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Process-oriented data mining (process mining) uses algorithms and data (in the form of event logs) to
construct models that aim to provide insights into organisational processes. The quality of the data (both
form and content) presented to the modeling algorithms is critical to the success of the process mining
exercise. Cleaning event logs to address quality issues prior to conducting a process mining analysis is a
necessary, but generally tedious and ad hoc task. In this paper we describe a set of data quality issues,
distilled from our experiences in conducting process mining analyses, commonly found in process
mining event logs or encountered while preparing event logs from raw data sources. We show that
patterns are used in a variety of domains as a means for describing commonly encountered problems and
solutions. The main contributions of this article are in showing that a patterns-based approach is ap-
plicable to documenting commonly encountered event log quality issues, the formulation of a set of
components for describing event log quality issues as patterns, and the description of a collection of 11
event log imperfection patterns distilled from our experiences in preparing event logs. We postulate that
a systematic approach to using such a pattern repository to identify and repair event log quality issues
benefits both the process of preparing an event log and the quality of the resulting event log. The re-
levance of the pattern-based approach is illustrated via application of the patterns in a case study and
through an evaluation by researchers and practitioners in the field.

& 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

In today's information systems, it is not uncommon for the
execution of processes to leave historical traces recorded in many
forms, including audit trails, system logs, databases, and paper-
based records. Both data mining and process mining analytics
exploit such historical data to uncover useful information relevant
to the domain about the systems and processes from which the
historical data is collected. Process mining, as an emerging re-
search discipline, aims at utilising information in event logs to
discover, monitor and improve processes [45]. Though emerging,
process mining has already been conducted in many organisations
in a variety of domains. For example, Mans et al. [24] identified 40
scholarly papers that report on applications of process mining (33
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focusing on process discovery and 7 on process conformance) in
various areas of health care. Process mining has yielded promising
outcomes in painting evidence-based, end-to-end views of pro-
cesses including: the actual manner in which processes were
carried out; the (non-)conformance of processes to guidelines/
regulations/legislation; performance and bottlenecks; and the
identification of pain points to facilitate targeted and effective
process improvement initiatives.

The truism garbage-in garbage-out is as relevant to process
mining as it is to other forms of computerised data analysis. In
process mining, the ‘in’ is an event log, so it is important to prepare
the event log such that it is fit for the purpose of the analysis. The
preparation of event logs necessarily involves cleaning raw data
sources from noise with the aim of minimising information loss
and producing an event log that is of ‘high quality’, i.e. the event
log is valid in the context of the domain from which the raw data
was collected and is valid for the purpose of the analysis (see
Fig. 1). Where such is the case, the data itself is not an impediment
to the analysis producing a model that agrees with reality.

In this paper we point out that process mining event logs have
some unique data quality considerations that can be dealt with
91
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Fig. 1. Garbage-in Garbage-out: the need for data and results validation.

Fig. 2. Event log fragment.
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through the use of a patterns-based approach. The use of patterns
as a means of understanding, and communicating the character-
istics of an apparently chaotic domain is a fundamental human
behaviour and has been widely applied in diverse areas, including
business analysis [13], software design [15,52] and systems se-
curity [22]. The benefit of using a patterns-based approach is that
it allows core solutions to recurring problems to be developed and,
most importantly, applied over and over again [3]. The main
contributions of this article are showing that a patterns-based
approach is applicable to documenting commonly encountered
event log quality issues, the formulation of a set of components for
describing event log quality issues as patterns, and the description
of a collection of event log imperfection patterns distilled from our
own experiences in preparing event logs that capture some spe-
cific, commonly-encountered event log data quality issues. The
impact of the presence in an event log of each imperfection pat-
tern in terms of the data quality dimension(s) most severely im-
pacted is also explained. We show how checking for the ‘sig-
natures’ of these patterns in an event log can reveal the existence
of the associated quality issues and inform appropriate remedial
action(s). The patterns thus form a knowledge repository facil-
itating a systematic approach to event log preparation that is in-
dependent of the type of analysis to be performed with benefits to
both the process of preparing the log and the quality of the re-
sulting log.

Whilst advocating for the use of patterns, we, like other pattern
collection authors [15,8,14], acknowledge that the pattern collec-
tion described in this paper cannot be deemed to be complete (i.e.
in our case, to offer coverage of all possible quality issues that may
afflict an event log). Indeed, it is not even possible to determine
the degree of coverage afforded by this pattern collection to the
spectrum of possible problems that may afflict an event log, as it
not possible to absolutely determine the complete set of such
problems. Thus, even if none of the patterns manifest in a log, it is
not certain that the log is 100% correct. We maintain however, that
the patterns provide a way to check for some commonly occurring,
and from a process mining perspective, high priority issues, which,
when systematically and routinely addressed, provides a ‘ground
level’ quality assurance and allows researchers and practitioners to
devote effort to uncovering domain and log specific quality issues.
As more patterns are included in the collection, the ‘ground level’
quality will naturally rise. Lastly, we refer to Martin Fowler, an-
other (highly cited) patterns author, who in [14], with regard to
completeness, states in relation to his Enterprise Application Ar-
chitecture patterns collection: “This pattern collection is by no
means a comprehensive guide to enterprise architecture development.
My test for this book is not whether it's complete, but merely if it's
useful.”

The remainder of the paper is organised as follows. In Section 2
we consider event log basics, patterns basics and some previously
published views on data quality from an information systems and
process mining point of view. In Section 3 we discuss work related
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
event logs, Information Systems (2016), http://dx.doi.org/10.1016/j.is
to data cleaning including some process mining-specific ap-
proaches. In Section 4 we describe a process mining-focused data
quality framework [6] that may be used to classify quality issues of
a process mining event log. Sections 5 and 6 contain the main
contributions of this paper. In Section 5 we propose a set of 11
event log imperfection patterns distilled from our own experi-
ences in preparing event logs. Examples provided in Section 6 il-
lustrate the use of the patterns via their application in a case study.
Section 7 presents an evaluation, by practitioners in the field, of
their recognition of, and perceived importance and usefulness of
the patterns.

 

 

2. Background

Event logs used in process mining have a structure designed to
allow representation of key attributes of events that occurred over
multiple executions of a given process. These event logs may then
be presented to a process mining algorithm with the aim of ana-
lysing and mapping the process (discovery), determining the ex-
tent to which actual execution of the process agrees with the in-
tended execution (conformance) or highlighting areas for im-
provement in the process (enhancement) [44]. Irrespective of the
specific type of analysis, it is true that the success of the analysis
depends on the quality of the data used in the analysis. In this
section we describe the characteristics of an event log and, with
the notion of garbage-in garbage-out in mind, review some existing
notions of data quality. We also describe patterns as a mechanism
for describing commonly encountered problems and solutions,
pattern languages as a structured method for describing patterns
and discuss previous applications of patterns in different domain
settings.

2.1. Event log basics

An event log suitable for process mining contains data related
to a single process. The event log consists of a set of cases (or
traces) and is constructed as a case table in multiple record-case
format (see Fig. 2). Each case consists of the sequence of events
carried out in a single execution of a process (process instance).
Each unique sequence of events from the beginning to the end of a
process instance is referred to as a variant. Each case/trace belongs
to exactly one variant. A variant may describe one or more cases/
traces. Cases within a log are uniquely identified by a case iden-
tifier. Irrespective of the type of process mining analysis under-
taken, each event is minimally characterised by a case identifier
which informs the case to which the event relates, and an ‘activity’
label describing the related ‘action’. Many process mining analyses,
e.g. process discovery, require an attribute that allows ordering of
events, e.g. a timestamp describing when the event occurred.
Other types of analysis require that the log contains relevant
supporting attributes. For instance, it is not possible to discover
the social network of resources contributing to the process unless
event data is enriched with resource information.
rns for process mining towards a systematic approach to cleaning
.2016.07.011i
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To conduct a process mining analysis, an event log needs to
contain, at minimum, enough information such that every activity
can be ascribed to a case and can be ordered via, for example the
timestamp. Often, the final event log is made up of data captured
in multiple raw source logs extracted from different systems used
in supporting the process being analysed. In this paper, we draw a
clear distinction between the final, cleaned event log and the
contributing raw source logs.

Definition 2.1 (Attribute, Event, Event Log). Let  be the event
universe, i.e. the set of all possible event identifiers. Events may be
characterised by various attributes, e.g. an event may belong to a
particular case, have a timestamp, correspond to an activity, and
can be executed by a particular person.

Let = { … }AN a a a, , , n1 2 be a set of all possible attribute names.
For each attribute ∈a ANi ( ≤ ≤i n1 ), ai is its domain, i.e. the set
of all possible values for the attribute ai.

For any event ∈e and an attribute name ∈a AN: # ( ) ∈ea a is
the value of attribute named a for event e. If an event e does not
have an attribute named a, then # ( ) = ⊥ea (null value).

Let id be the set of event identifiers, case be the set of case
identifiers, act be the set of activity names, and time be the set of
possible timestamps, res be the set of resource identifiers. For
each event ∈e , we define a number of standard attributes:

� # ( ) ∈eid id is the event identifier of e;
� # ( ) ∈ecase case is the case identifier of e;
� # ( ) ∈eact act is the activity name of e;
� # ( ) ∈etime time is the timestamp of e; and
� # ( ) ∈eres res is the resource who triggered the occurrence of e.

An event log  ⊆ is a set of events. This definition of an event
log allows the log to be viewed as a table, thus allowing the ap-
plication of relational algebra to the log.

2.2. Data quality dimensions

In order to assess the quality of an event log, it is necessary to
define a model of quality suitable to process mining. The literature
contains many data quality models, most of which relate to in-
formation systems in general and do not deal directly with specific
requirements of process mining. Data quality is frequently dis-
cussed in the literature as a multi-dimensional concept. Wand and
Yang [48] summarise the results of a literature review [49] ac-
cording to the most cited quality dimensions. They further cate-
gorise these dimensions according to whether they relate to the
‘external’ view of an information system (which is concerned with
the purpose of the information system) or the ‘internal’ view
(which addresses the construction and operation of the informa-
tion system necessary to meet the external view needs as defined
by a set of requirements and business rules). Their quality di-
mensions are: Completeness (all lawful states in the real-world
system can be represented in the information system); Un-
ambiguity (no two states of the real-world system should be
mapped into the same state in the information system); Mean-
ingfulness (all states in the information system can be mapped
back to a state of the real-world system); and Correctness (during
operation, all real-world states are mapped to the correct in-
formation system state, i.e. mapping the information system state
back to the real-world system results in the ‘correct’ real-world
system state).

Batini and Scannapieco [5] define at least the following di-
mensions for data quality: Accuracy (a measure of the closeness
between a recorded value and the real-life phenomenon that the
recorded value aims to represent). Accuracy is further broken
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
event logs, Information Systems (2016), http://dx.doi.org/10.1016/j.is
down into (i) Syntactic accuracy the closeness of a recorded value
to the elements of the corresponding definition domain, and (ii)
Semantic accuracy the closeness between a recorded value and the
true value. Here semantic accuracy corresponds with the concept
of correctness; Completeness (“the extent to which data are of suf-
ficient breadth, depth and scope for the task at hand” [50]); Con-
sistency (“captures the violation of semantic rules defined over (a
set of) data items”); Currency, Timeliness & Volatility (dimensions
concerned with “change and updates to data in time”); and Syn-
chronisation between different time series (“concerns proper in-
tegration of data having different timestamps”).

The ISO/IEC 25012 standard [1] aims to define a “general data
quality model for data retained in a structured format within a
computer system”. The standard defines data quality as “the degree
to which the characteristics of data satisfy stated and implied
needs when used under specified conditions” and categorises
quality attributes into fifteen characteristics from two different
perspectives: inherent (the data itself) and system dependent (the
ways in which data is “reached and preserved within a computer
system”).

Some of the characteristics defined in the standard are: Accu-
racy (the degree to which data correctly represent the true value of
the intended attributes of a concept or event in a specific context
of use). The standard also considers accuracy from syntactic and
semantic points of view; Completeness (data have values for all
expected attributes and related entity instances in a specific con-
text of use); Consistency (data are free from contradiction and are
coherent with other data in a specific context of use); Credibility
(users regard data as believable/reliable in a specific context of
use); and many others.

2.3. Patterns Basics

In the late 1970s, Christopher Alexander's The Timeless Way of
Building [2] and A Pattern Language: Towns, Buildings, Construction
[3] introduced the notion of a pattern as a means of describing
problems (and their solutions) commonly faced in our built en-
vironment. In [3], Alexander provides the rationale for using pat-
terns as “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this so-
lution a million times over without ever doing it the same way
twice”.

Since then, Alexander's pattern concept has made its way into
many disciplines. The highly cited work by the so-called “Gang of
Four” [15] is credited with initiating interest in design patterns for
use in object-oriented programming. In Fowler's works on analysis
patterns [13] and enterprise architecture patterns [14], the author
makes the point that patterns are not contrived by “academic in-
vention” but rather discovered from experience. This point is re-
inforced by Grady Booch in the foreword to [4]. Also in [4], the
authors cite the Rule of Three where a solution becomes a pattern
after it has been verified in three different systems.

Our principal aims in writing this article are manifold. Firstly,
we wish to propose patterns as a novel way of considering data
quality issues that may be encountered in process mining event
logs. Secondly, we wish to discuss the notion, at a conceptual level,
in such a way that it is accessible to a broad cross-section of the
process mining community. We also aim to raise awareness among
practitioners of the patterns-based approach to event log quality
issues with the hope that it would stimulate practitioners to verify
the existence of the patterns in their own data sets. In [46], the
authors state that a pattern description needs to strike a balance
between generality and precision. A textual/graphical representa-
tion is a convenient, language and implementation independent
representation that promotes awareness and makes patterns
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easily understandable without overwhelming the reader with
technical considerations. Further, such a presentation style does
not impose strict semantics on the patterns, (thereby limiting their
generality). To the best of our knowledge, this is the first work
describing the application of patterns to event log quality issues.
As such, and in keeping with other germinal pattern articles
[15,13,47] we felt that a discursive, rather than formalised style
was better suited to achieving these particular ends. Other widely
read pattern collections that use informal, component based de-
scriptions can be found in [3,15,13,14,19,47].

Our final aim for this article was to show that patterns could
form the basis of a systematic approach to cleaning event logs. As
Fowler says, “conceptual models are only useful to software en-
gineers if they can see how to implement them” [13]. A mathe-
matical and logical formulation can address issues of ambiguity in
textual/graphical descriptions and assist researchers and designers
reason about solution issues [42,52]. Accordingly, for each pattern
in the collection, we include a ‘lightweight’ formal specification.
Going beyond this level of specification is, we believe, outside the
scope and intent of this paper.
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3. Related work

In this section, we review previous work relating to data quality
for process mining analyses. In particular, we focus our related
work section on advances within the process mining community
that (i) raise the issue of event log quality, and (ii) propose
methods to overcome event log quality problems (including noise
removal). For completeness, we also, briefly, bring into the dis-
cussion existing work within the data mining community in
general and argue why such approaches are not applicable to
address the needs of process mining.

The issue of event log quality has been raised quite some time
ago. The Process Mining Manifesto, [45], defines a star rating (1-
star to 5-star) of the maturity of event logs where maturity refers
to readiness for process mining analysis. The authors state that
event logs rated as 3, 4 or 5-star are suitable for process mining
analysis, while 1- and 2-star rated logs are probably not suited for
use in a process mining analysis. A 5-star rated log (excellent
quality, trustworthy and complete) is characterised as being re-
corded automatically, systematically and reliably with all events
and their attributes having clear semantics. At the other end of the
scale, 1-star rated logs (poor quality) are characterised as having
events that do not correspond to reality and may be incomplete
(i.e. missing events). Such logs often result from manual recording
of data. With this rating system in mind, we contend that the data
imperfection patterns proposed in this article capture some of the
issues typically found in lower-rated event logs. By applying the
remedies for each data imperfection pattern (also proposed in this
article), we hope to allow the community to be able to improve the
quality of event logs in general.

Bose et al. [6] identify four broad categories of issues affecting
process mining event log quality: Missing data (where different
kinds of data are missing from the event log); Incorrect data (data
is provided, but, based on contextual information, is logged in-
correctly); Imprecise data (where logged entries are too coarse);
and Irrelevant data (where logged entries are irrelevant as is, but
may be used to derive relevant entities through filtering, ab-
straction or some other pre-processing). The authors then show
where each of these issues may manifest themselves in the various
entities of an event log. A distinction between our work and the
work proposed in [6] is that our event log imperfection patterns,
while more or less falling within Bose et al.'s four broad categories
of data quality issues, explore and highlight event logs problems at
a more detailed level. In particular, we propose a concrete
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
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manifestation of typical event log quality issues that are commonly
found in industry-based logs informed in large part through our
experiences in conducting analyses in healthcare [35,40] and in-
surance [41] domains.

Mans et al. [25] proposes a process mining data spectrum to
classify event data generated by different types of systems gen-
erally found in a Hospital Information System (HIS). The authors
observe that a HIS comprises of a mixture of information proces-
sing systems designed for different purposes and used in different
ways. Some systems, such as administrative systems, record ser-
vices delivered to patients, often for billing purposes. However, the
issue here is that data is often entered manually and is generally
performed some time after the service has been delivered to the
patient. While coarse-grained and imprecise recording of time-
stamps (often at the day level granularity) is not an issue for ad-
ministrative purposes, it is mostly too coarse for process mining
analysis purposes. Nevertheless, the knowledge of how such sys-
tems are being used forms the basis of some of our event log
imperfection patterns and their remedies (e.g. the collateral events
and scattered events patterns detailed in Section 5). Other systems,
such as medical devices, automatically record information about
the state of the devices as well as the task being performed in a
fine-grained manner (milliseconds). Event logs from such devices
are, on the other hand, often too fine-grained for process mining
analyses as there could be hundreds if not thousands of events
recorded for even a very short period of time. Nevertheless, the
knowledge of the data provenance in this case also forms the basis
of data imperfection patterns (e.g. the elusive case and the sy-
nonymous labels patterns detailed in Section 5). Overall, the work
by Mans et al. [25] describes event log quality as a two-dimen-
sional spectrum of with the first dimension concerned about the
level of abstraction of the events and the second one concerned
with the accuracy of the timestamp. The latter dimension is divided
into three sub-dimensions (i) granularity, (ii) directness of regis-
tration (i.e. the currency of the timestamp recording) and (iii)
correctness. In this work, the spectrum is used in the context of a
case study to elaborate on the data challenges faced in a process
mining analysis and whether event data collected from HISs al-
lows for answering questions frequently posed by medical pro-
fessionals in a process mining analysis. Our data imperfection
patterns (proposed in this article) do cut across these dimensions
proposed by Mans et al. [25]; however, as stated before, our ap-
proach explores the issue of event log quality at a much finer-
grained level by proposing concrete manifestations of data issues
that are, theoretically at least, semi-automatable in terms of their
detection and correction.

Where event logs contain no exceptional data and noise, pro-
cess mining algorithms can discover accurate models and can
extract useful process-related insights. However, the presence of
exceptional data (noise) in the event log leads to unnecessarily
complex discovered models that do not accurately reflect the
underlying process. In [18], in describing various types of noise
that may be encountered in an event log, the author firstly refers
to work in [51] on syntactic noise before introducing the notion of
semantic noise. Here syntactic noise arises from errors in logging
and includes such things as missing head, tail or episodes of traces
and the inclusion of so-called alien events within traces. Semantic
noise, the author contends, is introduced to the log on purpose
through either decisions made about which events are logged
(resulting in noise classed as imbalance between event importance
and granularity), or decisions made about customisations to the
supporting information system or modifications made to the re-
levant process model. The author indicates that syntactic noise
may be alleviated through careful extraction and pre-processing of
log data, customisation noise may be addressed through semantic
pre-processing, e.g. the use of an ontology to map different
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customisations, and the employment of modification-aware mining
algorithms to detect and deal with both evolutionary and ad-hoc
modifications. Within the process mining community, various
techniques, many based on the statistical notion of outlier detec-
tion, have been proposed to discover and remove noise. In [27,16]
and [9], frequency-based approaches to detecting noise are pro-
posed. In [27], the frequencies of direct-follow and eventual-follow
events are used as input to machine learning techniques that are
used to induce association rules for causal and exclusive/parallel
relations between events in the log. In [16], the authors firstly
mine for frequently-occurring patterns that can be used to char-
acterise traces in the log and then use a cluster-based outlier
identification approach to identify traces that hardly belong to any
of the computed clusters i.e. traces that do not follow any of the
frequent behaviours evident in the log. By contrast, in [9], the
authors describe an approach that detects and automatically re-
moves noise at the direct-follow event level. Here an event log is
firstly modeled as an automaton that captures all direct-follow
relations in the log. Arcs in the automaton that represent low
frequency event transitions are pruned from the automaton. The
log is then aligned with the automaton and those events not fitting
the automaton are deemed ‘outliers’ and removed from the log.
The work by Rogge-Solti [39] can be seen as exploiting mathe-
matically-based models to repair event logs. In this work, the
author uses a type of stochastic Petri net [26] to reason about path
probabilities from which ‘predictions’ about the most likely miss-
ing events can be made. Furthermore, the authors also use Baye-
sian network modeling [32] to compute the most likely time-
stamps for these missing events. We argue that while the ap-
proaches proposed by these authors to discover usable process
models from noisy event logs are theoretically founded, the re-
liance on the concept of statistical outlier may very well result in
rather ‘sterile’ event logs in which interesting events, which may
be of great interests to domain experts, have been inadvertently
removed. This raises the issue of the validity of event logs as de-
picted in Fig. 1. On the other hand, the data imperfection patterns
proposed in this article do take into account, to a certain extent,
the broader state of the event log as a whole before suggesting re-
medial actions. In fact, our data imperfection patterns apply and
extract rules for data cleaning that are informed by experiences of
process mining analysts themselves. The main advantage of using
data imperfection patterns as the first step of data cleaning ex-
ercises is that we may still retain interesting events that may have
otherwise been lost using statistical-based approach.

Within the general data mining community, the issue of data
quality has been rather extensively discussed as proven by the
plethora of literature in this field, such as, to name a few, the work
by Kim et al. [20], Gschwandtner et al. [17], Rahm and Do [37],
Müller and Freytag [31], Oliveira et al. [34], and Batini and Scan-
napieco [5]. Nevertheless, we contend that the nature of event log
used in process mining is distinct from the nature of the data that is
typically used in data mining. Process mining uses an event log as
the starting point of analysis. A distinct characteristic of an event
log is that there exists temporal constraints among events, both
from a case perspective and a resource perspective: the former
Table 1
Manifestation of quality issues in event log entities [6].

Event log entities

Case Event Relationship Case

Event log quality issues Missing data I1 I2 I3 I4
Incorrect data I10 I11 I12 I13
Imprecise data I19 I20
Irrelevant data I26 I27

Please cite this article as: S. Suriadi, et al., Event log imperfection patte
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restricts the types of actions that can be executed at any given
point in time (as they are dependent on the completion of the
preceding activities), while the latter restricts who and when an
activity can be executed depending on resources availability and
capability. Consequently, each row in an event log (i.e. an event)
has temporal relationships with other events, either through re-
source or case constraints. This is in contrast to other types of log
typically used in traditional data analytics (such as data mining or
even basic spreadsheet analysis) whereby the concept of case or
resource temporal constraints does not exist. (In process mining,
the data is structured as multiple-record cases, whereas in data
mining, the data is structured as single-record cases.) Therefore,
while we appreciate the richness of work in this domain, the
distinct characteristics of the event log require us to address event
log quality issues differently. Having said that, it is part of our
future work to incorporate and extend existing data cleansing
work from the traditional data mining domain to repairing event
logs.

 

 

4. Process mining data quality framework

It is clear that while there exist many conceptual overlaps in
the various quality frameworks, there is no consensus on either
the set of dimensions that constitute a data quality framework or
the definition of the individual dimensions. Further, as stated in
the preceding section, it is clear that there are significant differ-
ences between the data in an event log and data derived from a
typical information system. These differences are unrecognised in
today's literature on data quality. The need to deal with temporal
data dependencies in process mining opens up new notions of
‘quality’. It follows that a data quality framework for process
mining will be somewhat different from any data quality frame-
work so far proposed for information systems. For instance, in the
Process Mining Manifesto [45], with reference to the quality of
events, the authors state

“Events should be trustworthy, i.e., it should be safe to assume
that the recorded events actually happened and that the at-
tributes of events are correct. Event logs should be complete,
i.e., given a particular scope, no events may be missing. Any
recorded event should have well-defined semantics. Moreover,
the event data should be safe in the sense that privacy and
security concerns are addressed when recording the events. For
example, actors should be aware of the kind of events being
recorded and the way they are used.”

In this paper we adopt the quality framework described by
Bose et al. [6] and summarised in Table 1 below, to classify the
quality issues arising from the presence of the data imperfection
patterns (in an event log) described in this paper. By way of ex-
planation, consider the quality issue I3 - Missing data, relationship.
This refers to the situation where it is not possible to associate an
event with its case (process execution instance) because the case
identifier is missing from the event record. A fundamental re-
quirement of process mining is that events can be associated with
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attrs. Position Activity name Timestamp Resource Event attrs.

I5 I6 I7 I8 I9
I14 I15 I16 I17 I18
I21 I22 I23 I24 I25
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cases. Where this is not the case, a process mining analysis is not
possible. A complete description of each quality issue can be found
in the related technical report referenced in [7].
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5. Event log imperfection patterns

Inspired by the problems that one may encounter in trans-
forming raw data source logs into an event log that is ‘clean’ and
usable for process mining analysis, we extract a set of event log
imperfection patterns commonly encountered in pre-processing
raw source logs. The use of patterns as a means of understanding,
and communicating the characteristics of an apparently chaotic
domain is a fundamental human behaviour. The pattern approach
is used in diverse areas including software design [15,52], work-
flow functionality [47], security [22], insider threat protection
[30,29,28] and architecture/town planning [3]. Our rationale for
adopting the pattern approach to event log cleaning is neatly
summed up in [3] where the authors state that each pattern in a
set “describes a problem which occurs over an over again in our
environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice”.

We accept the definition of a pattern in [38] as “the abstraction
from a concrete form which keeps recurring in specific non-arbi-
trary contexts” and argue that the use of patterns provides a basis
for the systematic investigation of event logs for the presence and
remediation of data quality issues that will negatively impact a
process mining analysis. The patterns described here come from
our own experiences in preparing event logs from raw sources and
occurred frequently enough and are sufficiently generic (non-
analysis specific) to warrant abstraction as a pattern. We provide
detailed descriptions for each of the event log imperfection pat-
terns that we propose, including the manifestation of the pattern
within an event log, its detection, the affected data quality di-
mension/s (as described in Section 4), the effect of the imperfec-
tion pattern on subsequent process mining analyses, remedial
action for the detected imperfection, and, for some patterns, the
side effects of the remedial action. We also provide a formal de-
scription of the manifestation of each pattern.

Table 2 shows, the dimension/s of the quality framework af-
fected by each log imperfection pattern. In our pattern collection,
event log imperfection patterns are described using the following
components:

� Description: outline of the pattern and how and where the
pattern may be introduced into a log

� Real-life Example: example of the pattern drawn from practical
experience

� Affect: consequence of the existence of the pattern on the

117
118
119
120

Table 2
Relationship between individual patterns and
quality framework.

Pattern Quality issue/s

Form-based Event Capture I16, I27
Inadvertent Time Travel I6
Unanchored Event I23, I6
Scattered Event I2
Elusive Case I3
Scattered Case I12
Collateral Events I27
Polluted Label I15, I17
Distorted Label I15
Synonymous Labels I15
Homonymous Label I22

Please cite this article as: S. Suriadi, et al., Event log imperfection patte
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outcomes of a process mining analysis
� Data Quality Issues: type of data error and the event log entities

affected by the pattern
� Manifestation and Detection: strategy to detect the presence of

the pattern in a log
� Remedy: how the pattern may be removed from a log
� Side-effects of Remedy: possible, undesirable consequences of

application of the remedy
� Indicative Rule: formal description of the way the pattern may

be detected in a log.

The indicative rule is structured to illustrate the general con-
ditions under which the pattern may manifest in the log, i.e. the
indicative rule is not meant to exhaustively describe all possible
manifestations of the pattern. Further the rule only indicates that
the pattern may be present in the log but does not address the
pervasiveness of the pattern (extent to which the log is affected by
the pattern). The indicative rule also serves to distinguish between
patterns that, at some level of generalisation, could be seen as
similar. For instance, both form-based event capture and the col-
lateral events patterns manifest similarly in the log (multiple
events recorded with similar timestamps). Their respective rules
reflects the different contexts associated with each pattern's
manifestation and detection. For example, form-based event cap-
ture typically manifests as multiple events with similar comple-
tion times, while collateral events typically manifests as multiple
events with similar created times.

Pattern. Form-based Event Capture
Description. This pattern may occur where the data in an event

log is captured from electronic-based forms (e.g. a patient test
results form). Users (such as nurses and doctors) click a ‘Save’
button to trigger the recording of the data captured by the form,
often with the undesirable side effect of associating all data cap-
tured by the form with the same timestamp (the time the user
clicked the ‘Save’ button). The more interesting information about
the ordering of activities from which the values of the data in-
serted into the forms were derived, such as the time a blood
sample was taken, is flattened into one timestamp. This method of
data recording can result in an additional problem. When the form
is updated at some point in the future, the system may actually
store all data captured by the form again, even though only a few
data items were actually changed. As a result, the log data stored
by such a system contains redundant information due to the fact
that some data items in the form were not changed but were re-
recorded in the storage with a new timestamp (the time when the
update event happened).

Real-life Example. We encountered this data imperfection pat-
tern in event logs extracted from a number of Australian-based
hospitals. An example of such a log is provided in Table 3.

Here, the first three events have the same timestamp. Fur-
thermore, we know that these three events were derived from a
form-based system because the first event, named ‘Primary Sur-
vey’, is the name of the form that was being used. A similar
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Table 3
An example of the ‘Form-based Event Capture’ pattern.

ID Event Timestamp Description

ID1 Primary Survey 2012-11-23 15:42:38 ……….
ID1 Airway Clear 2012-11-23 15:42:38 ……….
ID1 ………. 2012-11-23 15:42:38 ……….
ID2 Primary Survey 2012-11-24 09:58:33 ……….
ID2 Airway Clear 2012-11-24 09:58:33 ……….
ID2 ………. 2012-11-24 09:58:33 ……….
ID2 Procedure 1 2012-11-24 09:58:33 Completed on

2012-11-24 06:58:34

rns for process mining towards a systematic approach to cleaning
.2016.07.011i

 

http://dx.doi.org/10.1016/j.is.2016.07.011
http://dx.doi.org/10.1016/j.is.2016.07.011
http://dx.doi.org/10.1016/j.is.2016.07.011


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

S. Suriadi et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
observation can be made for the last four events.
Affect. This imperfection pattern ‘flattens’ the temporal order-

ing of events as they are all assumed to have happened at the same
time resulting in the actual ordering of events being lost. Ignoring
this data pattern may result in the discovery of complex process
models as all events sharing the same timestamp in a case will
likely be treated as parallel events, and consequently, be modeled
in a parallel manner. Modeling parallel events graphically tends to
increase the number of arcs (and the often unavoidable cross-
cuttings of arcs) in the models, thus making them difficult to
comprehend. Finally, this imperfection pattern may produce un-
necessary duplication of events as certain events may be re-re-
corded as a result of the updates of a few other data items within
the same form. This situation is likely to result in the extraction of
misleading process mining analysis results due to the existence of
events in the log that did not actually happen.

Data Quality Issues. I16 – Incorrect data: timestamp, I27 – Irre-
levant data: event – The temporal flattening introduced into an
event log through the occurrence of this pattern negatively im-
pacts the attribute accuracy of the log in that the timestamps of
the events reflect the saving of the form rather than the perfor-
mance of the event. Further, if the system records all fields on the
form rather than only those fields that have changed, the trace
completeness may be affected through erroneous inclusion of
events that did not actually happen in the case.

Manifestation and Detection. This pattern's signature is the ex-
istence of groups of events in a log with the same case identifier
and timestamp value. The signature of this pattern can be detected
by searching the event log for groups of events with the same case
identifier and timestamp value. Alternatively, the log can be
searched for the presence of ‘marker’ events with activity names
similar to field labels known to exist on the same form (assuming
that such information about the forms can be obtained from sys-
tem users). If found, the timestamps of the ‘marker’ events can be
checked to see if they are the same. Regardless, the regular oc-
currences of groups of events that share the same timestamp value
is already a good indication of the presence of the ‘Form-based
Event Capture’ pattern.

Remedy. The simplest remedial action is to aggregate all events,
within each group of events having the same timestamp, into one
event only. An additional attribute can be created for this event
with a complex data structure to capture relevant data from the
aggregated events. This approach removes all other events that
have been recorded from one form, thus reducing the amount of
parallelism in the discovered models. However, such a remedy can
only be applied if it is sensible to represent the information col-
lected from the form as one process step. For example, if all events
with the same timestamp reflect nothing more than a nurse per-
forming various types of medical checks on a patient where all of
those checks fall under the umbrella of ‘vital signs checks’ activity,
then we can aggregate them into one event named ‘Vital Sign
Checks’. However, if those events with similar timestamps contain
two or more distinct and/or important process steps that need to
be explicitly considered in the analysis, important information
may be lost through simple events aggregation. Instead, each
group of events will need to be aggregated into two or more
events reflecting the distinct steps taken. These aggregated events,
will however, still share the same timestamp.

From the process mining case studies in which we have been
involved, the following interesting ‘variant’ of the ‘Form-based
Event Capture’ pattern has been observed. There is a set of events
with the same timestamp and case identifier (e.g. case identifier
‘ID2’ in Table 3), however, the relevant event timestamp in-
formation was actually recorded in a column that is different from
the ‘timestamp’ column. The last row of Table 3 depicts this sce-
nario whereby the form recorded a ‘Procedure 1’ event, but the
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
event logs, Information Systems (2016), http://dx.doi.org/10.1016/j.is
actual timestamp regarding the completion of the procedure was
recorded within the ‘Description’ field itself. In this situation, we
were able to partially sequentialise the events by using the in-
formation extracted from the ‘Description’ column. A more
complex situation occurs when there is an update to only some
data items of a form, triggering the recording of a new set of
events, each with the same timestamp (some of which may be
duplicate events because their values did not require any updates).
Properly addressing this scenario requires firstly an understanding
of how updates are recorded in the event log. There are two si-
tuations: (i) the updates of one or more data items in a form result
in the recording of all fields as events in the log, or (ii) the updates
of one or more fields in a form will result in the recording of only
those fields whose values have changed. In the former case, it is
necessary to identify the specific information that has changed. In
both cases, it is important to note what process step(s) may have
taken place in order for the data items in the forms to be updated,
and then aggregate those changed data items into one or more
events as needed.

Side-effect of Remedy. Where a process requires a form update,
it may be the case that, for a given activity, the ‘new’ value of a
data item is the same as the ‘old’ value of the data item. Where the
form logging mechanismwrites out all data values in the form, the
fact that the ‘old’ and ‘new’ values of the data item are the same
makes it difficult to determine whether the activity was carried
out a second time or the data itemwas simply re-written as part of
the form update process. In this scenario, we may lose the ‘update’
action on those fields where ‘new’ values and ‘old’ values are the
same.

Indicative Rule. Let  ⊆ be an event log, AN be a set of at-
tribute names found in  and a be the set of all possible values of

∈a AN . Let ∈caseid AN be the case identifier attribute and caseid

be the set of possible case identifiers in log . Let ∈time AN be
the event timestamp attribute and time be the set of possible
timestamps in log . Here we make use of the extension operator
χ defined in [43] that extends a relational expression to include a
new attribute representing the count of rows. The form-based
event capture pattern may be present in  if there exists a non-
empty set of timestamps that have multiple events recorded. That
is, if:

� σ χ ( { } )θ> caseid time count, , ,count is not empty, where θ is some
significance level that reduces the likelihood of returning in-
stances where unrelated events are recorded coincidentally.

Pattern. Inadvertent Time Travel
Description. This pattern captures the situation where certain

entries in a log are recorded with an erroneous timestamp due to
the ‘proximity’ of the correct data value and the incorrect data
value. Here ‘proximity’ refers to a situation where two timestamp
values are so close to each other that human error can inad-
vertently result in incorrect timestamp values to be recorded.

A typical example of a proximity error pattern is the recording
of incorrect timestamps for events that happen just after midnight.
Often, the date portion of the timestamp is incorrectly recorded as
the date of the previous day, while the time portion of the time-
stamp is recorded correctly. Another example of this pattern is the
recording of incorrect timestamps of events due to users simply
pressing the wrong key(s) on a keyboard i.e. inadvertently press-
ing keys adjacent to the intended key(s).

Real-life Example. We found this pattern in data from an Aus-
tralian hospital emergency department where most data entry
was performed manually.

An event log sample including this pattern is provided in Ta-
ble 4, and is illustrated in Fig. 3. Here the event ‘Arrival first hos-
pital’ occurred as the first event in the case. However, common
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Table 4
An example of the ‘Inadvertent Time Travel’ pattern.

Episode ID Activity Timestamp …

ID1 Arrival first hospital 2011-09-08 00:30:00 ……….
ID1 Injury 2011-09-08 23:47:01 ……….
… …. …………. ……….
ID1 Operation 2011-09-09 16:30:00 ……….

Fig. 3. An illustration of the ‘Inadvertent Time Travel’ pattern.

Table 5
An example of the ‘Unanchored Event’ pattern.

Original data

CaseID Activity Timestamp Notes

1234567 Progress note 01/09/2013 21:53:25 ………….
1234567 Medical note 02/09/2013 01:11:25 ……….
1234567 Therapy 12/11/2013 16:08:23 ………….
1234567 Discharge letter 14/11/2013 16:43:29 ………….
Parsed data

CaseID Activity Timestamp Notes

1234567 Progress note 09/01/2013 21:53:25 ……….
1234567 Medical note 09/02/2013 01:11:25 ……….
1234567 Discharge letter 11/14/2013 16:43:29 ………….
1234567 Therapy 12/11/2013 16:08:23 ………….
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sense would dictate that an injury event precedes being sent to a
hospital. Notice that if the date of the ‘Arrival first hospital’ activity
is changed to ‘2011-09-09 00:30:00’, the event would be reordered
and become the second activity of the case making the trace ap-
pear more believable as the ‘Arrival first hospital’ activity then
occurs after the ‘Injury’ event.

Affect. The existence of this pattern will result in incorrect
models being discovered as the models are likely to allow beha-
viours that did not occur in reality. This pattern will also impact
the accuracy of time-related performance analysis results (e.g.
working time and waiting time), although the impact may not be
serious if such patterns occur in only a relatively small number of
cases.

Data Quality Issue. I16 – Incorrect data: timestamp – The in-
correct timestamp values introduced into an event log through the
occurrence of this pattern negatively impacts the attribute accu-
racy of the log in that the temporal ordering of the events no
longer reflects the actual ordering of events.

Manifestation and Detection. The pattern typically manifests it-
self by the existence of a number of cases in which event ordering
deviates significantly. That is, given two activities a1 and a2 with a
strict temporal ordering property such that a1 should always occur
before a2, there exists at least a case with two events with activ-
ities a1 and a2 with incorrect ordering. We call these two events
the misplaced events. Furthermore, once such sequence(s) of mis-
placed events are discovered, it is necessary to go back to the log
and test if, by changing the timestamps for those misplaced events
(according to some known rules), those events can be ‘placed’ back
to their proper ordering in the context of the overall trace. If this is
the case, it is quite reasonable to say that such a pattern exists in
the log. For example, consider a process with only three sequential
activities A, B, and C. If the log contains a trace with the following
event ordering: A (2011-09-25 21:56:23), B (2011-09-25 00:23:11),
and C (2011-09-26 01:34:56), the discovered process model will
have an arc from B to A, and from A to C. However, in the domain,
the ‘ground truth’ is that B can only occur after A and before C. If
the date component of the timestamp of B is modified from ‘25’ to
‘26’, activity B will be in the proper order. In this scenario, the
‘Inadvertent Time Travel’ pattern exists in the event log.

Remedy. Addressing this pattern in a generic manner requires
knowledge of the minimum restrictions applicable to the ordering
of all activities in the log. With this knowledge, each trace in the
log can be examined to identify the existence of traces that violate
the minimum ordering restrictions. Once discovered, the time-
stamp of events in the traces that violate the ordering restriction
can be ‘fixed’ by applying various remediations for standard
proximity errors (e.g. adding or subtracting one day from the
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
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timestamp, or flipping the value of the timestamps based on
proximity of the keys in a standard keyboard layout). If one of
those fixes re-orders the events in the trace such that the trace no
longer violates the ordering restrictions, the erroneous old time-
stamp value should be replaced with the new value. Otherwise, it
may be that the original timestamp value does not suffer from the
‘Inadvertent Time Travel’ pattern after all (though the value may
still be incorrect).

Indicative Rule. Let  ⊆ be an event log, AN be a set of at-
tribute names found in  and a be the set of all possible values of

∈a AN . Let case be the set of all case values in , time be the set
of possible timestamps in log , act be the set of all activity
values in  and ⊏D ×act act be a strict partial order.

The inadvertent time travel pattern may be present in log  if
there exists events e1 and e2 such that:

� # ( )=# ( )e ecase case1 2 ∧# ( ) < # ( )e etime time1 2 ∧# ( )⊏# ( )e eact act2 1

Pattern. Unanchored Event
Description. This pattern refers to a situation where the time-

stamp values of an event log are recorded in a format that is dif-
ferent from that which is expected by the tools used to process the
event log. Consequently, the loading of the event log into those
tools will result in incorrect interpretation of timestamp values.
Typical format variations include the confusion between month-
day vs. day-month format, the use of colon (‘:’) symbol vs. dot (‘.’)
symbol to separate between hour, minute, and second informa-
tion, and the varying manner in which timezone information is
encoded. This pattern is likely to occur when the event log is
constructed from multiple sources.

Real-life example. This pattern is commonly encountered while
conducting data pre-processing. For example, Table 5 (top-part)
shows a sample of a few events that we received from an Aus-
tralian hospital. The original timestamps were presented in day-
month-year format. These events were then imported into a da-
tabase which expected month-day-year format during import. The
first three events of the original data set were imported incorrectly
using the month-day-year format without causing parsing errors
due to the ambiguity of the values. That is, the original dates are:
1st September 2013, 2nd September 2013, and 12th November
2013. Here, as the ‘day’ portions of the timestamps do not go be-
yond the number “12”, they can be re-interpreted as the value for
the ‘month’ component without causing a parsing problem. The
first three imported events have the timestamp values interpreted
incorrectly as 9th January 2013, 9th February 2013, and 11th De-
cember 2013.

Note that the last event of the original data with the timestamp
of 14th November 2013 was imported correctly as the day portion
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Table 6
An example of the ‘Scattered Event’ pattern.

Event log 1

Case ID Activity Timestamp Description

1234567 Surgical Procedure 21/09/2011 08:11:25 Stent insertion and angiography
1234567 Procedure start-time 21/09/2011 08:11:25 0:2011092010480000:0.000000:0:0
1234567 Procedure end-time 21/09/2011 08:11:25 0:2011092010590000:0.000000:0:0

Event log 2

caseID Activity Timestamp Description

1234567 Order a surgical procedure 18/09/2011 13:26:32 < AttributeValue 1 >, < Attribute Value 2 >, …
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of the timestamp (which is ‘14’) is unambiguous: it has to refer to a
day, not a month. Therefore, the timestamp for the event ‘Dis-
charge letter’ was imported correctly. It is worth noting that, de-
spite the apparent inconsistencies in the formats of the original
timestamps, no warnings were issued by the database during data
import. This lack of warning could easily be missed by analysts,
especially when one deals with millions of events.

Affect. Incorrect timestamp values will adversely affect process
mining results. From the example given in Table 5, it is not difficult
to see how a process model discovery exercise for example, may
output process models that are substantially different from reality
in both event ordering and case duration.

Data Quality Issues. I23 – Imprecise data: timestamp, I16 – In-
correct data: timestamp – The incorrect timestamp values in-
troduced into an event log through the occurrence of this pattern
negatively impacts the attribute accuracy of the log in that the
temporal ordering of the events no longer reflects the actual or-
dering of events.

Manifestation and Detection. This pattern generally manifests
itself when processing an event log. Some tools produce error
messages when used to load an event log with an incompatible
timestamp format. However, tools, such as Microsoft Excel, are
quite ‘relaxed’ in the way they parse timestamp information (as
they often have built-in intelligence to detect the correct time-
stamp format) and may not produce any warning or error mes-
sages, although the data may have been loaded incorrectly. If the
latter, the detection of this data imperfection is more difficult. This
pattern may also be detected through the discovery of process
models with unexpected, and often incorrect, ordering of activities
and the extraction of unreasonably long or short working and/or
waiting times. Another indicator is the existence of missing
timestamp information across many events in the log – due to the
tool not being able to parse the timestamp information correctly
and ignoring the values altogether. Lastly, the pattern may man-
ifest through elements of the timestamp having values outside the
expected range of the element, or spanning only part of the ex-
pected range of the element. For instance, ‘day’ values being only
in the range [1…12] (indicating month and day portions of the
timestamp have been interchanged).

Remedy. To address this problem, it is necessary to ensure the
tools used to import the event log do not inadvertently mis-in-
terpret the timestamp information without producing any warn-
ings. While tedious, the simplest way to handle this situation is to
prevent the tools from interpreting certain fields in the log as
‘timestamp’ information in the first place. This can be achieved by
adding a few characters, such as asterisks, before and after the
timestamp values to force the ‘switching off’ of the built-in time-
stamp interpretation mechanism that many tools have. Following
this, the file can be edited (with a text editor) and appropriate
‘string’ manipulation techniques (such as find and replace) applied
to reformat the string values as timestamps.
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
event logs, Information Systems (2016), http://dx.doi.org/10.1016/j.is
Side-effects of Remedy. In practice, there could indeed be events
that were executed in a sequence that did not meet the ‘expected’
ordering restrictions. Hence, this remedy may result in the loss of
interesting deviant behaviours in the log.

Indicative Rule. Let  ⊆ be an event log, AN be a set of at-
tribute names found in  and a be the set of all possible values of

∈a AN . For each domain ai of an attribute, there is an expected
set of values ⊂Ea ai i. The unanchored event pattern may exist in
log  if:

� σ ( ) >∉ 0a Ei ai
(i.e. there are unexpected values in the attribute.

For instance, in a timestamp, there are ‘month’ values outside
the expected [1.12] range.)

� Π σ ( ) <∈ Ea a E ai ai i (i.e. there are values that would be expected

for the attribute that are not found in the log. For instance, in a
timestamp, the ‘day’ values include only [1.12].)

Pattern. Scattered Event
Description. This pattern refers to events in an event log which

have attributes that contain further information that can be used
to derive new events. In other words, there is information con-
tained within an existing event log that can be exploited to con-
struct additional events, but, the information is hidden in attribute
values of several events.

Real-life Example. We encountered this pattern (illustrated in
Table 6) in event logs obtained from an Australian hospital. The
entries from the first event log shown in Table 6 record events
from a form (possibly named the ‘Surgical Procedure’ form);
hence, we can see that all of the entries have the same timestamp
(which is 21/09/2011 08:11:25). Interestingly, there are two events
in this event log (i.e. the ‘Procedure start-time’ event and the
‘Procedure end-time’ event) that actually give us further in-
formation about two other events that have happened.

In particular, if we look at the corresponding values in the
‘Description’ attribute column, we can discern timestamp values,
e.g. the string ‘2011092010480000’ can be reformatted to ‘2011-
09-20 10:48’. Furthermore, in the second log, there is also an entry
for an order event for the same patient with the timestamp of 18/
09/2011 13:26:32, and within the corresponding ‘Description’ at-
tribute, there exist further attribute values that are relevant to the
surgical procedure being ordered. By combining the information
from these two event logs, we can re-create the following sce-
nario: a surgical procedure was ordered on the 18/09/2011, and the
record of the procedure was entered into the system on the 21/09/
2011 (through a form). Within this form, it was recorded that the
procedure started on 20/09/201110:48 and finished on 20/09/2011
10:59. Most interestingly, we can now re-construct two new
events: one event to capture the start of the procedure, and an-
other event to capture the end of the procedure. Additional in-
formation about these two events can be discerned using the 
rns for process mining towards a systematic approach to cleaning
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Table 7
Example of the ‘Elusive Case’ pattern.

Vehicle Event Type Timestamp

Van1 Ignition on 2011-02-07 07:58:00
Van1 Exit Area A 2011-02-07 08:00:00
Van1 Enter Area B 2011-02-07 09:01:39
Van1 Exit area B 2011-02-07 09:22:01
Van1 ………… ……………

Van1 Enter Area X 2011-02-07 15:54:08
Van1 Ignition off 2011-02-07 18:00:00
Van1 ………… ……………

Van1 Enter Area X 2011-02-08 08:00:00
Van1 ………… …………

Van1 Enter Area Z 2011-02-08 10:00:00
Van1 ………… 2011-02-08 01:02:56

2 http://fluxicon.com/disco

S. Suriadi et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎10

 

 

 

corresponding attribute values obtained from the second log.
Affect. The existence of this pattern is not likely to add addi-

tional overheads or hinder the process mining exercise. However,
it represents untapped information that could enrich the insights
obtained from a process mining exercise.

Data Quality Issue. I16 – Missing data: event – The occurrence of
this pattern affects the trace completeness through omission of
events that actually happened in the case but, due to the logging
mechanisms in the underlying information system, were not re-
cognised as such.

Manifestation and Detection. This pattern manifests itself
through event attribute/s (other than the timestamp attribute)
where part of the attribute value could be interpreted as a time-
stamp and (possibly) part as additional information. To detect this
pattern, one needs to determine one or more attribute name
(s) whose values can guide us in extracting the values needed to
form a new event. We call these attribute names as the guiding
column(s). The values that need to be extracted to form new
events also come from one or more attribute(s) of the same event
– we call these the target column(s). For example, in the example
log above, the ‘activity’ attribute is the guiding column, while the
‘description’ attribute is the target column.

More importantly, the value(s) of the guiding column(s) need
to contain ‘marker’ value from which necessary activity name and
timestamp information can be extracted to form a new event. In
the example above, the ‘marker’ values include ‘Surgical Proce-
dure’, ‘Procedure start-time’, and ‘Procedure end-time’. The first
value leads us to extract the name of the surgical procedure per-
formed (i.e. the activity name of an event), while the second and
third values allow us to extract the start and end timestamps for
the procedure (i.e. the timestamp value of an event).

Generally, the detection of this imperfection pattern requires
manual effort and the assistance of domain experts as this ‘hidden’
information (from which new events can be derived) could be
encoded in practically any attribute value of an event log.

Remedy. Given the variety of manners in which this pattern
may manifest itself, a generic solution to fix this issue is unlikely.
Nevertheless, once the location of the information from which
new events can be re-constructed is known, it is possible to de-
velop a tool to automate the creation of the new events.

Indicative Rule. Let  ⊆ be an event log, ∈g g AN,act ts be
guiding column names, ∈t t AN,act ts be target column names,

∈vact gact be a marker value that guides the extraction of a new
activity name from the target column tact , and ∈vts gts be a
marker value that guides the extraction of a new timestamp value
from the target column tts. Finally, let ⊆W tact be a set of possible
new activity name values.

A scattered event log imperfection pattern may exist if:

� σ Π ( ) ≈ | |= Wg v g t,act act act act (i.e., there are approximately as many
unique combinations of the marker value for activity name with
its possible values as the number of possible new activity names
in W), and

� given  σ Π= ( )∉ ∧ =ts t W g v tts ts ts ts , the values returned in ts should
contain a pattern that suggests timestamp values.

Pattern. Elusive Case
Description. This pattern refers to a log in which events are not

explicitly linked to their respective case identifiers. This pattern is
often seen in an event log that is derived from a system that is not
process-aware, or is not meant to support activities in the context
of a process (e.g. a GPS tracking system, a web traffic log, or in-
dustrial devices).

Consequently, the concept of a ‘case’ cannot be trivially defined
by simply using the information in the log as-is. Nevertheless, the
notion of a ‘case’ exists and can be discerned, especially by domain
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
event logs, Information Systems (2016), http://dx.doi.org/10.1016/j.is
experts (e.g. a user web-browsing session or a journey from a
geographical location A to another location B).

Real-life Example. We encountered this pattern in a GPS track-
ing data set. In this data set, we have a series of GPS-related
events, such as when a vehicle entered and exited a particular
geographical area, when the ignition of the vehicle was turned on
or off, and when the vehicle went into a sleep mode. Table 7 shows
an anonymised snippet of the data set. As can be seen, events
recorded in that table do not have any identifiers that can be used
to group them into distinct cases.

Affect. Process mining requires each event be attributable to a
case. The existence of this imperfection pattern will prevent a
process mining analysis being conducted until the concept of what
comprises a case has been resolved.

Data Quality Issue. I16 – Missing data: relationships – The re-
lationship between events and cases is missing.

Manifestation and Detection. This pattern manifests itself in an
event log where events cannot be linked to one another in any
meaningful way, due to the lack of information necessary to group
events into cases.

The ‘Elusive Case’ pattern can be said to occur where there does
not exist an attribute that is common to all events for which the
value of the attribute/s in each event can be used to group events
into a case (i.e. all events relate to the same process instance and
collectively capture all activities of a case that one can reasonably
expect to occur). This pattern can also be detected by randomly
tagging one or more attributes as the ‘case identifier’ attribute
(s) of an event log and then attempting to discover a process
model. One could do so when loading an event log into a process
mining tool such as Disco.2 If the resulting model captures a
complete process model with reasonable temporal dependencies
between events, the tagged attribute can be reasonably used as
the ‘case identifier’ attribute for the log. In this situation, the
‘Elusive Case’ does not exist in the log. If there is/are no attribute/s
that, when tagged as case identifier, can deliver an acceptable
process model, it is likely that the ‘Elusive Case’ pattern exists in
the log.

Remedy. To address this situation, the cases to which events
belong need to be correctly identified. In most instances, this can
be done by correlating information in the event log with in-
formation from another source. For example, in the GPS data set, a
case was defined as a pre-arranged journey of a particular vehicle
from the exit of the vehicle from a location designated as the
starting point of the journey, to the entry of the vehicle to the last
designated location. Information from an associated journey
planner table (which is produced on a daily basis) was correlated
with the GPS events seen in the event log allowing events in the
rns for process mining towards a systematic approach to cleaning
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Table 8
Example of the ‘Elusive Case’ pattern.

Journey Vehicle Event Type Timestamp

J1 Van1 Ignition on 2011-02-07 07:58:00
J1 Van1 Exit Area A 2011-02-07 08:00:00
J1 Van1 Enter Area B 2011-02-07 09:01:39
J1 Van1 Exit Area B 2011-02-07 09:22:01
J1 Van1 ………… ……………

J1 Van1 Enter Area X 2011-02-07 17:54:08
J1 Van1 Ignition off 2011-02-07 18:00:00
J1 Van1 ………… ……………

J2 Van1 Exit Area X 2011-02-08 08:00:00
J2 Van1 ………… …………

J2 Van1 Enter Area Z 2011-02-08 10:00:00
J2 Van1 Ignition off 2011-02-08 10:02:56
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original event log to be mapped to their respective case identifier
(the journey identifier) (see Table 8).

Side-effects of Remedy. Side effects of such a remedy include
(i) incorrect mapping of events to their cases, and (ii) the omission
of many events in the log as they cannot be mapped to any par-
ticular cases resulting in the loss of potentially important
information.

Indicative Rule. Let  ⊆ be an event log, AN be a set of at-
tribute names found in  and a be the set of all possible values of

∈a AN . Let time be the set of possible timestamps in log , act

be the set of all activity values in  and ⊏D ×act act be a strict
partial order.

The elusive case pattern may be present in log  if, for any
attribute a, there exist events e1 and e2 such that:

� # ( )=# ( )e ea a1 2 ∧ # ( ) < # ( )e etime time1 2 ∧ # ( )⊏# ( )e eact act2 1 (i.e. for any
attribute chosen as candidate case identifier, it is always pos-
sible to find events that contradict the strict partial order).

Pattern. Scattered Case
Description. This pattern describes a situation where key pro-

cess steps are missing in the event log being analysed (thus not
giving the complete picture of the activities involved in a case) but
are recorded elsewhere (e.g. in a different system). This pattern
then is concerned with constructing a complete picture of the
cases in a log by merging information from different sources. The
key challenge here is ascribing information extracted from
111
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Table 9
An example of ‘Scattered Case’ pattern.

Event Log

CaseID Activity Timestamp Notes

1234567 Progress Note 7/09/2013 00:50:30 ……….
1234567 Medical Note 7/09/2013 00:52:25 ………….
1234567 ECG 7/09/2013 03:52:48 ………….
8912345 FBC 12/09/2013 15:59:32 ………….
8912345 Therapy 13/09/2013 10:20:01 ………….

Order table

CaseID Activity Timestamp Notes

1234567 Order ECG 7/09/2013 00:53:45
8912345 Order FBC 12/09/2013 14:04:51 ……….

Case summary table

CaseID Visit Type Timestamp Master

1234567 Emergency 6/09/2013 23:47:00 MRN1234567
8912345 Hospital 8/09/2013 13:45:00 MRN1234567

Please cite this article as: S. Suriadi, et al., Event log imperfection patte
event logs, Information Systems (2016), http://dx.doi.org/10.1016/j.is
different sources to the correct event log case identifier when each
source may have its own unique identifier (the so called ‘record
linkage’ problem [33]).

Real-life Example. We encountered this pattern in one of our
hospital logs. We can see in Table 9 that the Event Log table
contains two case identifiers. These two case identifiers initially
seem to belong to two different patient flows. Similarly, if we look
at the Order table, we see the two case identifiers again. However,
by looking at those two cases individually, it is easy to see that the
information recorded in each case is incomplete. The case identi-
fier ‘1234567’ contains only activities that were conducted within
the emergency department of the hospital, while the case identi-
fier ‘8912345’ contains only activities that were conducted within
the hospital.

Because we are interested in analysing the end-to-end patient
flow, we need both the emergency department and hospital ac-
tivities to be analysed. However, at this point, we can see that
those two so-called ‘sub-processes’ are identified using different
case identifiers. To establish the link between the two separate
case identifiers (which should be considered as one case instead),
we rely on the information from the Case Summary table where
there exists a ‘Master Record Number’ field. This field enables us to
create the link between the two different case identifiers. Also
note that this ‘Master Record Number’ field does not exist in the
Event log or in the Order table.

Affect. If not addressed properly, this event log imperfection
pattern will result in discovered process models representing only
a fraction of the total process due to the event log containing in-
complete trace information.

Data Quality Issue. I112 – Incorrect data: relationship – The as-
sociations between events and cases are logged incorrectly from
the domain perspective. That is, within each contributing system's
log, events are correctly ascribed to cases, but as there is no
common case identifier at the domain level, when the events from
the contributing system's logs are combined to form a con-
solidated process level log, it is not possible to properly merge
events into cases.

Manifestation and Detection. The manifestation of this pattern is
as ‘gaps’ with regard to activities recorded in an event log. For
example, for all cases in a log, the time when a blood test was
ordered is recorded, but, expected successor activities such as the
drawing of the blood sample and the return of the blood test re-
sults are not recorded. In this situation, it is clear that there is a
segment of information that is missing from the event log which
will need to be ‘patched’ by drawing the required information
from other logs. Where all the activities involved in the process
being analysed are known, detection of this pattern involves
comparing the list of unique activity names recorded in each log
against expected activity names. The absence of one particular
event log that provides all the activity names expected is a sign of
the existence of such a pattern. A further check would involve
matching, for each activity with known predecessor and successor
activities, the respective frequencies of the activity, the pre-
decessor activity and the successor activities should match. A
discrepancy could indicate at least partial trace incompleteness.

Remedy. This imperfection pattern can be redressed through
application of an appropriate record linkage technique so that
events from various sources can be merged into one log with
events from the various sources being properly attributed to cases.
The approach to merging will depend on the availability (or not) of
some unique identifier. Where all data sources use exactly the
same case identifiers, the source logs can simply be merged into
one event log. Where individual source logs use different case
identifiers, but there is a global unique identifier that can be used
to establish the link between the different case identifiers, e.g.
through the use of the ‘Master Record Number’ values in the Case

 

 

 

rns for process mining towards a systematic approach to cleaning
.2016.07.011i

http://dx.doi.org/10.1016/j.is.2016.07.011
http://dx.doi.org/10.1016/j.is.2016.07.011
http://dx.doi.org/10.1016/j.is.2016.07.011


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

Table 10
An example of the ‘Collateral Events’ pattern.

CaseID Activity Timestamp

1234567 Adjust recovery cost 19/06/2014 12:15:18
1234567 Adjust recovery cost 19/06/2014 12:16:53
1234567 Email 19/06/2014 12:19:25
…. …. …….
1234567 Pay assessor fee 19/06/2014 12:22:48
1234567 Adjust admin cost 19/06/2014 12:22:48
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Summary table (as shown in Table 5), the global unique identifier
should be used as the merge key with the case identifier being set
as either the global unique identifier or one of the existing case
identifiers. If no form of unique identifier exists, a standard record
linkage technique can be used to perform the match. An outline of
the standard record linkage and de-duplication process first de-
scribed by Newcombe [33] and subsequently formalised by Fellegi
and Sunter [12], is presented in [36]. An overview of various
merge-purge techniques is presented in [11].

Side-effects of Remedy. Where no global unique identifier can be
determined, i.e. a record linkage algorithm has been applied, it is
possible that events will not be properly attributed to cases due to
false-positives and false-negatives generated by the linkage
algorithm.

Indicative Rule. Let  ⊆ be an event log,  be the set of all
cases that exist in , ∈E ANA be a set of expected activities
(provided through domain knowledge) in log , and let ↠a ai j

where ∈a AN and ∈a a,i j a represent an ‘eventually follows’
relationship between activities such that if ai occurs in log  for
some case ∈c activity aj must eventually occur in  for the
same case at some point after ai. The eventually follows relation-
ship is transitively closed and the set of eventually follows activity
pairs must be provided from domain knowledge. The scattered
case pattern may exist in , if, for ‘many’ cases ∈c :

� activities occurring in Π σ ( )=act case c are a subset of EA3; and
� for some activities a1, a2 and ↠a a1 2 or ↠a a2 1, we find a1 oc-

curring in Π σ ( )=act case c but not a2.

Pattern. Collateral Events
Description. This pattern captures the situation where, within

an event log, there are multiple events which essentially refer to
one particular process step within a case. This could result from
(i) the event log having been constructed using data from multiple
systems, each of which with their own way of recording the same
process activity, (ii) the underlying system used is programmed to
automatically fire a set of auxiliary events when a specific event
(such as the payment of a bill to a supplier) occurs, and/or (iii) the
audit trail-like nature of the log which records detailed low-level
user activities (such as the opening and closing of a form) such
that it is common to see duplication of events within a very short
time period (e.g. when a user is switching back and forth between
two forms). Regardless, as these events exist independently from
each other, their labels are likely to be different and their time-
stamps may also differ slightly.

Real-life Example. We encountered this pattern in an Australian-
based insurance organisation. As shown by the sample events in
Table 10, these events all happened within a relatively short time
period (a few minutes difference between events at most). At the
same time, they all referred to a particular process step, which was
about finalising a payment to the insurance claim assessor.
Nevertheless, due to the communication between multiple sys-
tems, this process step resulted in multiple events being recorded
in the log. In fact, the events shown in Table 10 were derived from
four different sources.

Affect. From a process mining perspective, this pattern tends to
create unnecessary noise in the data. These ‘collateral’ events often
refer to trivial low-level activities which do not contribute much to
the extraction of meaningful insights about processes. Conse-
quently, it is not uncommon for this pattern to result in highly-
complex process mining results (e.g. overly complex models) that
hinder the extraction of meaningful conclusions.
130
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3 We note that the left hand side of the expression represents a mapping, not a
set, but for readability we do not force the distinction.
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Data Quality Issue. I27 – Irrelevant data: event – The inclusion of
multiple low-level activities results in the masking of the actual
business process step through the inclusion of multiple events in
the log.

Manifestation and Detection. This pattern's signature is the log
containing groups of activities with timestamps that are very close
to each other (e.g. within seconds). Further, the labels of these
activities may be very similar to each other or are of logical con-
sequences from one another, and, from the perspective of a do-
main expert, these events do not represent a distinct process step.
For example, the submission of an insurance claim via an online
claim submission system may fire a set of notifications and emails
to both the customer and the claim handler(s), resulting in the
occurrence of multiple events within a very short period of time.
The detection of this pattern requires the knowledge of domain
experts who are familiar with both the functionality of the sys-
tems (from which the event log is extracted) and the overall steps
of the process being analysed. However, from our experience, the
existence of multiple events occurring within a short period of
time is already an indication of the existence of this pattern. Fur-
thermore, the existence of a very high number of events in most of
the traces in an event log (e.g. more than 100 events) is also a good
indication of the existence of this pattern.

Remedy. The remedy for this pattern involves the development
of a knowledge base that records information about those activity
names that, when occurring together within a short time period,
should be merged into one single activity. The name of the merged
activity should be specified in the knowledge base too, including
the timestamp that should be used (e.g. take the earliest or the
latest timestamp). Essentially, this remedy will reduce the total
number of unique activities in an event log. While this remedy
seems similar to the remedy for the ‘Synonomous Labels’ pattern
(discussed later) the type of knowledge-base required is quite
different. The knowledge base for this pattern requires the
knowledge of not just the domain expert, but also the knowledge
of process analysts/system analysts who understand how process
steps are created by the system used and subsequently stored as
events in the logs, including the set of ‘collateral’ events that are
triggered by the system. By contrast, the knowledge required to
address the ‘Synonomous Labels’ pattern generally requires only
the knowledge of a domain expert who understands the variations
in the naming of activities.

Indicative Rule. Let  ⊆ be an event log and a be a dedicated
timestamp column (typically create time). Let B be a partition of
act into logical business steps. The collateral events pattern may
exist in  if there exists a case c and a timestamp t such that there
is an element ∈b B where:

� σ χ σ( ( ) { } ) >θ> = ∧ = ∧ ∈ a count, , 0count case c a t act b and θ is some sig-
nificance level.

Pattern. Polluted Label
Description. This pattern refers to the presence of a group of

event attribute values that are structurally the same, yet are dis-
tinct from each other due to differences in the exact attribute 
rns for process mining towards a systematic approach to cleaning
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Table 11
Example of the ‘Polluted Label’ pattern.

CaseID Activity Timestamp

xxxx Notification of Loss – XXXX Incident No. xxxxxx xxxx-xx-xx xx:xx:
xx

xxxx Notification of Loss – XXXX Incident No. xxxxxx yyyy-yy-yy yy:yy:yy
xxxx Notification of Loss – XXXX Incident No. xxxxxx zzzz-zz-zz zz:zz:zz
……. Notification of Loss – XXXX Incident No. xxxxxx ……………….
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values that further qualify the meaning of the value.
Real-life Example. We have encountered this pattern in two data

sets that we have analysed. In an event log from an Australian
insurance organisation, we found the existence of this pattern for
the ‘Activity’ attribute as shown in Table 11. Here we see that the
‘fixed words’ are Notification of Loss and Incident No.. The
remainder of the string (noted with a series of ‘X’s) is mutable.

Affect. Where the pattern exists and affects the attribute that
serves as the activity name, the process mining analysis will result
in the discovered process models over-fitting the event log as
there will be too many specific activities that should have firstly
been abstracted out. In general, if this pattern exists and affects
attributes such as case identifiers, activity names, and resource
identifiers that are critical for process mining analyses, the quality
of the results will be negatively impacted as the set of values will
have cardinality greater than the number of allowed values in real-
life.

Data Quality Issue. I15 – Incorrect data: activity name, I17 – In-
correct data: resource – The existence of this pattern in the log,
particularly where it affects the activity name, effectively masks
the underlying process step through the incorrect logging of the
activity name.

Manifestation and Detection. The signature of this pattern is the
attribute value being composed of a mixture of immutable boiler-
plate text and mutable text that occurs at predictable points
among the immutable text. So, if there are two known fixed words
(word1, word2), the ‘Polluted Label’ pattern can be expressed with
the following regular expression: [.]*?(word1)[.]*?(word2)[.]*. The
existence of this pattern can be detected by either (i) checking the
number of distinct values of each attribute (an unexpectedly high
number of distinct values is a good indication of the existence of
this pattern) followed by inspection of the values themselves to
identify if there are those mutable and immutable parts within the
values of that particular attribute, or (ii) using a (semi-)automated
tool to cluster the values of that particular attribute, and within
each cluster, to extract a regular pattern in a form that is similar to
the one described above.

Remedy. The detection of the ‘Polluted Label’ pattern implies
that the immutable word(s) of the pattern are known or can be
determined. The mutable words can be removed and the im-
mutable words re-arranged to form one standard activity name.
(Mutable words can be preserved as attribute values as required.)

Indicative Rule. Let  ⊆ be an event log, AN be a set of at-
tribute names found in  and a be the set of all possible values of

∈a AN . Let  Ω→const: a be an operator that returns the im-
mutable component of ∈v a.

The polluted label event log imperfection pattern may exist in 
if:

�  σ σ( ) |⪡| ( )= = ( )a v a const v (i.e. there are many more events that
contain the immutable component of v than the actual value v.)

Pattern. Distorted Label
Description. This pattern refers to the existence of two or more

values of an event attribute that are not an exact match with each
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
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other but have strong similarities syntactically and semantically.
This pattern typically occurs through incorrect data entry or in-
advertent changing of attribute values during data pre-processing
or extraction.

Real-life Example. We encountered this pattern in one of the
logs obtained from an Australian insurance company. In this log,
we encountered the following entries in the activity attribute of
the log:

� ‘a/w inv to cls.’ vs. ‘a/w inv to cls’ (note the existence of a dot in
the first value)

� ‘XX - Further Information Required’ vs. ‘XX - Further Informa-
tion Required’ (note the missing ‘r’ in the word ‘Information’ in
the second value.

Affect. The impact of this pattern on process mining analysis is
similar to that described for the ‘Polluted Label’ described earlier
and the ‘Synonymous Label’ pattern (see later). That is, where this
pattern applies to the activity name, the readability and validity of
process mining results are negatively impacted. Also, performance
analysis results will be affected through having two or more ac-
tivities in the log that should be treated as the same activity, ac-
tually being considered as separate.

Data Quality Issue. I15 – Incorrect data: activity name – The ac-
tivity label does not accurately reflect the process step that gen-
erated the log entry.

Manifestation and Detection. This pattern's signature is the ex-
istence of minor differences in the letters of some attribute values,
e.g. ‘Follow-up a call’ vs. ‘follow-up a call’ where the only differ-
ence between the two values is the capitalization of the first letter.
The presence of this pattern can be detected by either (i) selecting
all the distinct values of each attribute in an event log, sorting
them alphabetically and checking for multiple consecutive rows
with values that are similar but not exactly the same, or (ii) ap-
plying string similarity search, e.g. [21,23]. This pattern may exist if
the string similarity search returns positive results.

Remedy. Where the pattern manifests as sporadic capitalization
of letters, the attribute values can be transformed to use only
lower-case or upper-case letters. However, if there are multiple
factors that cause the existence of such a pattern, e.g. the (non-)
existence of certain characters and the use of short-hand nota-
tions, then we need to use automated string similarity search to
group those values that are syntactically similar, and replace them
with a single value. Manual intervention may be needed to remove
those values that were found to be syntactically similar but which
are not similar semantically.

Side-effects of Remedy. The side-effects of the remedies re-
commended above should be minimal if manual intervention, as
suggested above, is followed properly.

Indicative Rule. Let  ⊆ be an event log, AN be a set of at-
tribute names found in  and a be the set of all possible values of

∈a AN . Let  × → [ ]sim: 0 .. 1a a be a function that returns the
syntactic similarity between pairs of elements of a. The distorted
label event log imperfection pattern may exist in log  if:

�  σ Π σ Π Π( ( )⋈ ( ))θ> ′ ( ′) ≠ ′∧ ≠ ′ ′ ′s a a s sim a a id id a a id id a a id id a a, , : , : , : : , : is not emp-
ty, where θ is some significance level.

Pattern. Synonymous Labels
Description. The ‘Synonymous Label’ pattern refers to a situa-

tion where there is a group of values (of certain attributes in an
event log) that are syntactically different but semantically similar.
This pattern is commonly encountered where an event log has
been constructed by merging data from sources that do not share a
common schema thus allowing the same real-world activity to be
recorded with different labels in each source.
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Real-life Example. We encountered this pattern when we at-
tempted to merge a number of hospital logs for the purpose of
comparing their patient flows. In Hospital A, the activity used to
capture the first consultation of a patient with a doctor is named
‘DrSeen’. In Hospital B, the same activity is recorded as ‘Medical
Assign’. These two labels have the same meaning but they are
quite different syntactically. The issue of labels being represented
differently has beenwidely studied in other literature, especially in
the area of ‘label matching’ (e.g. [10]).

Affect. Where this pattern affects the activity name, the read-
ability and validity of process mining results are negatively im-
pacted due to the inclusion of ‘behaviours’ in the discovered pro-
cess models that should have been ‘merged’ (as they involve ac-
tivities that share the same semantics). This pattern may also
impact the performance analysis results through having two or
more activities in the log that should be treated as the same ac-
tivity, actually being considered as separate.

Data Quality Issue. I22 – Imprecise data: event attributes – The
existence of multiple names for the same attribute creates ambi-
guity in an event log.

Manifestation and Detection. This pattern's signature is the ex-
istence of multiple values of a particular attribute that seem to
share a similar meaning but are nevertheless, distinct. For ex-
ample, a particular resource is identified as ‘jsmith’ in some events
and ‘Jason Smith’ in others. These two distinct values, in reality,
refer to the same resource. Detection of this pattern may require
the establishment of a knowledge base that stores the list of ‘ac-
ceptable’ values for each attribute in the log. Such a knowledge
base will allow checking of the values of each attribute against the
corresponding list of ‘acceptable’ values. The ‘Synonymous Label’
pattern exists when two or more attribute values correspond to
the same value in the ‘acceptable’ list.

Remedy. Where syntactic differences between labels are minor,
a text similarity search can be applied to group those events that
have strong similarity in their labels, and then replace themwith a
pre-defined value. Where the syntactic differences are quite sub-
stantial (e.g. ‘DrSeen’ vs. ‘Medical Assign’), the use of an ontology
will allow replacement of the labels with just one value (either one
of the synonyms can theoretically be used as the label substitute).

Side-effects of Remedy. A label could be incorrectly mapped to
another label such that the meaning of the original label some-
what deviates from the original meaning (or intent) of the label.
This is likely to happen when the ontology used is flawed or when
two labels share strong syntactic similarities but differ semanti-
cally, e.g. ‘drawn vs. dawn’.

Indicative Rule. Let  ∈ be an event log. For a given attribute
name ∈a AN , a is the set of all syntactically-distinct values of a,
and  ⊆ ×Sem a a is the set of pairs of values of attribute a that
are semantically similar. Sem is symmetric, irreflexive, and tran-
sitive. The synonymous label pattern may exist in  if:

�  σ Π Π( ( )⋈ ( ))≠ ′∧ ( ′) ′ ′id id Sem a a id id a a id id a a, : , : : , : is not empty.

Pattern. Homonymous Label
Description. This pattern describes a situation where an activity

is repeated multiple times within a case (same activity label

123

Table 12
Example of the ‘Homonymous Label’ pattern.

CaseID Activity Timestamp

1234567 Triage Assessment 06/09/2013 12:33:17
1234567 Progress Note 06/09/2013 13:10:23
1234567 Discharged 06/09/2013 13:15:00
1234567 Triage Assessment 13/09/2013 07:24:36
1234567 Triage Assessment 13/09/2013 07:28:51
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applied to each occurrence of the activity), but the interpretation
of the activity, from a process perspective, differs across the var-
ious occurrences. This pattern is likely to occur when an audit trail
log is used to construct an event log. An audit trail log typically
contains low-level records of ‘things that have been executed’ by
users. The influence of contextual factors (such as the number of
times an activity has been repeated within the same case) on the
meaning of the activity being recorded is not captured.

Real-life Example. We have seen this pattern occurring in a
hospital log that we have analysed. A snippet of the log is provided
in Table 12. Here the activity ‘Triage Assessment’ is recorded three
times in the log. These events were captured from a form called
the ‘Triage Assessment Form’. By taking into account contextual
information such as the events preceding the second and the third
occurrences of the ‘Triage Assessment’ activity, it became clear
that the repeated activities should be interpreted differently.

The second ‘Triage Assessment’ happened after the patient was
discharged. Therefore, it is unlikely that the second occurrence of
this activity means that the patient was being triaged again. Also
note that the third occurrence of the activity happened just four
minutes after the second one. We can make an educated guess
that the second and third occurrences of the ‘Triage Assessment’
activity actually refer to a medical officer reviewing the informa-
tion captured in the triage form about one week after the patient
was discharged to conduct further activities, e.g. giving the patient
a follow-up call.

Affect. The existence of this pattern will result in discovered
process models painting an incomplete picture of the process
being analysed. Incomplete because the repeated activities, which
actually have different meanings, are ‘grouped’ into one, thus
‘hiding’ certain process information. This is because most, if not all,
process discovery algorithms do not treat repeated activities as
separate activities in the discovered model.

Data Quality Issue. I2 – Imprecise data: activity name – The ac-
tivity names are too coarse to reflect the different connotations
associated with the recorded events.

Manifestation and Detection. The signature of this pattern is the
existence of an activity within a discovered process model that has
many incoming arcs, often including a self-loop arc and arcs from
other activities (as shown in Fig. 4).

In reality, each repetition of the ‘Correspondence’ activity may
refer to correspondence of a different type (e.g. sending a quote,
scheduling a meeting, etc.). The presence of these arcs alone is an
indication (but not confirmation) of the existence of the pattern in
the log. A second indicator is the ratio of the number of times a
particular activity occurs in a log and the total number of cases in
the log. A high ratio indicates that the activity is repeated many
times within a case and requires investigation to check if different
interpretations are possible for each repetition of the activity.
Domain knowledge (as to different meanings being ascribed to
repeated occurrences of the activity) is required to conclusively
detect the existence of this pattern.

Remedy. This pattern can be addressed by explicitly relabeling
repeated activities with a context sensitive name. Doing so re-
quires firstly identifying the different contexts under which an
activity can be repeated, developing a formula to assign the ap-
propriate context to those homonymous activities, and then
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differentiating between them by adding context information into
the label of those activities. For example, the second and third
occurrences of the activity ‘Triage Assessment’ in the event log
shown in Table 12 can be renamed to ‘Triage Assessment (Re-
view)’, thus distinguishing between the actual triage assessment
activity and the review of the triage assessment form activity.

Side-effects of Remedy. The decoupling of activity labels pro-
posed in this remedy may result in too many distinct activity
names, thus reducing the readability of the discovered process
model and making the process mining analyses more complex and
laborious.

Indicative Rule. Let  ∈ be an event log. For a given attribute
name ∈a AN , a is the set of all syntactically-distinct values of a,
and  ⊆ a is the set of homonyms where  may be populated
using process context information. The homonymous label pattern
may exist in  if:

� σ ( )∈a is not empty.
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6. Case study

We have applied the data imperfection patterns in a process
mining case study with an Australian-based hospital analysing
their emergency department treatment process for patients with
chest-pain symptoms.

6.1. Preliminary

The raw data from the hospital consisted of four tables. The
encounter table contained a summary of 2136 patient encounters
that occurred over a certain 18-month period. This table included
patient arrival times, discharge times, discharge destinations, en-
counter types, and other non-identifying patient data. The data in
the encounter table was recorded in a typical key-value format
with each row containing the details of a specific encounter. The
emergency table contained events recorded from the system used
to manage key Emergency Department activities, e.g. triage time
and assignment of a patient to a doctor. The emergency table was
provided in an event-log format and contained 16,587 events. The
clinical table was produced from the hospital system which re-
corded all clinical events. Data from this table was very fine-
Fig. 5. A potentially-undetected mistake in th
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grained (almost like an audit-trail), was formatted as an event-log
and contained 189,994 events. The orders table contained records
of all orders that had been placed in relation to a particular en-
counter, e.g. blood test orders and X-ray imaging orders. The data
in this table was structured as an event-log and consisted of 8974
events.

6.2. Event Log Imperfection Patterns observed in the hospital data

Unanchored Events – All tables. To remove ambiguity and to
ensure events could be properly ordered, the first thing we did
was re-format the timestamp values in the raw data to our stan-
dard format using a spreadsheet program. Had we not anticipated
the possible existence of the Unanchored Event pattern, it would
have been easy for the timestamp values in our data to be inter-
preted incorrectly. We experimented with loading one of the ta-
bles into the process mining tool, Disco (www.fluxicon.com/disco).
Disco initially loads a sample of the data (normally the first 1000
events) and allows the user to allocate each field of the data to an
event log attribute (e.g. case identifier, activity name, resource
identifier, and timestamp). When a field is tagged as being ‘time-
stamp’, users can specify the timestamp format. Fig. 5 shows that
the default timestamp format was month-day-year. However, the
timestamp format in the log was day-month-year. Because the
first 1000 events in the log contain dates with timestamp values
that can be validly interpreted using either format (i.e. the date
ranges from 1 September to 9 September), the Disco tool would
allow the month-day-year selection. When the complete event log
was imported, Disco attempted to interpret those timestamp va-
lues that could not be validly interpreted in the month-day-year
into another timestamp. For example, Fig. 6 shows how the ori-
ginal date of 18 September 2011 was incorrectly interpreted as 6th
September 2012. Because we had anticipated such an issue, we
avoided this potential problem.

Elusive Case – Encounter table. In this case study, we intended to
analyse end-to-end patient flow from the arrival of a patient at the
emergency department (ED) to their discharge from the hospital.
When ED patients require inpatient treatment, they are admitted
to hospital under a new encounter identifier. To properly track
end-to-end patient flow, we needed to be able to link an ED en-
counter identifier with its corresponding hospital encounter
identifier for patients who were later admitted to the hospital.
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Fig. 6. An example of how the ‘Unanchored Event’ pattern could have manifested in our data set.
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(Note that a row in the encounter table does not explicitly link an
ED encounter with its corresponding hospital encounter). Further,
the events recorded in the other tables (i.e. the emergency, clinical,
and order tables) were also linked only to their respective en-
counter identifier. Therefore, the encounter identifier attribute on
its own cannot be used as the case identifier.

Our data also contained each patient's medical record number
(MRN) which uniquely identifies a patient. However, it is not un-
common for a patient to have multiple ED encounters. Therefore, if
we had used MRN as the case identifier, multiple patient flows (as
per our intended definition of a patient flow) may be captured
within a case. Thus, by itself, the MRN could not be used as the
case identifier either. After consideration, none of the other attri-
butes could be used as case identifier.

This situation indicates the presence of the Elusive Case pattern
because none of the attributes that are common to all events in all
of the tables can be used to group events into their respective
cases. The pattern remedy calls for correlating information in the
event log with information from another source. In this instance,
we used attributes from the encounter table including the en-
counter type, the discharge destination, the admission time, and
the discharge time as well as the MRN to create a heuristic rule
which states that: (1) for each row in the encounter table where
(i) the encounter type is ‘emergency department’ encounter and
(ii) the discharge destination is ‘discharge to the same hospital’
(we called this row the ‘ED’ row), (2) find within the same en-
counter table another row where (i) the encounter type is ‘hospital’
encounter, (ii) the admission timestamp is the same day as the
discharge timestamp of the ‘ED’ row, and (iii) the MRN value of
this row is the same as the MRN value of the ‘ED’ row (we called
this row the ‘hospital row’). If a ‘hospital row’ is found for a given
‘ED row’, replace the encounter identifier of the ‘hospital row’ with
the encounter identifier of the ‘ED row’. The application of this rule
remedied the Elusive Case issue by making the ED encounter
identifier the case identifier. This remedy did not completely re-
solve the issue as there were a few rows in the tables that we
could not match properly. In two encounters with the same MRN,
emergency and hospital encounters were registered with exactly
one day difference. We assumed this was a data entry error
(possibly Inadvertent Time Travel) and considered these encounters
to be one case and merged accordingly. One encounter was
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
event logs, Information Systems (2016), http://dx.doi.org/10.1016/j.is
removed as it was the only hospital encounter (other than the
ones with the assumed data entry error) that did not have a cor-
responding emergency encounter registered on the same day.

Form-based Event Capture – Clinical Table. The clinical table
contained an abnormally high number of events in comparison to
the number of events in other tables. We further observed that
there were many events with the same case identifier and time-
stamp. Further, the activities for those events with the same case
identifier and timestamps were often repeated (i.e. there were
occurrences of more or less similar sequences of events with the
same timestamp and case identifier, e.g. PrimarySurvey, followed
by AirwayClear, BreathingRate, BreathingDepth, …).

This fits the criteria for the existence of the Form-based Event
Capture in the data set which was confirmed when we matched
the activities in the log with the activities on the actual electronic
forms used by the clinicians.

We remedied this problem by collapsing all events that (i) were
likely to belong to the same form and (ii) had been recorded as a
result of the same action triggered by the user (e.g. exiting a form
or clicking on a ‘Save Form’ button) into one event (whenever
possible without inducing any loss of important events) or mul-
tiple events (if necessary in order to retain important events). The
latter often occurred when a user closed two or more forms almost
simultaneously (e.g. through a ‘close all’ functionality).

We exploit the SQL ‘Group By’ operator to address this issue.
For each case, we grouped activity names by timestamp on the
basis that form-based events would have been recorded with the
same timestamp. Thus, for each timestamp of a case, we obtain a
list of activities that occurred for that particular timestamp. We
note that in this example, drawn from a single encounter identi-
fier, the opening of the form, as well as the transition between
data tabs (subforms) can be seen on the log (see Fig. 7). Collapsing
the log events can thus be performed at either the form level or
the tab (subform) level. Having performed the above cleaning, we
managed to reduce the number of events in the clinical table from
189,994 to 14,778 Fig. 8.

Collateral Events – Order and Clinical Tables. The Collateral Events
pattern was noticed within the Clinical and the Orders tables. In
the clinical table, a single event recording a set of blood tests is
related to multiple events (one per blood test) in the Orders table.
Table 13 shows an example of this pattern Fig. 9.  
rns for process mining towards a systematic approach to cleaning
.2016.07.011i

http://dx.doi.org/10.1016/j.is.2016.07.011
http://dx.doi.org/10.1016/j.is.2016.07.011
http://dx.doi.org/10.1016/j.is.2016.07.011


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Fig. 7. ‘Form-based Event Capture’ snippet.

Fig. 8. Pervasiveness of Event Log Imperfection Patterns.

Table 13
An example of the ‘Collateral Events’ pattern in the hospital log.

Case ID Activity Timestamp Table Detail

1234567 SOCPathology 21/09/2011
09:20:53

Clinical FBC,INR,Troponin,
ELFTs

1234567 …… …… …… ……

1234567 FBC 21/09/2011
09:25:58

Orders 21/09/2011 09:25 FBC

1234567 ELFTs 21/09/2011
09:25:58

Orders 21/09/2011 09:25
ELFTs

1234567 Troponin 21/09/2011
09:25:58

Orders 21/09/2011 09:25
Troponin

1234567 INR 21/09/2011
09:25:58

Orders 21/09/2011 09:25 INR
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This situation needs to be addressed, otherwise, activities in the
log may be interpreted as being ‘fragmented’ while in reality, this
is not the case. These fragmented and scattered activities can be
safely seen as one activity that was ‘mildly interrupted’ during its
execution. We addressed this pattern by (i) constructing a
knowledge base that listed all the different blood tests that could
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
event logs, Information Systems (2016), http://dx.doi.org/10.1016/j.is
be ordered, (ii) using the knowledge base to merge all blood test
orders with the same timestamp into a single activity called ‘Blood
Tests (Ordered)’, and (iii) removing the ‘SOCPathology’ activity
from the log as it only informed us that blood tests were to be
requested whereas the records in the Orders table show when the
orders were actually made.

Scattered Event – Clinical Table. The Scattered Event pattern was
detected in the Clinical table in activities relating particularly to
surgical procedures. The pattern was detected by firstly observing
that the activities ‘SN-Proc-StartTime’ and ‘SN-Proc-StopTime’
contained timestamp-like values as an attribute. Further in-
vestigation showed that the ‘SN-Surgical-Procedures’ and ‘SN-
Proc-Primary-Surgeon’ activities also contained information useful
in reconstructing a single activity (as shown in Table 14).

The pattern was remedied by (i) building a knowledge base of
surgical procedures identified by a 5 digit code plus text descrip-
tion from the attribute values of the ‘SN-Surgical-Procedures’ ac-
tivity (ii) for each occurrence of the ‘SN-Surgical-Procedures’ ac-
tivity in the Clinical table, using the attribute values of the ‘SN-
Surgical-Procedures’ and ‘SN-Proc-StopTime’ with the same case 
rns for process mining towards a systematic approach to cleaning
.2016.07.011i
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Fig. 9. Perceived importance of Event Log Imperfection Patterns.

Table 14
An example of the ‘Scattered Event’ pattern in the hospital log.

Scattered events

Case ID Activity Timestamp Detail

1234567 SN-Surgical-
Procedures

8/09/2011
09:13:25

38306Transluminalstentinsertion

1234567 SN-Proc-Pri-
mary-Surgeon

8/09/2011
09:13:25

*Anonymised*

1234567 SN-Proc-
StartTime

8/09/2011
09:13:25

0:2011090709340000:0.000000:0:0

1234567 SN-Proc-
StopTime

8/09/2011
09:13:25

0:2011090710010000:0.000000:0:0

Reconstructed event
Case ID Activity Timestamp Resource
1234567 Transluminal

stent insertion
7/09/2011
10:01:00

*Anonymised*
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identifier and timestamps to reconstruct the surgical procedure
event record.

Scattered Case – Order Table. This pattern was illustrated in the
hospital data used to describe the Scattered Case pattern earlier.

Homonymous Label – Clinical Table. This pattern was illustrated
in the hospital data used to describe the Homonymous Label. Note
that the pattern also affected other activities (e.g. medical note,
nursing primary assessment) where there was the initial event
(observation and recording) with subsequent accesses to review/
update the record.
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6.3. Occurrence in other data sets

As shown in Table 15, the patterns were also observed in other
data sets that we have analysed. The Hospital2 data set was de-
rived from another Australian hospital and includes 884 cases of
patients presenting at the Emergency Department with multiple
trauma injuries.

Both the Insurer1 and Insurer2 data sets deal with insurance
claims handling. The Insurer1 data set consisted of approximately
500,000 distinct work items (events) and the Insurer2 data set
included 17,750 cases. We note that, as assessed against the log
maturity scale in [45], the hospital logs rate as 2-star and exhibit
many of the characteristics of logs derived from HIS as described in
[25]. The insurer logs were of a 3-4-star log maturity rating yet
even these logs exhibit many of the imperfection patterns de-
scribed in this paper. The Hospital1 data set was chosen as the
examplar for the patterns largely because it exhibited the majority
of the patterns described in this paper.
Please cite this article as: S. Suriadi, et al., Event log imperfection patte
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7. Evaluation

A user evaluation of the event log imperfection pattern set
described in this paper was conducted via a questionnaire to de-
termine 1) the pervasiveness of the patterns in event logs used by
respondents in process mining analyses, 2) the importance at-
tached by respondents to recognising the existence of each pattern
in a process mining analysis, and finally, 3) the perceived useful-
ness of the pattern approach in characterising event log quality
issues. The questionnaire was targeted at process mining re-
searchers and practitioners and was distributed via a number of
channels including (i) IEEE Task Force on Process Mining; (ii)
LinkedIn Process Mining group; and (iii) contacts in universities,
research institutions, companies and government departments
known to be active in the field of process mining. The ques-
tionnaire preface outlined the background and motivation for the
research. Participants were asked to answer a number of questions
regarding their demographics. The questionnaire presented each
of the 11 event log imperfection patterns described in this paper
with respondents being asked to indicate how many times they
had seen the pattern in data sets they had analysed, and the im-
portance they attached to recognising the existence of the pattern
given its potential impact on a process mining analysis. The per-
ceived importance is measured using a Likert-like scale (Very
important, Important, Neutral, Not so important, Not important at
all).

7.1. Evaluation results

Of the 23 people that started the questionnaire, a total of 20
people completed it, which translates to a response rate of 87%
including 15 academics/researchers and 5 practitioners with
varying levels of data mining and process mining experience. 90%
of respondents indicated they had worked in a role that involved
analysing data or data manipulation for 1 or more years with 45%
of respondents indicating more than 5 years involvement.

Respondents were ‘Familiar’ with both data mining and process
mining, predominantly use WEKA as a data mining tool (R and
Rapid Miner were also popular tools) with ProM and Disco being
the most popular process mining tools among respondents. The
average number of patterns observed by any respondent being 7
(of the 11 patterns). All patterns have been seen by at least 45% of
respondents with 4 patterns having been observed by at least 70%
of the respondents. The most frequently observed patterns were
‘Scattered Case’, ‘Form-based Event Capture’ and ‘Distorted Label’
(seen by 90%, 85% and 80% respectively of respondents). The
‘Scattered Event’, ‘Inadvertent Time Travel’ and ‘Synonymous La-
bels’ patterns were least frequently observed (seen by only 45%, 
rns for process mining towards a systematic approach to cleaning
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50% and 50% respectively of respondents).
All patterns except the ‘Polluted Label’ and ‘Scattered Event’

patterns were rated as ‘Important’ or ‘Very important’ by at least
50% of the respondents. All respondents rated the collection of
patterns as being ‘Useful’ (55%) or ‘Very useful’ (45%) in terms of
characterising event log quality issues.

While the small sample size precludes statistically significant
conclusions being drawn from the results, the responses indicate
agreement with the notion that the patterns exist as a real phe-
nomenon (according to the “rule of three” [4]) and that the pat-
terns are important and useful.
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8. Conclusion

Contemporary logs typically have many issues that need to be
resolved before they can serve as input for analysis. They may
contain imprecise or even incorrect data, certain important events
may not have been recorded (e.g. certain transaction types may
not be recorded), or they contain data that needs to be interpreted
carefully (e.g. timestamps). While an event log may exhibit a
number of specific problems, there are many issues that recur
frequently and which can be resolved using a variety of known
remedies. To address the cleaning of a log in a systematic manner,
this paper documents a collection of typical problems one may
encounter in event logs as well as associated remedies that can be
used to rectify them. This documentation takes the form of pat-
terns, collectively providing a repository of knowledge to deal with
data imperfections. While the patterns are informed by problems
that may manifest themselves in the context of data mining, they
are targeted to the field of process mining and the specific issues
that may arise there. The patterns remain agnostic of any sub-
sequent form of analysis (e.g. process discovery or process con-
formance) and can thus be applied in the first stages of a process
mining trajectory. The patterns were validated using a number of
event logs, with varying degrees of ‘maturity’, from practice. These
event logs demonstrate that (i) the patterns identified do indeed
occur, (ii) that higher ‘maturity’ ratings do not guarantee that logs
will be free of imperfections, and (iii) event logs require attention
before embarking on specific analysis tasks.

We recognise that, as the patterns described in this paper were
drawn from only 4 data sets, it is likely that more such patterns
will be identified through analysis of other data sets. We do not
claim an exhaustive listing of event log imperfection patterns, but
do claim that the pattern plus recommended remedy approach is a
significant contribution to the systematic preparation of logs for
process mining analyses. This view was supported by the re-
spondents to the evaluation questionnaire. Despite the small
sample size, the majority of respondents had significant work
experience in analysing data and approximately half of the re-
spondents indicated they had analysed more than 20 event logs.

This paper directly addresses several of the challenges facing pro-
cess mining raised in the Process Mining Manifesto [45]. In particular,
from a data quality perspective, C1: Finding, merging and cleaning event
data and C2: Dealing with complex event logs having diverse character-
istics. Furthermore, the use of data imperfection pattern-based ap-
proach to cleaning event logs can be seen as the first step towards
addressing two other challenges listed in the manifesto: C10 and C11
which deals with improving usability and understandability, respec-
tively, of process mining to non-experts. At present, there is a lack of
agreed systematic approach (and its related supports) to undertaking
an end-to-end process mining project (from data pre-processing,
analysis, and results interpretation).

We argue that our pattern-based approach contributes to the
development of this systematic methodology on the basis that
(i) event log cleaning is a necessary first step towards achieving 
rns for process mining towards a systematic approach to cleaning
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high quality input, (ii) the patterns can be applied in a (semi-)
automated manner, and (iii) the patterns are independent of the
purpose of the analysis.

There are a number of avenues for future work. One of these in-
volves the development of a suite of metrics describing the perva-
siveness of the patterns in a log. The patterns affect a log at different
levels including attributes, events and cases, thus the various perva-
siveness metrics would determine the number of attributes, events
and cases affected by individual patterns and the pattern collection
overall. (Note that it is then possible to determine the fraction of the
log impacted by the patterns by dividing the count of the respective
log elements affected by the total number of the respective element in
the log.) Another avenue is the development of a formal framework
that can be used to specify both existing patterns and as yet un-
described patterns. The metrics and framework will constitute the
basis of automated support in detecting the presence of patterns and
applying suitable remedies to fix any of the problems detected. The
metrics may provide guidance with remedy selection and prioritisa-
tion. Additional possible future work is the documentation of pattern
collections for preparing data for specific analysis tasks in the area of
process mining and further substantiation of the approach through
feedback from more researchers and practitioners.
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