
Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
IET Computers & Digital Techniques
Research Article
Accuracy-aware processor customisation for
fixed-point arithmetic
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016
ISSN 1751-8601
Received on 19th October 2014
Revised on 11th March 2015
Accepted on 12th April 2015
doi: 10.1049/iet-cdt.2014.0188
www.ietdl.org
Shervin Vakili ✉, J.M. Pierre Langlois, Guy Bois

Department of Computer Engineering, Polytechnique Montréal

✉ E-mail: shervin.vakili@polymtl.ca

Abstract: Application-specific customisation of micro-processor architectures has been widely accepted as an effective
way to improve the efficiency of processor-based designs. In this work, the authors propose a new processor
customisation method based on fixed-point word-length optimisation. Accuracy-aware word-length optimisation (WLO)
of fixed-point circuits is an active research area with a large body of literature. For the first time, this work introduces a
method to combine the WLO with the processor customisation. The data type word-lengths, the size of register-files
and the architecture of the functional units are the main target objectives to be optimised. Accuracy requirements,
defined as the worst-case error bound, is the key consideration that must be met by any solution. A custom processor
design environment, called PolyCuSP, is used to realise the processor architecture based on the solution found in the
proposed optimisation algorithm. The results achieved by evaluating five benchmark show that this method can reduce
the number of necessary LUTs and flip-flops by an average of 11.9% and 5.1%, respectively. The latency is also
improved by an average of 33.4%. Moreover, the method was further examined through a case study on a JPEG
decoder. The results suggest 16.2% and 56.2% reduction in area consumption and latency, respectively.
1 Introduction

Application-specific processor customisation is one of the promising
trends to promote the efficiency of processor-based designs. This
trend includes various state of the art research areas such as
instruction-set customisation in extensible processors [1],
micro-architectural customisation in parameterisable processors [2]
and application-specific processor design offered in architecture
description languages (ADLs) [3]. In this work, we introduce a
novel processor customisation approach which explores a new
dimension in application-specific micro-architectural optimisation
targeting fixed-point applications.

This new dimension is the word-length of the datapath that is
normally fixed in microprocessors. In integer computation, the
minimum required word-length of the datapath is determined by
the maximum range of the data elements in the applications.
Customising the word-length of the processor to this value can
potentially improve the efficiency of the processor depending on
the application.

In fixed-point computation, the problem of word-length allocation
is considerably more complex because of the introduction of new
factors. Each fixed-point value is comprised of integer and
fractional parts. The integer word-length (IWL) of each signal
should be long enough to guarantee overflow/underflow avoidance.
This lower-bound requirement can be found by range analysis
using various existing analytical [4, 5] and simulation-based
techniques [6].

Determining the fractional word-length (FWL) is inherently more
complex. The FWL of each signal determines the quantisation error
which is introduced because of the finite word-length representation
of that signal. This quantisation error can propagate through the
subsequent levels of the circuit and eventually show up at the
outputs as inaccuracy in the computations. Various analytical [7,
8] and simulation-based techniques [9, 10] were introduced in the
literature to model the finite-precision error of a circuit based on
the word-length allocation of its signals. Reducing the word-length
of signals can significantly improve the efficiency of the
implementation. The problem of finding the most efficient
word-lengths to represent the signals of a given application is
widely known as word-length optimisation (WLO). In fixed-point
designs, WLO adjusts the IWL and FWL allocated to each signal
considering the overflow/underflow hazards and the accuracy
requirements. The efficiency can be measured from the hardware
area, power consumption, performance or a combination of them
based on the design objectives.

There are basically two word-length allocation approaches. The
traditional uniform word-length (UWL) allocation approach offers
a single word-length for all variables. The multiple word-length
(MWL) approach allows different word-lengths for different
variables. Fig. 1 represents processor customisation via UWL and
MWL approaches. The important customisable elements in the
proposed method include the word-length of the register-files,
pipeline buffers and functional units and the number of words in
each register-file.

WLO has been extensively studied in numerous researches for
application-specific integrated circuit designs. However, to the best
of our knowledge, no related research work has been considered in
custom processor design. The main contribution of this paper is to
present the first work of literature that investigates WLO for
application-specific customisation of microprocessors by exploring
architectural trade-offs. This is illustrated in Figs. 1a and b.

More precisely, this work proposes a method for
accuracy-guaranteed optimisation of the processor word-length for
fixed-point applications. This method aims to enhance the
efficiency of the processor architecture through application-specific
customisation, while meeting the precision requirements.

The architecture of the functional unit is the other target that the
proposed method aims to optimise in parallel with the WLO.
Complex arithmetic functions such as multiplication commonly
have a significant impact on area usage and performance of the
processors. There are usually various possible architectures to
realise an arithmetic function in hardware. The efficiency of using
a specific architecture in a design depends on the application and
the word-length allocation. The proposed method customises the
number of hardware operators and architecture of each one
regarding the word-length allocation solutions.

Finite-precision error modelling is an essential part of any WLO
method. Such a model formulates finite precision error at the
1

Fig. 1 Comparing UWL and MWL approaches

a Processor with customised bitwidth using UWL. In conventional processors, W is a fixed power-of-two value, for example, 32
b Processor with customised bitwidth using MWL with two word-lengths

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
outputs in terms of the FWL of the inputs and the intermediate
signals. Given the error model, the UWL can be easily calculated
in the UWL approach. However, the MWL optimisation is an
NP-hard problem that is normally solved by heuristic search
algorithms [11]. The proposed method explores both UWL and
MWL approaches in its optimisation algorithm.

The rest of the paper is organised as follows. Section 2 reviews
background material and related works. Section 3 describes the
proposed methodology. The design flow of the proposed method
is described in Section 4. Section 5 presents the optimisation
algorithm which is used in this work. Section 6 gives experimental
results and comparisons, and Section 7 concludes the paper.
2 Related works

This work is composed of two major parts including an environment
for custom processor design and an optimisation algorithm to find
the appropriate solution for processor customisation via design
space exploration. There is a significant amount of prior work on
each of these two parts.

Various trends in custom processor design have been investigated
in the literature. Tensilica Xtensa [1], MetaCore [12, 13] and SC
build [13] are some examples of partially customisable processor
environments in which the main body of the processor is fixed,
while a limited number of elements or components are left
customisable. ADLs such as PEAS III [14], LISA [15] and
EXPRESSION [16] offer designing from scratch, which provides
higher flexibility by allowing the designers to define their own
instruction-set architecture (ISA) and datapath at the expense of
more design complexity.

Yiannacouras et al. [17] introduced a soft processor design
environment, called soft processor rapid exploration environment,
that facilitates design space exploration for both
micro-architectural and ISA customisation.

Vakili et al. [18] presented a customisable processor design
environment, called PolyCuSP (polytechnique customised soft
processor), that bridges the gap between ADLs and extensible soft
processors. The main characteristic of this environment is to
facilitate rapid design space exploration, while preserving a wide
2

range of customisation flexibility. PolyCuSP offers full flexibility
in instruction-set description, while limiting the datapath
customisation to a predefined set of tunable microarchitectural
parameters. This environment is used for implementation and
evaluation of the proposed method in this paper.

Range analysis, finite-precision error modelling and FWL
selection algorithm are the three main parts of all WLO methods.
All these parts have been extensively studied in existing works.
Interval arithmetic (IA) is one of the basic methods for analytical
range analysis and error modelling [19]. One drawback of
IA is that it ignores the correlation among signals [7, 20].
Affine arithmetic is a preferable approach that addresses the
correlation problem by taking into account the interdependency of
the signals [21].

Le Gal et al. [22], Constantinides et al. [21] and Menard et al.
combined the word length optimisation and high-level synthesis
(HLS) problems. These works propose new HLS methodologies
which take care of data word length in scheduling, allocation and
binding processes to aim at optimising the hardware implementation.

Menard et al. [23] introduced a grouping algorithm to optimise the
resource sharing paradigm for the operations. This process is
followed by a WLO algorithm that optimises the word length of
each signal group. The algorithm is composed of a greedy and a
Tabu search procedures. The optimisation time and the efficiency
of the results are the two key measures to evaluate and compare
the WLO algorithms.

Sulaimal et al. [24] presented a multi-objective genetic algorithm
(GA) for real-time optimisation of word-length in a fast Fourier
transform (FFT) processor. This is one of the rare works that
consider the word length issue in processor architecture. The
multi-objective GA is used to find the bit width solution for the
FFT coefficients that optimises the precision and power
consumption. In that work, the objective is to reduce the power
consumption by reducing the number of bits that participate in
computations instead of optimising the hardware. Only a single
word-length solution is considered in that work.

Finally, some authors have also considered resource sharing
capability in their WLO algorithms [21, 23]. This can significantly
increase the complexity of the optimisation algorithms. However,
till now, WLO has not been studied for a microprocessor domain
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
that offers highest level of resource sharing. Inherent advantages of
microprocessors, particularly their fast and relatively easy design
process, make them a popular platform for computations including
fixed-point ones. In conventional processors, the word-length is
normally a fixed value, equal to a power of two. More advanced
processors may support more than one word-length aiming at
handling multiple data types effectively. The data type
word-lengths are extremely effective on efficiency factors of the
processors including their hardware area, power consumption and
speed. If the word-length of a processor is wider than the width
required by the application, a part of the efficiency is wasted. This
problem is more significant in embedded systems where the target
functionality, and consequently the application that is to be
executed in the processor, are usually fixed.
3 Proposed methodology

In this section, we present our proposed methodology. This
methodology aims to generate application-specific customised
processors for fixed-point applications. New hardware elements
and components are the target of customisation in this work. In
the following sections, we will first present the objectives of the
proposed method in processor customisation. Then we will
illustrate these objectives in detail using an example.
3.1 Methodology objectives

Our proposed method is based on the pursuit of three objectives.
The first objective of the proposed method is to improve the

efficiency of the processor architecture by customising the
word-length of the data elements and consequently the calculations.
The word-length has direct impact on the area cost and speed of
various parts of a processor. Any reduction in the word-length of a
processor can lead to a significant improvement of overall
efficiency. The proposed approach supports the MWL scheme that
allows using multiple data types with different word-lengths in the
customised processor. Although using multiple word-lengths may
increase the complexity of the hardware realisation and the
optimisation problem, it also increases the potential of reaching
more efficient solutions.

The second objective is to improve the efficiency of the processor
architecture by customising the depths of the register-files. One
register-file is dedicated to each selected word-length. The
minimum depth required for each register-file depends on the
application and the word-length allocation. In addition to the area
usage, the depths of the register-files also impact the bitwidth
required to index the registers in the instruction and consequently
the bitwidth of the instructions and related memory units.

The third objective is to improve the efficiency of the design by
customising the architecture of the functional units. There are
usually many possible architectures to realise a unique operator.
The latency, area cost and throughput of the operators may vary
for the selected architecture. In this work, one of the issues
considered in the optimisation algorithm is to select the best
architecture to implement the hardware operator. The number of
hardware operators needed to be implemented in the execution
stage depends on the number of data types and the operators
which are required for each data type. Both of these factors are
determined through the design space exploration in the proposed
optimisation algorithm. The architecture of each operator can also
be optimised based on application requirements and the
word-length allocation.
3.2 Illustration of the objectives

In this section, we illustrate how the three objectives are met by our
optimisation method using a design example. Fig. 2 illustrates an
example circuit that performs the following calculations
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016
z1 = b× a5

z2 = c× d + c× b

z3 = d × e+ d × c

(1)

The input values are assumed to be in the range of [0,128). Using the
approach described in [25], the error model of the example circuit is
calculated as follows

2−FBz1q
−1 ≥ 5× 2−FBaq

+34 + 2−FBbq
+34 + 228 × ds1

+ 221 × ds2 + 214 × ds3 + 27 × ds4

2−FBz2q
−1 ≥ 2−FBcq

+7 + 2−FBbq
+6 + 2−FBdq

+6 + ds5 + ds6

2−FBz3q
−1 ≥ 2−FBdq

+7 + 2−FBcq
+6 + 2−FBeq

+6 + ds6 + ds7

(2)

where

ds1 =
2−FBs1q

−1
1s1, FBs1q

,FBaq
+FBbq

0, otherwise

{

ds2 =
2−FBs2q

−1
1s2, FBs2q

,FBaq
+FBs1q

0, otherwise

{

ds3 =
2−FBs3q

−1
1s3, FBs3q

,FBaq
+FBs2q

0, otherwise

{

ds4 =
2−FBs4q

−1
1s4, FBs4q

,FBaq
+FBs3q

0, otherwise

{

ds5 =
2−FBs5q

−1
1s5, FBs5q

,FBbq
+FBcq

0, otherwise

{

ds6 =
2−FBs6q

−1
1s6, FBs6q

,FBcq
+FBdq

0, otherwise

{

ds7 =
2−FBs7q

−1
1ds7, FBs7q

,FBdq
+FBeq

0, otherwise

{

Objective 1
The value FBsq

represents the FWL allocated to the signal sand εx
is an uncertainty source in signal x.

We start with the word-length allocation which is the first
objective of the proposed method. Analysing the error model
reveals that the five multiplications that lie within the path of
calculating z1 must be much wider than the other operations in the
application when the same accuracy is requested for all outputs.
For instance, assume that 8-bit fractional accuracy is requested for
all outputs. Solving the error inequalities in (2) shows that at least
54 bits are required for a, b, s1, s2, s3 and s4 to meet the
requested accuracy at output z1 and to provide the necessary IWL
for the signals. This value is obtained by assuming a uniform
word length for all signals to simplify the calculations and by
solving the first inequality of (2). However, 26 fractional bits are
enough for the b, c, d, e, s5, s6 and s7 signals to guarantee 8-bit
accuracy at output z2 and z3. The IWL of the signals is taken into
account in these calculations. Fourteen bits are required for the
integer part of signals s1, s5, s6 and s7 while the integer part of
signals s2, s3 and s4 should be at least 21, 28 and 35 bits,
respectively.

A single data type processor that can calculate the above example
must have a datapath that is at least 54 bits wide. This is, in fact, the
realisation of the UWL approach in the processor domain. The
register-file, inter-stage signal routes and the hardware operators in
the functional unit, including the multiplier, must also be able to
handle this bitwidth. However, we know that 26-bits are enough
for three of the multiplications and 7 signals that only participate
3

Fig. 2 Example circuit

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
in the calculation of the z1 and z2 outputs. Converting the processor
to a double-word-length architecture with 26- and 54-bit data types
can reduce the hardware area of the register-files. Moreover,
adding a separate 26-bit multiplier to the processor may enable the
design to use more diverse types of multiplier architectures. All
these decisions need an effective exploration of a large search
space. The mentioned word-length allocation possibilities show the
importance of the first objective.

Objective 2
The word-length allocation also has a direct impact on the

minimum necessary depth of the register-files as the second
objective. In microprocessors, more than one variable can be
mapped to the same physical register if there is no time overlap
between their living times in the application code. Register
allocation algorithms are normally used in compilers to map the
registers to the application variables. The register allocation result
determines the minimum required depth for the register-files. In
the proposed method, variables are divided into different
word-lengths in MWL word-length allocation solutions. A change
in word-length allocation can change effective factors in the
register allocation and can eventually change the minimum
required depths of the register-file. For instance, if a 54-bit
word-length is selected for variable a and a 26-bit length is
selected for variable e, then variable a cannot be mapped to the
26-bit register file. These constraints are considered in the
modified register allocation algorithm of the proposed optimisation
algorithm described in Section 5. Hence, the register allocation
and the required depth of the register-files depend on the
word-length allocation. In the proposed algorithm, the word-length
allocation is performed through design space exploration.

In the proposed processor architecture, operands of multiple data
types can be used by a single instruction. Consequently, increasing
the number of data types does not necessitate introduction of new
instructions to the ISA as long as new functional units are not
added to the architecture. This is realised by using a uniform
indexing method for all register-files. The proposed method
includes a register allocation algorithm that is responsible for
assigning appropriate register indexes to the variables based on
data type allocation that is achieved in the first objective.

Objective 3
The third objective focuses on the architecture of complex

functions. In this work, we limit our explorations to the multipliers
as the most widely used complex function to simplify the
presentation. Hardware multipliers are used in most modern
embedded processors since multiplication is a basic operation in
most DSP and image processing applications. Hence, the proposed
method searches for the most efficient multiplier architectures to
4

integrate into the customised processor. However, the method can
be easily extended to cover other complex functions such as
division and logarithm. A multiplier can be implemented by
various architectures with different efficiency characteristics. In
this work, we consider three well known architectures: (1) the
basic combinational multiplier, (2) the multi-cycle shift-and-add
multiplier and (3) the pipelined shift and add multiplier. The
multi-cycle and the pipeline architectures divide the multiplier
datapath into n fragments, where n is less than or equal to the
bitwidth of the operands. Let n be the number of stages in
multi-cycle and pipeline architectures, then n is the other
configurable parameter that is explored by the optimisation
algorithm. The hardware cost of each candidate architecture is
measured separately. The results are given to the optimisation
algorithm as tables to facilitate the overall cost estimation.

The design space of the multiplier architecture depends on the
word-length allocation. Therefore exploration for the best
multiplier architecture should be carried out based on a known
word-length allocation. To show how different function
architectures may be used in a customised processor, we give two
possible solutions for the multiplier of the Fig. 2 example. A
2-data type configuration is selected for bitwidth configuration,
with signals a, b, s1, s2, s3 and s4 assigned to the 54-bit type and
the rest to the 26-bit type.

Fig. 3 illustrates these two solutions. The first solution uses a
single hardware multiplier unit that is 54 bits wide. Fig. 3a
represents the time scheduling of the instructions using this
solution. In all experiments, the throughput of the execution is
supposed to have the highest priority. Therefore the search space
of the function architectures is limited to those that do not require
extra clock cycles. Different multiplications must be calculated in
successive clock cycles as shown in Fig. 3a. If a single multiplier
is used in the processor, the selected architecture must support a
throughput of one multiplication per clock cycle to avoid pipeline
stalls. A 54-bit combinational multiplier is large and slow enough
to become the critical path in most embedded processors.

The second solution uses a 54-bit multiplier for mult1 tomult5 and
a 26-bit multiplier for mult6 to mult8. The time schedule of this
solution is presented in Fig. 3b. Using separate multipliers
combined with appropriate ordering of the instructions allows
2-cycle gaps for completion of the calculation in each multiplier.
This extra cycle flexibility enables the use of a 2-cycle architecture
for the multipliers. Moving from combinational to 2-cycle
architecture causes significant reduction of hardware resources and
latency. Here, we target single-issue processor architectures that
support instruction-level parallelism. The instruction-level
parallelism enables utilisation of two multipliers, concurrently.
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016

Fig. 3 Time scheduling diagram of two possible solutions for the Fig. 2 example with

a Single multiplier
b Double multiplier

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
Note that the idea of utilising two 2-cycle multipliers can also be
used in single data type solution of Fig. 3a to improve the clock
frequency at the expense of an area overhead. However, in that
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016
case, both multipliers must be 54 bits wide that means less
efficiency in functional unit hardware compared with the solution
of Fig. 3b. This example demonstrates how multiple hardware
5

Fig. 4 Design flow in the proposed method composed of the optimisation and the PolyCuSP environments

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
units for a complex operator can improve the efficiency of the design.
The optimisation algorithm should explore the possible architectures
to find the optimal solution that achieves the highest efficiency.
4 Design flow integration

We propose a complete design flow that incorporates the
optimisation and the custom processor generation environments.
The optimisation environment is mostly developed in MATLAB.
This environment consists of the optimisation algorithm, which
will be described in Section 5, and some peripheral units such as
cost estimation tables. The processor generation environment
creates the customised architecture based on the selected solution
in the optimisation algorithm. This section discusses the design
flow in more detail.

The design flow is illustrated in Fig. 4. The optimisation process
starts with a C application provided by the designer. All fractional
variables are represented in floating-point in this input code. In the
first step, the input C code is converted into Gimple, which is an
intermediate representation of the GCC compiler, similar to a
simplified C code. This conversion significantly facilitates code
interpretation. The Gimple code is then given to the optimisation
algorithm to find a solution to address the customisation objectives
listed in Section 3. The selected solution is finally given to an
existing processor design environment, called PolyCuSP [18], to
generate a corresponding architecture in RT-level VHDL.

The area and latency estimation tables are given to the
optimisation algorithm to be used for the fitness evaluation of the
candidate solutions. These tables contain the cost estimations of
different possible values of the customisable elements. The
contents of these tables are obtained from the static synthesis of
related components of different sizes. For example, one important
table gives the estimated area and maximum achievable frequency
6

for different word-lengths of the datapath regardless of the
architecture of the other parts of functional unit. The datapath
word-length is equal to the word-length of the longest datapath.

The machine code synthesiser is like a compiler backend that
converts the intermediate representation of the application into
machine code. The register allocation solution is generated by the
optimisation algorithm and given to this unit. The generated
machine code is then sent to PolyCuSP to store in the instruction
memory of the output processor.
5 Optimisation algorithm

This section presents a detailed description of the proposed
optimisation algorithm. The optimisation algorithm contains two
nested GA procedures for word-length allocation (Objective 1) and
a dedicated search algorithm to find the best architecture for the
functional units (Objective 3). Furthermore, the algorithm has a
fitness evaluation routine that determines the fitness of the
complete candidate solution using cost and performance
estimation. Register allocation is a necessary part of the fitness
evaluation that also addresses the second objective of the proposed
method The register allocation is performed using a graph
colouring algorithm just like in previous works. However, since
different word-lengths may be assigned to different variables, in
the proposed method, the word-lengths should be taken into
account. The flow chart of this algorithm is illustrated in Fig. 5.
The following definitions facilitate elaboration of each part of the
algorithm

N: number of wordlengths or number of data types in the processor.
Wi: the wordlength of the ith data type 0 < i < N.
S: number of variables.
Vj: the data type used for jth variable 0 < j < S, Vj∈{1...N}.
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016

Fig. 5 Flow chart of the optimisation algorithm

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
The different parts of the proposed algorithms are described in the
following sections.
5.1 First- and second-level GAs

The number of data types explored in the algorithm, N, is determined
manually by the designer. A large value of N increases the chance of
finding a more efficient solution. On the other hand, selecting a
larger N increases the runtime of the optimisation algorithm. There
is no specific rule to determine the best value of N, but successive
trials and the experience of the designer can serve as guides. In
our experiments, we selected N = 4 as the upper-bound, to provide
a wide range of flexibility to the optimisation algorithm. In each
iteration, the design space is explored for N data types. After
completion of the fourth round, the best solution is sent to
PolyCuSP to generate the corresponding processor architecture.
The solution also includes the register allocation information that
is used to generate the machine code of the application from the
given GIMPLE code.
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016
The two nested GAs are named GA1 and GA2. On the first level,
GA1 searches for the best data type assignment scheme (Vj). Each
chromosome is a string composed of S elements, while each
element determines the candidate data type for the corresponding
variable in that chromosome. The first generation is generated
randomly. After generating a population, the second GA
procedure starts. On the second-level, GA2 finds the optimal
word-length(s) for the data types (Wi) for each chromosome of
the given population determined by the first GA. In this phase,
each chromosome is composed of N′≤N word-length values for
the N data types. N′ is less than N when two or more
word-lengths in a chromosome have the same values. To limit
the search space, the lower bound and upper bound values of
each data type are determined analytically before the start of
the GA2.

Only the values between the lower-bound and the upper-bound are
searched in the GA2. The lower-bound value of each data type is
calculated by assuming infinite word-length for all other data types
and solving the output error model with this assumption. The
lower-bound values of all data types are calculated first. Then the
upper-bound word-length of each data type is calculated by
assuming the lower bound word-length for all other data types and
the output error model is solved based on this assumption. The
upper- and lower-bound word-lengths are highly dependent on the
data type assignment scheme. This means that these boundary
values may change for each chromosome of the given population
determined by GA1. Hence, for each chromosome, the boundary
values must be calculated first.

Then, GA2 explores the range between the boundary values of all
data types to find the best word-length combination for all data types.
Each chromosome in GA2 represents a candidate solution for the
word-length of the data types, that is, a candidate W vector. With
W and V vectors as the candidates of the first- and second-level
chromosomes, the word-length of each variable in the application
can be identified as

WLj = Wvj
(3)

where WLj is the word-length assigned to the jth variable. Hence, the
combination of one chromosome of GA1 and one chromosome of
GA2 gives a complete candidate solution for word-length (or data
type) allocation. The register allocation is performed using graph
colouring algorithm just like the existing works. However, since
different word-lengths may be assigned to different variables, in
the proposed method, the word-lengths should be taken into account.

5.2 Architecture selection for functional units

The next step consists of finding the best architecture for each
candidate word-length allocation solution. This algorithm can be
extended to any complex function. In this work we concentrate on
exploring the best architectures for the multipliers.

The developed algorithm, which is presented in Fig. 6, starts by
listing the word-lengths of all required multiplications in the given
application. For example, in a 2-word-lengths solution with w1
and w2, at most three multipliers with w1×w1, w1×w2 and
w2× w2 widths may be required. This architecture selection
algorithm is executed for each candidate of GA2. The
aforementioned list of required multiplication widths depends on
the word-length allocation and the application.

The narrower multiply operations can always be calculated on a
wider multiplier. Therefore this list may differ from the hardware
multiplier units that are in the processor. In the next step, the
widest required multiplication operation is identified using the
application and the word-length allocation information given by
the GAs. There should be a multiplier unit that can handle this
widest multiplication. Hence, the width of the first multiply unit is
known. This multiplier is enough to handle all multiplications in
the application but it does not necessarily represent an optimal
solution. Adding a shorter multiplier unit may open new areas in
the design space of the multipliers. This design space expansion
7

Fig. 6 Multiplier selection algorithm

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
can enable the use of more efficient architectures just like the
example shown in Fig. 3. Therefore the algorithm evaluates
addition of shorter multiplications based on the list of required
multiplication widths in the application using an exhaustive search.

For each candidate solution, each multiplication operation is
assigned to the shortest multiplier that exists in that solution. For
example, assume that there are two data types with w1 and w2
widths while w1 >w2. If multiplications with all three possible
widths exist in the application, then a multiplier with w1×w1 width
must exist in the processor. If a solution suggests adding a w1×w2
multiplier, then w2×w2 multiplications can be assigned to the
w1×w2 multiplier.

Different possible architectures are examined for each multiplier
of a candidate solution. The architectures that do not impose
further stall cycle in the execution time are evaluated. The total
area cost and maximum latency of each solution is estimated.
Comparing these estimations, the search algorithm selects the best
solution. The designer-defined priorities of area cost and
performance are considered in the selection criteria.
5.3 Fitness function

Now, the algorithm needs to measure the fitness of this candidate
solution. The fitness of a solution is the efficiency that it achieves
when implemented. The GA requires a single fitness value for
each chromosome to identify more promising areas in the search
space. Therefore the efficiency must be evaluated as a single value
that represents a combination of all important efficiency metrics.
The weight of different efficiency metrics in the fitness calculation
can be adjusted by the designers based on their priorities.

In this work, a formula is developed to calculate a single value to
represent the fitness. This formula takes into account four metrics

1. L: Word-length of the largest data type. This parameter defines
the bitwidth of the major parts of the datapath.
2. Mreg: Amount of on-chip memory resources used for the
register-files.
3. Amult: Estimation of the hardware area used for the multipliers.
4. Freq: Estimation of the maximum frequency that can be used by
the processor.

The fitness formula is as follows

fitness = CF × Freq

CL × L+ CM ×Mreg + CA × Amult
(4)
8

CF, CL, CM and CA are weighting factors. For example, increasing the
value of CF will increase the impact of the frequency parameter on
the fitness value. The latency of the processor datapath determines
the maximum applicable frequency that is the most effective factor
of the overall performance of the processor, in this work. The
designer can increase the value of CF to give the higher priority to
the performance in optimisation process. This may lead to
selection of a faster but more area consuming processor design.

5.4 Termination conditions

The fitness value is returned to GA2, where it is stored for
processing. When the fitness evaluation of all chromosomes of one
population is completed, the fitness values are compared with
identify the best found candidate solutions for GA2, that is, the
best W vector.

This process continues until the termination criterion of GA2 is
met. Then, the optimisation algorithm terminates and the
combination of the best found solutions in the two GA levels (i.e.
the best found V vector and the best W vector found for it) is
returned as the final solution found by the optimisation algorithm.
In this work, the optimisation process terminates when no better
result is found for a certain number of iterations.
6 Experimental results

This section presents the results of experimental evaluation of the
proposed method. The Virtex V FPGA family was selected as the
test-bed platform for implementations and evaluations. ISE 13.2
was used for synthesis and measurements. Modern FPGAs have
dedicated DSP and RAM blocks for high performance realisation
of arithmetic functions and implementation of local memory.
By default, synthesis tools map multipliers into DSP blocks
whenever possible. The DSP blocks have fixed word-lengths. As
long as the word-length of a supported arithmetic operation, in the
design, is less than the fixed word-length of the DSP block, that
operation is assigned to one block. For example, each DSP48E1
DSP block of the Xilinx 7 series FPGAs is 48-bits wide and
contains a 25 × 18 multiplier. Hence, in the FPGAs that use these
blocks, a 10 × 10 multiplication and a 18 × 18 multiplication in the
design will both use one DSP block in synthesis, while they are
not the same size. This is because, we accept to compromise some
computational resources to take advantage of using fast dedicated
hardware in DSP blocks. This issue makes the comparisons of the
results difficult in our work, because it can hide the impacts
of word-length variation on the hardware cost. To solve this
problem and to have a unique and illustrative metric for area
usage measurement, we avoided utilisation of these dedicated
resources in the experiments by adjusting the related settings in the
synthesiser.

6.1 Evaluation using five benchmark applications

In the first part of the experiments, fourwell-known benchmark
applications along with the Fig. 2 example were used to evaluate
the proposed customisation method. The first application is a
126-tap linear-phase low-pass FIR filter with direct form II
transposed structure. The second application is an RGB-to-YCrCb
converter which is implemented based on the form suggested by
the ITU [26]. The third application is an IIR filter of fourth-order
[21]. The DCT is an 8-point, one-dimensional decimation in time
structure from [27].

We gave higher priority to the area usage in the fitness formulation
in our experiments. Regarding (4), this means that CF was set to a
much smaller value compared with CL, CM and CA. The reason is
to facilitate demonstration of the effectiveness of the proposed
method by focusing on area minimisation as the main optimisation
goal.

Table 1 illustrates the hardware cost and the performance results of
single-data type and double-data type solutions for the five
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016

Table 1 Hardware cost and performance results of the benchmark applications

Application # of data
types

Type of
multipliers

Word-lengths
[bits]

of
multi-pliers

Delay of the
multipliers

Area Freq. [MHz]
(Imp)

LUTs (Impa) FFs (Imp)

FIR 1 combinational 16 1 1 clock cycle 1419 (0%) 630 (0%) 94 (0%)
2 combinational 13,18 1 1 1288 (9.2%) 585 (7.1) 73 (−22.3%)
2 pipeline 13,18 1 5 1302 (8.2%) 645 (−2.4%) 141 (50.0%)
2 multi-cycle 13,18 2 3,1 1213 (14.5%) 619 (1.7%) 122 (29.8%)

RGB-YCrCb 1 combinational 10 1 1 1134 (0%) 266 (0%) 152 (0%)
2 combinational 9,12 1 1 1092 (3.7%) 252 (5.3%) 142 (6.8%)
2 pipeline 9,12 2 5,4 1107 (2.3%) 272(−2.6%) 196 (29%)
2 multi-cycle 9,12 2 2,2 1043 (8.0%) 258 (3.0%) 171 (12.5%)

IIR 1 combinational 12 1 1 1123 (0%) 377 (0%) 142 (0%)
2 combinational 9,12 1 1 1034 (7.9%) 331 (12.2%) 136 (−4.2%)
2 pipeline 9,12 2 3,2 1090 (2.9%) 364 (3.4%) 191 (34.5%)
2 multi-cycle 9,12 2 2,2 977 (13.0%) 352 (6.6%) 177 (24.6%)

DCT 1 combinational 13 1 1 1316 (0%) 565 (0%) 112 (0%)
2 combinational 10,14 1 1 1192 (9.4%) 511 (11%) 93 (−17%)
2 pipeline 10,14 2 3,2 1291 (1.9%) 549 (2.8%) 162 (45%)
2 multi-cycle 10,14 2 2,2 1144 (13.1%) 535 (5.3%) 155 (38%)

Fig. 2
example

1 combinational 54 1 1 2933 (0%) 672 (0%) 16 (0%)
2 combinational 54,26 1 1 2755 (6.1%) 531 (21.0%) 16 (0%)
2 pipeline 54,26 2 2,1 2771 (5.5%) 588 (12.5%) 28 (75%)
2 multi-cycle 54,26 2 2,2 2609 (11.0%) 612 (8.9%) 24 (62.5%)

aImp: % improvement

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
applications. It also compares the result of employing different
multiplier architectures in the MWL approach. The presented area
consumption results are for the entire processor core including the
register files and all pipeline stages and excluding the instruction
and data memories.

The results demonstrate that moving from a single-data type to a
2-data type architecture can significantly improve the area usage
and performance of the processor. In these experiments, 8-bit
accuracy was requested for the outputs. The results demonstrate
how the architecture of complex functions can affect the overall
efficiency of the design. We illustrate the best found result by
using three different multiplier architectures, separately. New
instructions can be fed into the pipeline multiplier in each clock
cycle. However, a multi-cycle multiplier does not accept any new
input until it completes the last calculation. Therefore the number
of stages in pipeline multipliers can be more than the multi-cycle
ones. The pipeline multipliers gave better latency results in the
experiments. The results include the best found solutions for the
data type widths, register-file depths and multiplier architectures.
Double word-length solutions with two multi-cycle multipliers
give the best area savings in the evaluated benchmarks. Compared
with the optimised single data-type processors, these solutions can
save LUT and flip-flop resources by an average of 12.9% and
4.9%, respectively, while improving the utilisable clock speed by
an average of 41.5%.This is because of the utilisation of the
shared resource to calculate different part of the multiplication in
successive clock cycles. Note that customised single-data type
solutions are used as the reference to measure the improvements.
The word-lengths of the processor in these reference designs are
adjusted to the value achieved by UWL word-length optimisation.
Comparing with the existing processors with fixed power of two
word-lengths, the proposed approach can obviously achieve
significant improvements.

Fig. 7 shows the run-time progress of the optimisation algorithm
for the first three benchmarks. This figure illustrates how the GAs
converge towards better solutions. The LUT consumption and the
maximum frequency metrics are measured by synthesising the best
found candidate solution of each generation with the ISE tool. The
results show that the 2-data type solutions achieve the best results
for the evaluated benchmarks, while the 3- and 4-data type
solutions can reach very close results in most cases. The main
reason is that the benchmark applications are not large enough to
be able to take advantage of more than two data types.

Increasing the number of data types in a processor can lead to a
reduction of the memory usage in the register-files and some other
related area resources. It can also increase the area usage in some
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016
cases such as the multiplexers that select among the register-files
in operand read stage. Hence, there is a trade-off between the
savings that more data types can achieve and the overheads that
they imply. Fig. 7 also shows that increasing the number of data
types results in a longer search time for convergence of the GAs.
This is because of the fact that adding a new data type to the
processor significantly expands the search space for major parts of
the optimisation algorithm.
6.2 Case study of JPEG decoder

In the second part of the experimental results, we conducted a case
study on JPEG decoder to measure the effectiveness of the
proposed method for more complex multi-module designs. JPEG
is a commonly used compression technique for digital images that
supports adjustable compression degree. This allows the users to
enjoy their preferable trade-off between the size and the quality in
image compression.

Fig. 8 represents the block diagram of a JPEG decoder. The
variable length decoder) unit decompresses the input image data
using a standard Huffman decoding algorithm. During the
quantisation a large number of coefficients are rounded to zero. To
encode large runs of zeros, JPEG uses run-length encoding [RLE].
To maximise the benefits of RLE, the encoder reorders the
elements in the block. In a JPEG decoder, the Zig-Zag scan unit
reorders the data elements in the opposite way, such that the
elements are placed into their original position. The discrete cosine
transform (IDCT) unit transforms data from the frequency domain
to the space domain. IDCT is applied on blocks of 8 × 8 pixels of
the image. The DQ unit dequantises the value of the data elements
using the information stored in a quantisation table. The Colour
Conversion unit is used to convert the colour model of the images
from YCbCr to the more commonly used RGB colouring scheme.

The IDCT is the only unit that requires fixed-point calculations.
For the experiments, in this section, the requested accuracy for the
IDCT calculations complies with the JPEG standard. A public
domain JPEG decoder, called PicoJPEG [28], was used as the
target application for processor customisation. Unlike the
benchmarks of Section 6.1, JPEG decoder is a multi-module
design. In such designs, each module has different calculations
and therefore may require different data-type word-lengths. The
proposed method can benefit from this natural potential of
multi-module designs to generate multiple data-type processors.

The fitness function is same as the one used in Section 6.1. Fig. 9
presents the achieved area and performance results. These results
9

Fig. 7 Run-time progress in terms of the area usage and the latency of the best found candidate in each generation of the GA1

Fig. 8 JPEG decoder block diagram

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
show that the processors with 4 data-types can achieve the best
results for this application. The main reason is that distinct units
have different word-length requirements. This enables taking
advantage of more data-types. The LUT consumptions and the
latency of the best found solutions show 16.2% and 56.2%
10
reduction compared with the single data-type configuration,
respectively. Comparing the results of this section with those
obtained in Section 6.1 demonstrates that increasing the
complexity of the application promotes the capabilities of the
proposed method to find more efficient processor designs.
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016

Fig. 9 Run-time progress for JPEG decoder case study

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
7 Conclusion

We proposed a new processor customisation method for fixed-point
computations. This method combines the word length optimisation
with application-specific processor customisation. The
word-lengths of the supported data types, depth of the register-files
and the architecture of the functional unit form the customisation
targets. A multi-level GA and a dedicated fitness evaluation
method were developed for the optimisation algorithm.

Five benchmark applications were used to evaluate the proposed
method. The experimental results show that, in the selected FPGA
platform, moving from a single word-length processor to a
customised double-word-length processor can reduce the area
consumption in terms of the number of LUTs and flip-flops by an
average of 11.92% and 5.1%, respectively. The results also show
an average of 33.4% improvement in the speed of the processor by
this customisation. These results demonstrate the effectiveness of
the proposed customisation method.
8 References

1 Gonzalez, R.E.: ‘Xtensa: a configurable and extensible processor’, IEEE Micro,
2000, 20, (2), pp. 60–70

2 Yiannacouras, P., Steffan, J.G., Rose, J.: ‘Exploration and customization of
FPGA-based soft processors’, IEEE Trans. Comput.-Aided Design Int. Circuits
Syst., 2007, 26, (2), pp. 266–277

3 Mishra, P., Dutt, N.: ‘Architecture description languages for programmable
embedded systems’, IEE Proc. Comput. Digit. Tech., 2005, 152, (3), pp. 285–297

4 Lee, D.U., Gaffar, A.A., Cheung, R.C.C., Mencer, O., Luk, W., Constantinides, G.
A.: ‘Accuracy-guaranteed bit-width optimization’, IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., 2006, 25, (10), pp. 1990–2000

5 Yu, P., Radecka, K., Zilic, Z.: ‘An efficient method to perform range analysis for
DSP circuits’. Int. Conf. on Electronics, Circuits, and Systems (ICECS), December
2010, pp. 855–858

6 Wonyong, S., Ki-Il, K.: ‘Simulation-based word-length optimization method for
fixed-point digital signal processing systems’, IEEE Trans. Signal Process.,
1995, 43, (12), pp. 3087–3090

7 Fang, C.F., Rutenbar, R.A., Chen, T.: ‘Fast, accurate static analysis for fixed-point
finite-precision effects in DSP designs’. IEEE/ACM Conf. Computer-Aided
Design (ICCAD’03), 2003, pp. 275–282

8 Lee, D.U., Gaffar, A.A., Cheung, R.C.C., Mencer, O., Luk, W., Constantinides, G.
A.: ‘Accuracy-guaranteed bit-width optimization’, IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., 2006, 25, (10), pp. 1990–2000
IET Comput. Digit. Tech., 2016, Vol. 10, Iss. 1, pp. 1–11
& The Institution of Engineering and Technology 2016
9 Lopez, J.A., Carreras, C., Nieto-Taladriz, O.: ‘Improved interval-based
characterization of fixed-point LTI systems with feedback loops’, IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., 2007, 26, (11), pp. 1923–1933

10 Caffarena, G., Carreras, C., Lopez, J.A., Fernandez, A.: ‘SQNR estimation of
fixed-point DSP algorithms’,EURASIP J. Adv. Signal Process, 2010, 2010, pp. 1–12

11 Constantinides, G.A., Woeginger, G.J.: ‘The complexity of multiple wordlength
assignment’, Appl. Math. Lett., 2002, 15, (2), pp. 137–140

12 Yang, J.-H., Kim, B.-W., Nam, S.-J., et al.: ‘MetaCore: an application specific DSP
development system’. Design Automation Conf., April 2000, pp. 800–803

13 Anderson, I.D.L., Khalid, M.A.S.: ‘SC Build: a computer-aided design tool for
design space exploration of embedded central processing unit cores for
field-programmable gate arrays’, IET Comput. Digit. Tech., 2009, 3, (1), pp. 24–32

14 Itoh, M., Higaki, S., Sato, J., et al.: ‘PEAS-III: an ASIP design environment’. Int.
Conf. on Computer Design, 2000, pp. 430–436

15 Chattopadhyay, A., Meyr, H., Leupers, R.: ‘LISA: A uniform ADL for embedded
processor modelling, implementation and software toolsuite generation’, in Mishra,
P., Dutt, N. (Eds.): ‘Processor description languages’ (Morgan Kaufmann, 2008),
pp. 95–130

16 Mishra, P., Kejariwal, A., Dutt, N.: ‘Synthesis-driven exploration of pipelined
embedded processors’. Int. Conf. on VLSI Design, 2004, pp. 921–926

17 Yiannacouras, P., Steffan, J.G., Rose, J.: ‘Application-specific customization of
soft processor microarchitecture’. Proc. ACM/SIGDA Symp. Field
Programmable Gate Arrays, February 2006, pp. 201–210

18 Vakili, S., Langlois, J.M.P., Bois, G.: ‘Customised soft processor design: a
compromise between architecture description languages and parameterisable
processors’, IET Comput. Digit. Tech., 2013, 7, (3), pp. 122–131

19 Moore, R.E., Bierbaum, F.: ‘Methods and applications of interval analysis’ (SIAM,
Philadelphia, 1979)

20 Cong, J., Gururaj, K., Liu, B., et al.: ‘Evaluation of static analysis techniques for
fixed-point precision optimization’. IEEE Symp. on Field Programmable Custom
Computing Machines, 2009, pp. 231–234

21 Constantinides, G.A., Cheung, P.Y.K., Luk, W.: ‘Optimum and heuristic synthesis
of multiple word-length architectures’, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., 2005, 13, (1), pp. 39–57

22 Le Gal, B., Casseau, E.: ‘Word-length aware DSP hardware design flow based on
high-level synthesis’, J. Signal Process. Syst., 2011, 62, (3), pp. 341–357

23 Menard, D., Herve, N., Sentieys, O., Nguyen, H.N.: ‘High-Level synthesis under
fixed-point accuracy constraint’, J. Electr. Comput. Eng., 2012, pp. 14

24 Sulaiman, N., Arslan, T.: ‘Amulti-objective genetic algorithm for on-chip real-time
optimisation of word length and power consumption in a pipelined FFT processor
targeting a MC-CDMA receiver’. Proc. NASA/DoD Conf. on Evolvable Hardware,
July 2005, pp. 154–159

25 Vakili, S., Langlois, J.M.P., Bois, G.: ‘Finite-precision error modeling using affine
arithmetic’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), May 2013, pp. 2591–2595

26 Evans, B.L.: ‘Raster image processing on the TMS320C7XVLIWDSP’. Available:
http://www.ece.utexas.edu/∼bevans/hp-dsp-seminar/07_C6xImage2/sld001.htm

27 Parhi, K.: ‘VLSI digital signal processing systems’ (Wiley, New Yerk, 1999)
28 https://code.google.com/p/picojpeg/, accessed March 2015
11

