s
 /

 s
e

c
o

n
d

encoder

decoder

Threads

1 2 4 8 16 32 64

Fig. 5: Evaluation of the performance achieved by Kakadu

when using different number of execution threads. Each pair

of bars corresponds to an image.

threads per processor, for a total of 32 cores and 64 threads).

It is compiled using GCC 4.8. The GPU metrics are collected

employing “nvprof”. The images employed in the experiments

are captured by the GeoEye and Ikonos satellites. They have a

maximum size of 10240×10240, are eight-bit gray scale, and

have one component. These images are employed herein due to

their very high resolution, which facilitates performance tests.

The type of the image (e.g., natural, satellite, etc.) or its shape

does not affect the computational performance. The obtained

results hold for different types of images such as those

employed in digital cinema, TV production, surveillance, or

digital cameras, among others. The performance achieved by

BPC-PaCo for different types of images is extensively studied

in [20], [21], [24], [26]. Some of the following experiments

employ reduced-size versions of these images. The irreversible

9/7 wavelet transform is employed to transform them with

5 levels of decomposition. Wavelet data are partitioned in

codeblocks of 64×64. The GPU tests employ a block size of

128 CUDA threads. In all experiments, the results reported

for Kakadu are obtained when using the optimal number

of threads. See in Fig. 5 the performance achieved by this

implementation when using different number of threads to

code an image of the corpus. Results also hold for the other

images. The vertical axis of the figure is the number of

coefficients coded per unit of time (in Msamples/second).

The scalability achieved from 2 to 8 threads is almost linear,

though for a higher number of threads is notably decreased.

In the workstation employed, the use of 32 threads achieves

maximum performance.

In our implementation, CPU-GPU memory transfers are

implemented synchronously using pinned memory. Table IV

reports the time spent by the CPU-GPU transfers and the com-

putation time spent by the BPC-PaCo encoder with 2 coding

passes for different image sizes. Memory transfers represent

40% and 33% of the execution time, on average, when using

2 and 3 (not shown in the table) coding passes, respectively.

These results hold for the decoder. In throughput-oriented

scenarios, the memory transfers can be asynchronously over-

lapped with the computation task when coding large resolution

images or video sequences. Only the bitplane coding time

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

9

TABLE III: Evaluation of GPU metrics achieved by the different versions of the codec. The experiments are carried out with

a GTX TITAN X.

encoder decoder

2 coding passes 3 coding passes 2 coding passes 3 coding passes

image size inst. executed
#coefficients

warp exec. time
#coefficients

inst. executed
#coefficients

warp exec. time
#coefficients

exec. time
#coefficients

exec. time
#coefficientsefficiency efficiency

2048 × 2048

≈ 32.5 49%

0.98 ns

≈ 43.5 45%

1.36 ns 1.15 ns 1.56 ns

3072 × 3072 0.76 ns 1.06 ns 0.83 ns 1.15 ns

4096 × 4096 0.68 ns 0.94 ns 0.74 ns 1.02 ns

5120 × 5120 0.65 ns 0.90 ns 0.71 ns 0.99 ns

6144 × 6144 0.62 ns 0.86 ns 0.67 ns 0.94 ns

7168 × 7168 0.58 ns 0.85 ns 0.62 ns 0.89 ns

TABLE IV: CPU-GPU memory transfers and computation

time of BPC-PaCo with 2 coding passes. The experiments are

carried out with a GTX TITAN X (with a PCI 3.0 bus).

image size

mem. transfer BPC-PaCo mem. transfer
total time

CPU → GPU (2 passes) GPU → CPU
(in ms)

time % time % time %

2048 × 2048 1.41 23 4.11 67 0.63 10 6.15

4096 × 4096 5.63 29 11.41 58 2.48 13 19.52

6144 × 6144 12.52 30 23.32 56 5.69 14 41.53

8192 × 8192 22.24 31 39.67 55 9.72 14 71.63

is reported in the following tests, excluding pre- and post-

processing operations.

A. Computational performance evaluation

The first test evaluates computational performance. Fig. 6

depicts the achieved results. Each bar in the figure corresponds

to the performance achieved when en/de-coding a particular

image. Note that the figure is vertically split for illustration

purposes. The results indicate that BPC-PaCo is significantly

faster than the other implementations. The two-pass version

of the encoder (decoder) achieves average speedups of 27.4×

(25.1×) and 94.2× (121.1×) with respect to Kakadu (and

JPEG2K). The three-pass version of BPC-PaCo achieves av-

erage speedups of 19.3× (18.2×) and 66× (87.7×). The two-

pass version of the algorithm is, approximately, 1.4 times

faster than the three-pass version, for both the encoder and

the decoder. JPEG2K is slower than Kakadu because of the

fine-tuning optimization carried out in Kakadu and because

the GPU implementation of JPEG2000 can not fully exploit

SIMD parallelism due to the sequential coding algorithms

of JPEG2000. Fig. 6 also depicts the minimum performance

needed to compress in real time high resolution digital cin-

ema. The proposed implementation is the only that could be

employed. We recall that, currently, implementations of real-

time digital cinema need to employ field programmable gate

arrays.

Table V reports some GPU performance metrics achieved

when BPC-PaCo and JPEG2K code an image of the corpus.

These metrics help to appraise the performance of our method

and to explain the performance difference between our method

and JPEG2K. As seen in the table, the 73× (53×) speedup

of the two-pass (and three-pass) version of BPC-PaCo with

respect to JPEG2K is due to improvements in three aspects:

1) the execution of 15 (11.1) times fewer instructions, 2) the

execution of these instructions 4.5 (4.2) times faster, and 3) a

slightly higher usage of the SMs. BPC-PaCo executes fewer

instructions than JPEG2K because its algorithm is simpler

and because it exhibits lower control flow divergence, as

shown by its 1.49× (1.36×) higher warp efficiency. The fine-

grained parallelism available in BPC-PaCo and the thread-to-

data mapping strategy are behind the better GPU utilization

metrics achieved by our method. The total IPC is defined as the

aggregated number of instructions executed per clock cycle by

all SMs. The higher IPC of BPC-PaCo is due to a higher SM

occupancy (85% vs 23%) achieved by the abundant thread-

and instruction-level parallelism of our implementation. BPC-

PaCo achieves higher SM activity because it exposes more

parallelism in the form of thread blocks. This analysis also

holds for the decoder.

In order to assess the performance bottleneck of our imple-

mentation, additional performance metrics have been collected

via the Nvidia profiler. The main results obtained for the two-

pass encoder indicate that:

1) The computational utilization, determined as the ratio

between the achieved instruction throughput (i.e., IPC)

and the maximum throughput theoretically attainable is

53%. The throughput for specific instruction types, like

integer, load, or shift operations, is also well below

their peak limits. This suggests that performance is not

bounded by the computational throughput.

2) The memory bandwidth achieved is 28% since most

of the memory traffic is filtered by the L1 and L2

caches. This indicates that the memory bandwidth can

be discarded as the performance bottleneck too.

3) Most of the stalling cycles occurring in the execution

pipeline are due to general computing operations. Only

20% of the stalling cycles are caused by memory de-

pendencies. This indicates that our implementation is

mainly bounded by the execution latency of dependent

computing instructions.

Similar results are obtained with the three-pass version of the

encoder and with both versions of the decoder.

Table VI reports the computational performance of BPC-

PaCo when using different codeblock sizes. The width of the

codeblock is 64 for all the tests so that the same optimized

memory access pattern is employed. As seen in the table, the

use of 64×32 codeblocks obtains the highest performance,

which is approximately 12% higher than when using 64×64

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

10

 0

 20

 40

 60

 80

 100

 120

M
s
a
m

p
le

s
 /
 s

e
c
o
n
d

 500

 1000

 1500

 2000

 2500 CPU GPU

encoder

decoder

Kakadu JPEG2K BPC-PaCo

2 coding passes 3 coding passes

Digital Cinema (4K)

Fig. 6: Computational performance evaluation. Kakadu is executed with 32 CPU threads and GPU implementations are executed

in a GTX TITAN X. Each pair of bars corresponds to an image.

TABLE V: GPU metrics achieved by BPC-PaCo and JPEG2K

when coding a 4096×4096 image. The results are obtained

with a GTX TITAN X. The speedup relative to JPEG2K is

reported in parentheses.

JPEG2K
BPC-PaCo encoder

2 passes 3 passes

time (ms) 834 11.4 (73×) 15.8 (53×)

#inst. (×106) 8105 541 (15×) 730 (11.1×)

total IPC 11.3 50.4 (4.5×) 48 (4.2×)

SM activity 86% 94% (1.09×) 96% (1.12×)

warp efficiency 33% 49% (1.49×) 45% (1.36×)

SM occupancy 23% 85% (3.7×) 83% (3.61×)

TABLE VI: Evaluation of the execution time (reported in ms)

of BPC-PaCo for different codeblock sizes when coding a

4096×4096 image. The experiments are carried out with a

GTX TITAN X.

encoder decoder

codeblock size 2 passes 3 passes 2 passes 3 passes

64×32 10.42 14.13 11.21 15.32

64×64 11.41 15.76 12.45 17.01

64×96 12.01 16.34 13.04 17.82

64×128 13.84 18.68 14.82 20.59

codeblocks. This is because a finer subdivision of the data

improves further the parallelism, helping to hide the execu-

tion latencies. Nonetheless, experimental evidence indicates

that the coding performance is penalized when using small

codeblocks [20]. In general, 64×64 codeblocks provide a good

tradeoff between computational and coding performance.

B. Scalability evaluation

The aim of the next experiment is to appraise the scalability

of our implementation for different image sizes and different

devices. This test uses one of the previous images scaled from

2048×2048 to 9216×9216. The main features of the GPUs

employed in the following tests are reported in Table VII.

The column that shows the peak computing throughput also

depicts the normalized performance with respect to that GPU

with the lowest throughput (i.e., the Tegra X1), in parentheses.

The GPUs are sorted in this table by their peak throughput.

Fig. 7 depicts the performance results achieved with the

two- and three-pass version of BPC-PaCo. For the GTX

480, GTX 750, and Tegra X1, our method achieves regular

performance regardless of the image sizes selected in our

experiments, i.e., performance scales proportionally with the

size of the input data. This is seen in the figure in the form

of almost straight plots. The GTX TITAN Black and GTX

TITAN X penalize the performance when the images are small.

This is because they have more arithmetic cores (3077 and

2880, respectively) than the other devices (a proportion of

at least 5 to 1), requiring a minimum input data size larger

than in the other devices to fully utilize their resources. As

shown in Table III, the performance improves with the problem

size until reaching images of 7168×7168. With codeblocks of

64×64, the coding of 2048×2048 image utilizes 1024 warps,

which is not enough to use all cores of these GPUs. Since the

execution performance is bounded by the latency of the com-

puting instructions, a higher degree of warp-level parallelism

helps hiding the waiting time for those latency, improving

SM activity and resource utilization, thereby enhancing the

performance.

The throughput achieved by BPC-PaCo with each GPU,

shown in Fig. 7, does not correspond exactly with the peak

throughput of each device, reported in Table VII. The dif-

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

11

TABLE VII: Features of the GPUs employed. The devices are sorted by their peak throughput.

device compute capability SMs cores × SM total cores clock frequency peak throughput (normalized) TDP

GTX TITAN X Maxwell 5.2 24 128 3072 1000 MHz 3072 Gops/sec (12.00) 250 W

GTX TITAN Black Kepler 3.5 15 192 2880 890 MHz 2563 Gops/sec (10.01) 250 W

GTX 480 Fermi 2.0 15 32 480 1400 MHz 672 Gops/sec (2.63) 250 W

GTX 750 Maxwell 5.0 4 128 512 1020 MHz 522 Gops/sec (2.04) 55 W

Tegra X1 Maxwell 5.3 2 128 256 1000 MHz 256 Gops/sec (1.00) 10 W

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80

M
s
a

m
p

le
s
 /

 s
e

c
o

n
d

image samples (x2
20

)

GTX TITAN X

GTX 480

GTX 750

GTX TITAN Black

Tegra X1

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80
M

s
a

m
p

le
s
 /

 s
e

c
o

n
d

image samples (x2
20

)

GTX TITAN X

GTX 480

GTX 750

GTX TITAN Black

Tegra X1

(b)

Fig. 7: Performance evaluation of BPC-PaCo with (a) 2 coding passes and (b) 3 coding passes when using different GPUs.

TABLE VIII: Performance metrics evaluation of BPC-PaCo when using different GPUs for coding a 4096×4096 image.

Normalized performance is computed as samples/second divided by peak GPU throughput. The percentage of achieved IPC

versus the peak IPC that is theoretically attainable by the GPU is reported in parentheses.

time (in ms) norm. perf. #inst. (×106) total IPC (% of peak) SM activity

cod. passes: 2 3 2 3 2 3 2 3 2 3

GTX TITAN X 11.4 15.8 0.479 0.346 541 730 50.4 (53%) 48.0 (50%) 94% 96%

GTX TITAN Black 12.9 18.3 0.507 0.358 485 639 43.4 (48%) 41.5 (45%) 97% 94%

GTX 480 30.5 39.8 0.819 0.628 481 638 11.4 (76%) 11.9 (79%) 99% 96%

GTX 750 42.4 70.1 0.758 0.458 538 764 12.4 (77%) 11.0 (69%) 99% 97%

Tegra X1 159.3 259.4 0.411 0.253 541 730 3.4 (42%) 2.9 (36%) 100% 99%

ferences are assessed in more detail in Table VIII, which

reports the execution time, normalized performance, instruc-

tions executed, total IPC, and SM activity when an image of

4096×4096 is coded. The GTX 480 is the most cost-effective

device for the two-pass (and three-pass) version of BPC-

PaCo, with a normalized performance of 0.819 (0.628) Msam-

ples/second for every unit of peak performance throughput.

This is more than 1.5× (1.65×) higher than the performance

achieved with the more powerful devices GTX TITAN X

and GTX TITAN Black, and 2× (2.5×) higher than the

performance achieved with the Tegra X1. The GTX TITAN

Black and GTX 480 execute between 11% and 14% fewer in-

structions than the other GPUs, which suggests that the Nvidia

compiler generates a more compact code for the instruction set

architectures of Kepler and Fermi than for Maxwell. The GTX

TITAN X executes an average of 50.4 instructions per clock

cycle (which corresponds to 50.4 × 32 = 1612.8 operations

per clock cycle, with 32 being the number of operations per

SIMD instruction or warp), which represents 53% of the peak

computing potential that is theoretically attainable by its 3072

cores. Larger images improve the total IPC around 10% and

the SM activity from 94-96% to almost 100% on the GTX

TITAN X. However, the GTX 480 and the GTX 750 achieve

higher resource efficiency (more than 75%) than the GTX

TITAN GPUs (lower than 57%), and considerably higher than

the Tegra X1 (around 36-42%). In summary, the GTX 480

benefits both from a more compact code and from a better

resource utilization. The lower efficiency of the Tegra X1

demands further analysis, but a plausible explanation is that

it has been designed sacrificing operation latency in order to

reduce energy consumption.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

12

 0

 100

 200

 300

(M
s
a

m
p

le
s
/s

e
c
)

/
W

a
tt

 4000

 8000

 12000

 16000

Kakadu JPEG2K BPC-PaCo
2 coding passes

CPU
GTX

TITAN X Tegra X1

encoder

decoder

Fig. 8: Power efficiency evaluation of Kakadu, JPEG2K, and BPC-PaCo with 2 coding passes when using a GTX TITAN X

and a Tegra X1. Each pair of bars corresponds to an image.

C. Power consumption evaluation

The following test assesses the power consumption of the

proposed method as compared to Kakadu and JPEG2K in

two devices, namely, the GTX TITAN X and the Tegra X1.

The GTX TITAN X is a high-performance GPU, whereas the

Tegra X1 is the last generation of Nvidia mobile processors,

especially devised to maximize the power-efficiency ratio.

Although this device has modest computational power, its

peak performance per watt ratio is much higher than that

of other devices. This is seen in the rightmost column of

Table VII, which reports the Thermal Design Power (TDP) of

the device. We recall that the TDP is a metric that measures the

maximum amount of heat generated by the device in typical

operation. This metric is often used to compare the actual

power consumption of different devices. As seen in the table,

the TDP of the Tegra X1 is 10W as compared with the 250W

of the GTX TITAN X.

Fig. 8 depicts the results achieved when coding the five

images of the corpus. The vertical axis of the figure is the

performance (in Msamples/second) divided by the TDP of

the device. The TDP of Kakadu considers only 4 of the 8

processors of the workstations, so its TDP is 380W since

each individual Xeon E5-4620 has a TDP of 95W. The

obtained results indicate that the BPC-PaCo encoder (decoder)

executed in a GTX TITAN X is 41.6 (38.1) times more power

efficient than Kakadu, on average. When running in the Tegra

X1, the BPC-PaCo encoder (decoder) is 61.1 (52.7) times

more efficient than Kakadu. With respect to JPEG2K, the

increase in power efficiency is approximately twice as that of

Kakadu. This indicates that, in addition to achieve very high

performance, the proposed algorithms and implementations

are a lot less power-hungry than the state-of-the-art codecs,

making it amenable for mobile devices.

VI. CONCLUSIONS

The algorithms in the core of current image coding sys-

tems are mainly devised from a sequential point of view. In

image compression standards such as JPEG2000, these core

algorithms employ bitplane coding strategies and arithmetic

coders to code the coefficients of a transformed image. Their

main characteristic is to scan the coefficients in a linear fashion

producing a bitstream that can only be encoded/decoded

sequentially symbol after symbol. This enormously limits

the fine-grained parallelism that can be achieved in high-

performance devices such as GPUs. Aimed to tackle this issue,

our previous work [20] presented BPC-PaCo, an algorithm

that, still employing bitplane strategies and arithmetic coders,

divides the workload in small pieces that can be processed

by lock-step threads of execution in a SIMD fashion. The

proposed method does not sacrifice any of the advanced

features of the state-of-the-art coding systems and has only

a slight penalization in coding performance.

This paper presents the first implementation of BPC-PaCo.

The main insights of the proposed implementation are an ef-

ficient thread-to-data mapping, a smart memory management,

and fast cooperation mechanisms among the threads in a warp.

The experimental results achieved with the proposed imple-

mentation indicate that it is a very high-performance, power-

friendly codec. The main advantage of BPC-PaCo is that its

implementation in GPUs achieves a computing performance

that is in the order of 30× higher than the best implementations

of conventional image codecs in CPUs, while its power

consumption is 40× times lower. This suits applications with

requirements like real time coding, massive data production, or

constrained power. Examples of such applications are digital

cinema, TV production, or mobile imaging, among others.

The implementation employed in this work is freely available

in [27].

REFERENCES

[1] D. S. Taubman and M. W. Marcellin, JPEG2000 Image compression

fundamentals, standards and practice. Norwell, Massachusetts 02061
USA: Kluwer Academic Publishers, 2002.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2657506, IEEE
Transactions on Parallel and Distributed Systems

13

[2] S. Mallat, “A theory of multiresolution signal decomposition: the wavelet
representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, pp.
674–693, Jul. 1989.

[3] F. Auli-Llinas, “Model-based JPEG2000 rate control methods,” Ph.D.
dissertation, Universitat Autònoma de Barcelona, Barcelona, Spain,
Dec. 2006. [Online]. Available: http://www.deic.uab.cat/∼francesc

[4] T.-T. Wong, C.-S. Leung, P.-A. Heng, and J. Wang, “Discrete wavelet
transform on consumer-level graphics hardware,” IEEE Trans. Multime-

dia, vol. 9, no. 3, pp. 668–673, Apr. 2007.

[5] C. Tenllado, J. Setoain, M. Prieto, L. Piñuel, and F. Tirado, “Parallel
implementation of the 2D discrete wavelet transform on graphics pro-
cessing units: filter bank versus lifting,” IEEE Trans. Parallel Distrib.

Syst., vol. 19, no. 3, pp. 299–310, Mar. 2008.

[6] J. Matela et al., “GPU-based DWT acceleration for JPEG2000,” in
Annual Doctoral Workshop on Mathematical and Engineering Methods

in Computer Science, Nov. 2009, pp. 136–143.

[7] S. Datla and N. S. Gidijala, “Parallelizing motion JPEG 2000 with
CUDA,” in Proc. IEEE International Conference on Computer and

Electrical Engineering, Dec. 2009, pp. 630–634.

[8] J. Franco, G. Bernabé, J. Fernández, and M. Ujaldón, “Parallel 3D fast
wavelet transform on manycore GPUs and multicore CPUs,” Procedia

Computer Science, vol. 1, no. 1, pp. 1101–1110, May 2010.

[9] J. Matela, V. Rusnak, and P. Holub, “Efficient JPEG2000 EBCOT
context modeling for massively parallel architectures,” in Proc. IEEE

Data Compression Conference, Mar. 2011, pp. 423–432.

[10] C. Song, Y. Li, and B. Huang, “A GPU-accelerated wavelet decom-
pression system with SPIHT and Reed-Solomon decoding for satellite
images,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens.,
vol. 4, no. 3, pp. 683–690, Sep. 2011.

[11] W. J. van der Laan, A. C. Jalba, and J. B. Roerdink, “Accelerating
wavelet lifting on graphics hardware using CUDA,” IEEE Trans. Parallel

Distrib. Syst., vol. 22, no. 1, pp. 132–146, Jan. 2011.

[12] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit
implementation of JPEG2000 for hyperspectral image compression,”
SPIE Journal of Applied Remote Sensing, vol. 6, pp. 1–14, Jan. 2012.

[13] V. Galiano, O. López, M. P. Malumbres, and H. Migallón, “Parallel
strategies for 2D discrete wavelet transform in shared memory systems
and GPUs,” The Journal of Supercomputing, vol. 64, no. 1, pp. 4–16,
Apr. 2013.

[14] V. Galiano, O. López-Granado, M. Malumbres, and H. Migallón, “Fast
3D wavelet transform on multicore and many-core computing plat-
forms,” The Journal of Supercomputing, vol. 65, no. 2, pp. 848–865,
Aug. 2013.

[15] J. Chen, Z. Ju, C. Hua, B. Ma, C. Chen, L. Qin, and R. Li, “Accelerated
implementation of adaptive directional lifting-based discrete wavelet
transform on GPU,” Signal Processing: Image Communication, vol. 28,
no. 9, pp. 1202–1211, Oct. 2013.

[16] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementation of the
DWT in a GPU through a register-based strategy,” IEEE Trans. Parallel

Distrib. Syst., vol. 26, no. 12, pp. 3394–3406, Dec. 2015.

[17] (2016, Jun.) GPU JPEG2K. [Online]. Available: http://apps.man.poznan.
pl/trac/jpeg2k/wiki

[18] D. Taubman. (2016, Jun.) Kakadu software. [Online]. Available:
http://www.kakadusoftware.com

[19] (2016, Jun.) CUDA JPEG2000 (CUJ2K). [Online]. Available: http:
//cuj2k.sourceforge.net

[20] F. Auli-Llinas, P. Enfedaque, J. C. Moure, and V. Sanchez, “Bitplane
image coding with parallel coefficient processing,” IEEE Trans. Image

Process., vol. 25, no. 1, pp. 209–219, Jan. 2016.

[21] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Strategies of SIMD
computing for image coding in GPU,” in Proc. IEEE International

Conference on High Performance Computing, Dec. 2015, pp. 345–354.

[22] F. Auli-Llinas and M. W. Marcellin, “Scanning order strategies for
bitplane image coding,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1920–1933, Apr. 2012.

[23] F. Auli-Llinas, “Context-adaptive binary arithmetic coding with fixed-
length codewords,” IEEE Trans. Multimedia, vol. 17, no. 8, pp. 1385–
1390, Aug. 2015.

[24] ——, “Stationary probability model for bitplane image coding through

local average of wavelet coefficients,” IEEE Trans. Image Process.,
vol. 20, no. 8, pp. 2153–2165, Aug. 2011.

[25] F. Auli-Llinas, P. Enfedaque, J. C. Moure, I. Blanes, and V. Sanchez,
“Strategy of microscopic parallelism for bitplane image coding,” in Proc.

IEEE Data Compression Conference, Apr. 2015, pp. 163–172.
[26] F. Auli-Llinas and M. W. Marcellin, “Stationary probability model for

microscopic parallelism in JPEG2000,” IEEE Trans. Multimedia, vol. 16,
no. 4, pp. 960–970, Jun. 2014.

[27] P. Enfedaque. (2016, Nov.) Implementation of BPC-PaCo in a
GPU. [Online]. Available: https://github.com/PabloEnfedaque/CUDA
BPC-PaCo

Pablo Enfedaque is a Ph.D student with the Depart-
ment of Information and Communications Engineer-
ing, Universitat Autònoma de Barcelona, Spain. He
received the B.E. degree in computer science and
the M.Sc. degree in high performance computing
and information theory in 2012 and 2013, respec-
tively, from Universitat Autònoma de Barcelona.
His research interests include image coding, high
performance computing and parallel architectures.

Francesc Aulı́-Llinàs (S’06-M’08-SM’14) received
the B.E. (with highest honors) and Ph.D. (cum
laude) degrees in Computer Science from Universitat
Autònoma de Barcelona (UAB) in 2002 and 2006,
respectively. From 2002 to 2015 he was consecu-
tively funded in competitive fellowships, including
a Ramón y Cajal grant that was awarded with
the intensification young investigator (i3) certificate.
During this time, he carried out two postdoctoral
research stages with professors David Taubman and
Michael Marcellin. From 2016 to present, he is an

associate professor (with the Full Professor certificate) with the Department of
Information and Communications Engineering in the UAB. He developed and
maintains BOI codec, a JPEG2000 implementation that is used in research
and professional environments. In 2013, he received a distinguished R-Letter
given by the IEEE Communications Society for a paper co-authored with
Michael Marcellin. He has participated and supervised various projects funded
by the Spanish government and the European Union. Also, he is reviewer for
magazines and symposiums, has (co)authored numerous papers in journals and
conferences, and has guided several Ph.D. students. His research interests lie
in the area of image and video coding, computing, and transmission.

Juan C. Moure received his B.Sc. degree in com-
puter science and his Ph.D. degree in computer ar-
chitecture from Universitat Autònoma de Barcelona
(UAB). Since 2008 he is associate professor with
the Computer Architecture and Operating Systems
Department at the UAB, where he teaches com-
puter architecture and parallel programming. He
has participated in several European and Spanish
projects related to high-performance computing. His
current research interest focuses on the usage of
massively parallel architectures and the application

of performance engineering techniques to open research problems in bioin-
formatics, signal processing, and computer vision. He is reviewer for various
magazines and symposiums and has authored numerous papers in journals
and conferences.

