
Genetic Algorithm based QoS-aware Service  
Composition in Multi-Cloud 

Miao Zhang 
School of Automation and Electrical 

Engineering  
University of Science and 

Technology  
Beijing. Beijing, China

 Li Liu* 
School of Automation and Electrical 

Engineering  
University of Science and 

Technology Beijing  
Beijing, China 

e-mail: liuli@ustb.edu.cn

Songtao Liu 
Beijing AVIC Information 

Technology Company 
Aviation Industry Corporation of 

China 
Beijing, China

Abstract—Cloud computing as a widely used computing 
platform can provide a number of services for customers in a 
pay-as-you-go fashion. Enabling further growing and complex 
needs of users, service of different independent cloud provider 
should be composed to deliver uniform Quality of Service (QoS) 
as a single request. An open and valid question is how to select 
services as a partner chain and optimize the service 
compositions in order to satisfy both functional and 
non-functional requirements across multiple Cloud services. It
is a NP-hard problem and faces trade-off among various QoS 
criteria. In this paper, a service composition model is presented 
considering the geo-distributed Multi-Cloud environment.
Furthermore a Genetic Algorithm (GA) with improved 
crossover and mutation operator is proposed for QoS-aware 
service composition which allows users to select the optimized 
composition solution according to their preference. 
Experiment results show that this algorithm can improve the 
solution optimality and accelerate convergence speed. 

Keywords—Multi-Cloud, Services Composition, Genetic 
Algorithm 

I. INTRODUCTION 

Cloud computing is internet-based computing platform, 
where resources such as infrastructures, platforms, online 
applications can be shared as web services to cloud users, 
and recently many different web services are published and 
available in cloud data centers[1]. Since there are a number 
of cloud services, and a single Cloud service usually cannot 
satisfy complex needs of users. These factors emphasize the 
usage of multiple clouds (i.e. Multi-Cloud) in order to 
achieve better QoS. The term Multi-Cloud denotes the usage 
of multiple, independent clouds by a client or a service [2].
So how to select services in Multi-Cloud to compose an 
optimization service under various QoS constraints is a 
challenge problem. 

Driven by the increasing customer requirement for 
flexibility, the number of service delivery model offered by 
cloud providers are expected to increase in the years to come 
[3]. There are more complex scenarios in cloud service, i.e., 
where multiple service providers, belonging to a single or 
multiple legal entities, collaborate and mutually interact in 
order to provision resources to an end-user. Moreover, 
bundling services that combine several services into a single 
offering are typical for cloud environments. For example, the 
data mining services packaged as the integrated cloud service
Google BigQuery or Cloud9 Analytics, and the database 

services packaged as Amazon DB and Quickbase [4]. The 
considered hybrid resource provisioning is a scenario where 
a consumer at the SaaS abstraction level consumes 
infrastructure resources from other infrastructure providers 
(IaaS). The number of candidate combinations will also go
up exponentially with increasing service instances number.
And different service instances with same functionally 
equivalent have different QoS levels in the cloud. How to 
execute services composition in Multi-Cloud environment 
and achieve high service utility customized for client 
requests without complicated processes has become an 
important research issue.  

Service composition can be defined as the process which 
creates new services by combining and linking existing 
services via optimized orchestrator strategy [5]. In order to 
promptly achieve consumer requirements, this composition 
of services in Multi-Cloud should be carried out in a 
dynamic and automated manner. Furthermore, an efficient 
Cloud service composition method should select the highest 
level QoS and the cheapest services. It is challenging to 
efficiently find a composition solution in Multi-Cloud 
environment for the reason that it involves not only service 
composition but also the supply chain combination 
optimization under the constraint of many optimal objectives. 
This problem is NP-hard and Genetic Algorithm (GA) is 
naturally for solving these problems, however, GA also 
sometime finds some inferior solutions when the search 
space of problem is very huge, like in Cloud environment. 
We propose a GA with improved crossover and mutation 
based on elitism for QoS-aware service composition in 
Multi-Cloud environment which could prevent premature 
convergence efficiently. 

Several approaches [5] also have been proposed to solve 
service composition problem, most of them only consider the 
composition in the application level, but we should consider 
composition in both application level and user’s preference 
in cloud environment.  And they are just useful for 
small-scale composition problem, when introduced to cloud 
environment, it may incurs performance degradation. There 
are many approaches to solve cloud service composition, 
especially the evolutionary algorithms like GA [6], PSO and 
ACO which are heuristic approaches to iteratively find 
near-optimal solution in large search spaces. In [7], the 
reliability-driven (RD) reputation was presented, which is 
time dependent, and can be used to evaluate the reliability of 
a resource. The authors proposed a look ahead genetic 

*Corresponding Author: liuli@ ustb.edu.cn

2015 IEEE Conference on Collaboration and Internet Computing

978-1-5090-0089-0/15 $31.00 © 2015 IEEE

DOI 10.1109/CIC.2015.23

113

2015 IEEE Conference on Collaboration and Internet Computing

978-1-5090-0089-0/15 $31.00 © 2015 IEEE

DOI 10.1109/CIC.2015.23

113



algorithm (LAGA) which utilizes the RD reputation and 
multi-objective model to optimize both the makespan and the 
reliability of a workflow application. The intelligent 
algorithms like PSO algorithm and ant colony algorithm are 
also adapted to solve service composition problem. Paper [8] 
presents a graph-based PSO technique which simultaneously 
determines the optimal workflow and the optimal Web 
services to be included in the composition based on their 
QoS properties. An ACO (Ant Colony Optimization 
algorithm) was proposed for QoS Based Web Services 
Composition problems in [9].

In this paper, (1) A service composition model is 
presented considering the geo-distributed Multi-Cloud 
environment; (2) A heuristic service composition algorithm 
using new mutation and crossover operator to improve 
general GA is proposed, which allow users to select the 
optimized composition solution according to their preference; 
(3) Simulation results show that our proposed GA can 
improve the solution optimality and convergence speed 
compared with existing GA. 

II. PROBLEM FORMULATION 

In the view of Cloud service composition mechanism, the 
system models include: Cloud provider (CP), 
applications(service requirements)(R), QoS criterion and 
constraints, types of composite service profile (CSF). 
Different CP partner needs to collaborate to form supply 
chain to satisfy the service requirements completely as it 
cannot provide all the services. We assume that each CP can 
provide more than one services and each service has one or 
more CP. Services in different commercial independent 
cloud platforms can be composed via mutual communication 
to satisfy complex needs of customer. 

A. Definitions 
In QoS-aware service composition, the cloud user 

submits a set of abstract services to be composed, which 
define an application requirement for executing a task [10].
As well, the corresponding QoS requirements for execution 
constraints of this application are submitted to Cloud service 
coordinator.  

Define � = {��, … ��, … ��} (1 ≤ i ≤ n) is a set of n
service requirements of customer. Each requirement R� can 
be accomplish by a set of abstract services {S�| 1 ≤ i ≤
l}with a certain sequence. In most cases, one abstract service 
can satisfy a requirement. 

�	
� = {�	
��, … , �	
�
, … , �	
��} , cons�(1 ≤
α ≤ N)  is a constraint value over QoS criterion  Q� 
required by cloud customer, and Nis the number of QoS 
constraints. Let �	
�� = {�	
��

�, … , �	
��

, … , �	
��

�}(1 ≤
� ≤ �) represent a set of constraints for requirement R�,
where cons�

�  is the constraint value over Q�  of 
requirement R� . Cons  which is defined by end users 
specifies QoS expectation about the composite solutions. 

A Multi-Cloud is a set of clouds, such as � =
{��, … ��, … ��}, where each �� (1≤k≤m) is an independent 
CP. m is the number of CP. CP publishes a set of web 
services,�� = {��

�, … ��
�, … ��

�} , where ��
� (1 ≤ � ≤ �) is a 

service functionality class (abstract service) from CP k. A
service class include different services instance which can 
satisfy user’s request. CP often specifies their published 
services in a standard OWL-S specification service file, 
which denote a service functionality classes. l is the number 
of service classes in Pk. Each service classes  ��

� is a 
collection of different atomic service (concrete service 
instance) ��,�

� with different QoS level while have the same 
functionality. Each service instance ��,�

� is associated with a 
QoS criterion ��� . � = {��, … , �
, … , ��} (Q�, 1 ≤ α ≤
N) is a QoS criterion of service and N is the number of 
QoS criteria that a service holds. Let 
���

� = {���
�,�, … , ���

�,
, … , ���
�,�}(1 ≤ � ≤ �) denote the 

vector of the QoS criterion for service instance ��,�
� offered 

by ���.
The process of service composition in Multi-Cloud is to 

find a set of service instances s�� and bound them to abstract 
services to complete a application. The solve of service
composition can be denoted as �� = {���, … , ���, … , ���}, 
CS� is a service composition profile, which is composed of 
the available services needed by R�.

B. Aggregated QoS Model of Service Composed
Every task in a cloud should be executed by a special 

service class [12]. The service set uses the basic types of 
composite service patterns. Atomic services (service 
instances) are connected by different structures in a 
composite service. Generally, there are four service 
composition structures: Sequential, AND (parallel), XOR 
(conditional), Loop.  

We can simplify cloud service composition with the 
basic structures into an abstract service, and use the above 
four structures to calculate the aggregation QoS value of the 
composite service. The commonly used SLAs defined with 
QoS criteria include response time, reliability, cost, etc. The 
QoS of composition service should be examined by 
aggregate measuring the QoS criteria of individual atomic 
service to decide whether it satisfies desired SLA. Obviously, 
there may be multiple atomic services deployed on different 
CPs providing the same function. So the network latency 
between services should be considered in computing the 
aggregate response time. The latency between services noted 
by �(�) is measurable and predictable which is not the 
focus of this paper. The aggregated response time of i��

sequential branch is represented by !� . Similar to the work 
[6], the aggregation QoS of composition service (CS) can be 

TABLE I. QOS AGGREGATE FUNCTIONS 

QoS 
Criteria Sequential Conditional Parallel Loop

Response
time

T = " !� + " �(�)
�

�#�

�

�#� T = " $� ∗ !�

�

�#�
T = &'*�#�

� !� T = k ∗ !�

Reliabilit
y R = - ��

�

�#�
 R = " $� ∗ ��

�

�#�
R = &�
�#�

� �� R = (��)�

Cost C = " ��

�

�#�
C = " $� ∗ ��

�

�#�
C = " ��

�

�#�
C = k ∗ ��

114114



calculated as Table1. 

III. OPTIMIZATION OF CLOUD SERVICE COMPOSITION

In order to satisfy differentiated SLAs (defined for 
different user), application broker is required to find the 
optimal combinations of service instances to satisfy users’ 
QoS metrics. Service composition optimization may trade 
off among conflicting QoS objectives, such as the response 
time, reliability and cost. For example, to improve the 
response time of service by deploying expensive service 
instance, however, this is against another objective to reduce 
cost [11].  

A. Genetic Algorithm 
Genetic Algorithm (GA) is a heuristic approach which 

iteratively finds near-optimal solutions in large search spaces. 
It introduces the biological evolution principle "survival of 
the fittest" into encoding of chromosome, and uses selection, 
crossover and mutation operations to filtrate individuals, thus 
make sure that the individuals which have good fitness value 
are retained and poor one are eliminated [12]. The new 
generation of individuals inherits the information of the 
previous generation, and is better than it. These operations 
repeat circularly until the user’s QoS is satisfied or reaches 
the maximum number of iterations[6]. 

In the selection step, it generates a predefined number of 
chromosomes to form the initial generation. The 
chromosomes are ordered by their fitness value. Then a 
rank-based roulette wheel selection scheme is used to 
implement the selection operation.

In the crossover step, it randomly chooses some pairs of 
the chromosomes to form the offspring. For each pair, it 
randomly generates a cut-off point, and divides the parents 
into top and bottom parts. The bottom parts of the parent 
chromosomes are reordered. This ensures that the newly 
generated offspring are valid. Fig.1 shows a crossover 
operation. The mutation operation refers to select an 
arbitrary individual and mutate an arbitrary point in the 
chromosome to generate a better individual. Fig. 2 shows a 
mutation operation. 

In this paper, genomes (chromosome) represent the 
possible solution for service composition. Three genes in a 
chromosome encode a service instance. The first gene 
represents the independent CP that provides the service, and 
the following two genes represent the service instance from a 
service class. For example in Fig.3, the shown chromosome 
is a composited service that consists of 8 service classes to
implement 8 tasks. Each three genes represent the chosen 
service instance from each service class. Such as service 
s�,�. 

� is the thirteenth service instance picked from service 
class S�  and offered by CP  P�. In this example, the 
composited services are 
{��,�. 

� , �0,2 
3 , �.,4 

5 , �2,�. 
. , �6,�0 

2 , �4,�� 
3 , �3,�� 

4 , �5,�7 
6 }.

Algorithm 1 shows the evolution process in GA, $	$8
denotes the population of the generation 9, : is the number 
of individuals in a population.  γ  is the length of 
individual. $<  is the crossover probability, and p> is the 
mutation probability. 

Fig. 1. The crossover operator of GA   

Fig. 2. The mutation operator of GA

ALGORITHM 1 EVOLUTION PROCESS IN GA
Input: 9�?@, :, γ,  $< , $�
Output: best population $A 

11.    �BD the maximum generation 9�?@ 
2.  Initial population  $	$8  with : individuals, and the 
length of each individual is γ. 
3.   For g=1:9�?@ 
3.1. calculate the fitness of individuals in $	$8  : f ($	$8) 
3.2.  $	$G=selection($	$8 , f ($	$8)) 
3.3.  $	$<=crossover($	$G, $<) 
3.4.  $	$�=mutation($	$< , $�) 
3.5.  $	$8H�=$	$� 
End 

 

B. Fitness function  
After crossover and mutation operators, GA will evaluate 

the chromosomes using fitness function. Most end-users not 
only prefer service with high reliability, but also short cost 
and response time. The fitness function must to satisfy all 
these preferences.

QoS criteria should be normalized for the different 
measurement units of them. Q��

I = {Q��
I,�, … , Q��

I,�, … , Q��
I,J}  

is the vector of the QoS criteria of service instance 
s��

I from CP PI . Q�,>KL
�  is the maximum of QoS criteria α

for all service instance in class i , and Q�,>�M
�  is the 

minimum. The normalized QoS criteria of Q′��
I can be 

calculated as equation 1.  

�′��
�  =

UVW
X YUV,Z

[

UV,\
[ YUV,Z

[                   (1) 

For the positive QoS criteria to be maximized, the ideal
value Q�,H

� = Q�,>KL
� , Q�,Y

� = Q�,>�M
� , such as reliability,  

while for the negative criteria to be minimized, the ideal
value ��,H


 = ��,���

 , ��,Y


 = ��,�?@

 such as time and cost.

  

115115



 

Fig. 3. An example of Chromosome in Multi-Cloud 

And QoS values of composited service ��� is calculated 
based on Table 1, 
Q(CS)> = {Q(CS)>

� , … , Q(CS)>
� , … , Q(CS)>

J }. The weights 
ω� determined by users are assigned to QoS criteria to 
represent users’ preference in fitness function. The fitness of 
an individual is calculated as equation 2. 

^(���) = ∑ `
 ∗ �′(��)�

�


#� − a ∗ b(&)        (2) 
where σ is the penalty coefficient, and E(m) is an error 
term which is 0 for the feasible solutions, and the sum of all 
the amounts by which the constraints are violated for 
infeasible solutions, and it has been normalized, too. 

C. Improved crossover and mutation process 
Using Genetic Algorithm to solve optimization problem 

of service composition differs from continuous optimization 
problems, due to the change of fitness in chromosome is not
continuous with gene modifications. So one gene change in 
an excellent chromosome may lead to a substantial decline of
fitness value, and it is likely this outstanding solution can’t 
be found again within the specified iterations. And a simple 
crossover or mutation may deteriorate the whole population, 
and the situation would be worse when the number of 
instance is tremendous, like in Cloud environment, and lead 
to premature convergence. So how to lead the population 
evolve in a correct direction is a key issue. We improve the 
crossover operator (See Algorithm 2) turning it to increase 
the fitness value to prohibit the poor crossover and 
mutation.` 

ALGORITHM 2 IMPROVED CROSSOVER PROCESS  
Input: population $	$G, $<  
Output: population $	$<  
1.     oldpop=$	$G 
2.     set p which is a random decimal within the range [0,1]. 

set s which is a random crossover point in parents. 
3. For i=1: : 

If  $ < $<  
          $	$G(�, : ) = [$	$G(�, 1: �), $	$G(� + 1, � + 1: γ)]; 

$	$G(� + 1, : ) =  [$	$G(� + 1,1: �), $	$G(�, � + 1: γ)]; 
End 

        If  ^t 
Bu$	$(�, : )v > ^t	�x$	$(�, : )v 
  $	$<(�, : )=$	$G(�, : ); 

Else  
$	$<(�, : )= oldpop(�, : ); 

End 
End

 
The chromosome is randomly changed in mutation 

operator of general GA, which does not care about the 
individual’s fitness. So in some cases, a mutation operation 
is likely to make an outstanding individual becomes 
infeasible solution. An improved mutation operator is 

presented as Algorithm 3. The mutation process is 
recognized effective that only when the fitness value of the 
chromosome after the mutation operation is higher than the 
before. 

ALGORITHM 3 IMPROVED MUTATION PROCESS
Input: population $	$< , $� 
Output: population $	$� 
1.    oldpop=$	$<  
2.   set p which is a random decimal within the range [0,1]. 
set o which is a random mutation point in parents. 

 k is a random number. 
3.    For i=1: : 
If  p<$�  
$	$<(�, 	) = y; 
End 
If  ^t$	$<(�, : )v > ^t	�x$	$(�, : )v 
$	$�(�, : )=$	$<(�, : ); 
Else  
$	$�(�, : )= oldpop(�, : ); 
End 
End

 

IV. EVALUATION AND RESULTS

Compared with general GA, the performance of our 
proposed GA is evaluated in Multi-Cloud environment. The 
data of web service is from QWS Dataset (2.0) developed by 
Eyhab Al-Masri and Dr. Qusay H. Mahmoud. We consider 
three QoS criteria,
� = {zB�$	
�B D�&B(&�), zB��'~���D�(%), �	�D($)} . All 
the experiments are performed on computers with Inter Core 
i5-4570S CPU(2.9GHz and 8G RAM). 

A. Experiment setup 
There are 8 service classes, and each of them includes 80 

service instances provided by 8 geo-distributed CPs. The 
Cons = {cons�, cons0, cons.} ,  cons�, cons0, cons. are 
constraints of response time, the reliability and the cost in 
order. In reality, QoS constraints defined in SLA are 
generated through the negotiation between users and service 
providers. Generally, most QoS constraints were computed 
as follows: 

 �	
�� = !� ∗ & + �� ∗ &                       (3)  
�	
�0 = ��^&                              (4)  
�	
�. = �̅ ∗ &                              (5) 

where m is the number of service classes,  T�, R� and 
C � is the average response time, average reliability and 
average cost for all service instance respectively. L� is the 
average latency between each two CPs. For two continuous 
services from the same CP, the latency is zero, and for two  

116116



 

(a)General GA 

(b) Improved GA 

Fig. 4. Results of general GA and Improved GA 

from different CPs, there will be network delay. The 
latencies (ms) are generated depending on their distance and 
within the range [100,200]. The probability of crossover p�
is 0.8 and the probability of mutation $�  is 0.2. A
rank-based roulette wheel strategy is used for selection. 

We configure the evolutionary algorithms to run 50 
generation with 50 individuals (or particles), the time 
complexity of GA is O(& ∗ (9�?@ + 1)), where m is the 
individuals number in a group, and 9�?@ is the maximum 
iteration number, it examines 2550 individuals at most. But 
the complexity of this problem is O(∏ y�

�
�#� ), which O is 

the time complexity of exhaustive approach for this problem, 
n is the number of workflow tasks and y� is the number 
candidate service instances for task d. We can find that, with 
the increase of the number of task and service instance, the 

time complexity of this service combination optimization 
problem is much more than the evolutionary algorithm. 

B. Simulation Results and Analysis 
In the first experiment, three QoS criteria gained equal 

preference from users. The constraints are calculated by 
equation (3), (4), (5). The goal of service composing is both 
to maximize the reliability and to minimize the response time 
and cost under the constraints condition. The number of 
generation is 100, and the size of population is 50. Fig. 4(a) 
and Fig.4(b) shows the Maxfitness (the maximum fitness 
value for each generation) and Meanfitness (the average 
fitness value for each generation) of general GA  and our 
proposed GA separately. As shown in Fig.4(a), the 
Meanfitness gradually improves in each generation, and 
approaches the Maxfitness in certain generations. But we can 
find that, in some generations, there are high recessions with 
the Maxfitness and unsatisfied convergence property of 
Meanfitness. From Fig 4(b), we can see, in each generation, 
there is no obvious recession with the Maxfitness, although 
there are small recessions in some generation which may be 
caused by the selection process, and after a certain number of 
generations, the Meanfitness converges to the Maxfitness. 
This demonstrates that the proposed GA can effectively 
prevent poor crossover and mutation. 

The two algorithms  are simulated for 30 times 
respectively, and the QoS criteria of the best individual in 
each times are gotten. 95% CI (Confidence Interval) for each 
QoS criterion of the two algorithms are shown in Table 2. 
The QoS criteria of composited service generated by our 
improved GA are better than the general GA.  
For different users, they have different QoS preferences. 
Some users may require a relatively high response time 
property, and others may be very sensitive to cost. Weights 
can reflect the users’ preference. In the second experiment, 
we set different user’s QoS preferences for three cases. In 
case 1, user prefers to have higher QoS property of response 
time. In the case 2, user is sensitive to reliability, and in the 
case 3,the preferred objective is cost. We have simulated the 
improved GA with the above three cases for 30 times 
respectively, the average response time, reliability and cost 
have been shown in Table 3. Under different user’s QoS
preferences, our proposed GA always can find suitable 
service composition solutions. 

TABLE II. RESULTS OF OUR GA IN DIFFERENT PREFERENCES

 Response time(ms) Reliability(%) Cost($) 
Case 1 1027.7 25.57 850.4
Case 2 1181.3 31.55 818.2
Case 3 1307.6 22.77 782.8

TABLE III. COMPARIING OF GENERAL GA AND IMPROVED GA

Response time(ms) Reliability (%) Cost($) Fitness value
Average 95%CI Average 95%CI Average 95%CI Average

General GA 1160.8 (1087.6,1234.0) 24.66 (21.38, 27.94) General 
GA

1160.8 (1087.6,1234.0) 24.66

Improved
GA

1060.8 (1005.9,1115.8) 29.06 (25.62, 32.51) Improved
GA

1060.8 (1005.9,1115.8) 29.06

117117



Fig. 5. Average Maxfitness of 30 times with different number of 
service instances  per service class 

In order to evaluate the scalability of our improved GA, 
we have compared the fitness value versus increasing sizes 
of service class. In this experiment, the QoS values of service 
instances are generated randomly, the random values of 
response time (ms) have a Gaussian distribution and with a 
mean value of 1000 and standard deviation of 20. The 
reliability (%) and cost($) are also Gaussian distribution and 
have mean value with 95 and 10 respectively, the standard 
deviation both with 2. Fig.5 shows the fitness value of two 
algorithms with different number of service instances. The 
improved GA also performs better than general GA in fitness 
value with the increasing number of service instance, i.e. our 
proposed algorithm is more scalable.  

V. CONCLUSION AND FUTURE WORK

We present a service composition model considering the 
geo-distributed Multi-Cloud environment. To address the 
problem of QoS-aware service composition, we have also 
proposed a Genetic Algorithm (GA) with improved 
crossover and mutation operator, which allows users to select 
the optimized composition solution according to their 
preference. Experiment results indicate that our algorithm 
with improved crossover and mutation performs better in 
optimality and accelerates convergence speed compared with 
the normal GA, moreover it has higher performance of 
scalability. So in the large scale optimizing problem, it is 
very essential to find a proper evolutionary direction for 
evolutionary algorithms. 

Deep explores are planned in the future work. We aim at 
using different evolutionary multi-objective algorithms like 
NSGA-II and MOPSO to discover Pareto-solutions 
addressing the problem of service composition. Our current 
central work is to adapt different parameters in different 
stages for evolutionary algorithms to make them evolve in 
correct directions to accelerate convergence speed and find 
more excellent solutions.  

ACKNOWLEDGMENT

This work is supported by the National Natural Science 
Foundation of China (Grant No. 61370132 No.61472033, 
No.61272432) and the State High-Tech Development Plan 
( No.2013AA01A601).  

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, “Cloud 
computing and emerging IT platforms: vision, hype, and reality for 
delivering computing as the 5th utility,” Future Generation 
Computing System vol.25, 2009, pp.599–616, doi: 
10.1016/j.future.2008.12.001. 

[2] N. Grozev and R. Buyya, “Inter-Cloud Architectures and Application 
Brokering: Taxonomy and Survey”, Software: Practice and 
Experience, ISSN: 0038-0644, Wiley Press, New York, USA, 2013,
doi: 10.1002/spe.2168. 

[3] L. Liu, M. Zhang, Y. Lin , L. Qin, “A Survey on Workflow 
Management and Scheduling in Cloud Computing”, Cluster, Cloud 
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International 
Symposium, 2014, pp.837 – 846, doi: 10.1109/ccgrid.2014.83. 

[4] A. Milenkoski, A. Iosup, S. Kounev, K. Sachs, P. Rygielski, J. Ding, 
et al., “Cloud Usage patterns: A formalism for description of cloud 
usage scenarios,” Technical Report: SPEC_RG_2013-001. SPEG RG 
Cloud Working Group. 

[5] L. Zeng, B. Benatallah, A. Dumas ,P. Leitner,  S. Dustdar,
“QoSaware middleware for web services composition,” IEEE 
Transactions on Software Engineering, vol. 30, no.5, pp.311–
327,2004, doi: 10.1109/tse.2004.11. 

[6] Z. Ye, X. Zhou and A. Bouguettaya, “Genetic Algorithm Based 
QoS-Aware Service Compositions in Cloud Computing,” 16th 
International Conference, 2011, pp. 321-334, doi: 
10.1007/978-3-642-20152-3_24. 

[7] X. Wang, C. S. Yeo, R. Buyya and J. Su, “Optimizing the Makespan 
and Reliability for Workflow Applications with Reputation and a
Lookahead Genetic Algorithm,” Journal Future Generation Computer 
Systems, vol. 27, no. 8, 2011,  pp. 1124-1134, doi: 
10.1109/CIS.2010.46, doi: 10.1016/j.future.2011.03.008. 

[8] A.S. da Silva, H. Ma, M. Zhang, “A Graph-Based Particle Swarm 
Optimisation Approach to QoS-Aware Web Service Composition and 
Selection,” Evolutionary Computation (CEC), 2014 IEEE Congress 
on, 2014, pp. 3127 – 3134, doi: 10.1109/CEC.2014.6900404. 

[9] R. D. Sunil, M. U. Kharat, “QoS Based Web Services Composition 
using  Ant Colony Optimization: Mobile Agent Approach,” 
International Journal of Advanced Research in Computer and 
Communication Engineering, vol. 1, no. 7, September 2012, doi: 
10.1016/j.proeng.2012.01.114. 

[10] H. Ma, F. Bastani, I. L. Yen, H. Mei, “QoS-Driven Service 
Composition with Reconfigurable Service,” IEEE Transactions on 
Services Computing, vol.6, no.1 ,pp. 20-34,2013, doi: 
10.1109/tsc.2011.21. 

[11] F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, and S. Dustdar,
“An end-toend approach for QoS-aware service composition,” In: 
Proceedings of 13th IEEE International EDOC Conference, 2009, pp. 
1 4, doi: 10.1109/edoc.2009.14.

[12] M. Srinivas, L.Patnaik, “Genetic algorithms: A survey,” Computer, 
1994, vol. 27, pp. 17 26 , doi: 10.1109/2.294849

118118


