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a b s t r a c t

We show how the compound matrix method can be extended to give eigenfunctions as well as

generalised eigenvalues to bifurcation problems in non-linear elasticity. When the incremental

problem is formulated in terms of displacements only there are significant difficulties that arise from

the non-trivial boundary conditions. In order to avoid these problems we adopt a Stroh formulation of

the incremental problem. This then produces trivial boundary conditions for the compound matrix

eigenvalue problem and more importantly known initial conditions for the compound matrix

eigenfunction problem. This results in a straightforward and robust calculation for the eigenfunctions.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In an earlier attempt at this problem [1,2] it was shown how
the compound matrix method could be extended to give eigen-
functions as well as eigenvalues for fourth and sixth order
problems in solid mechanics and in particular bifurcation pro-
blems in non-linear elasticity. The method for fourth order
problems involved solving a second order system with one known
initial condition (found simply by a normalisation condition) and
one unknown condition. A simple shooting method to satisfy a
target condition worked very well. For the sixth order problem
the derivation of the eigenfunctions required the solution of a
third order system with one normalised initial condition and two
unknown initial conditions. We again required a shooting method
to achieve a given target condition at the other end of the range.
While this method could be made to work and give reasonable
solutions there was a considerable effort required in finding
initial approximations to the unknown initial conditions, so much
so that the method could not really be recommended as a
practical proposition.

It has been found that the trivial boundary conditions natu-
rally associated with similar problems in fluid mechanics lead to a
much simpler calculation for the eigenfunctions, see [3–5]. With
this in mind, we re-examine the solid mechanics bifurcation
problem but we now focus attention on the boundary conditions
for the original eigenvalue problem. We show that adopting a
Stroh formulation of the bifurcation problem, see [6], and refer-
ences therein, for example, leads to trivial initial conditions and a
trivial target condition for the standard compound matrix eigen-
value problem. This is of no real consequence for the eigenvalue
ll rights reserved.
problem, however, it does lead to a different approach to the
eigenfunction problem. To determine the three components of the
incremental displacements we now have to solve a sixth order
initial value problem with known initial conditions rather than
the third order system with shooting for two unknowns that we
had in [2]. In this case we also solve for the (possibly unwanted)
incremental stresses. One novel feature of the present method is
that we incorporate the coefficients from the original equations
whereas other approaches to the eigenfunction problem exclu-
sively use the compound matrix variables. For some problems of
interest a single incremental displacement is all that is required.
In this case we show how we may isolate a single displacement
and solve a third order system for the normalised displacement
(and two stresses). For comparison the determinantal method
(see [2]) solves a third order system three times and then solves a
standard eigenvalue and eigenvector problem for a three by three
matrix to obtain all three incremental displacements.

In Section 2 we demonstrate the Stroh formulation of a typical
bifurcation problem from non-linear elasticity and how the basic
compound matrix problem is then formulated. Following this we
describe the compound matrix eigenvalue method and apply it to
a particular problem. Throughout we make comparisons with the
previous attempt at this problem [2]. We employ cylindrical
coordinates in anticipation of the specific example to be used
but the underlying method is clear.
2. Incremental problem and the compound matrix method

In the absence of body forces the incremental equilibrium
equations can be written

div _s0 ¼ 0, ð1Þ
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where div is the divergence operator in the current configuration
and _s0 is the increment in the nominal stress referred to the
current configuration. Henceforth _x will denote an increment in the
quantity x and the subscript zero denotes evaluation in the current
configuration. Since no extra loading is imposed on the surface of
the body the incremental boundary conditions are given by

_sT
0n¼ 0, ð2Þ

where n is a unit outward normal in the current configuration and
a superscript T indicated the transpose. The incremental constitu-
tive law can be written

_s0 ¼ B _F
T

0 , ð3Þ

where B is the fourth order tensor of instantaneous moduli in the
current configuration and the increment of the deformation tensor
_F0 is given by

_F0 ¼
@ _x

@x
: ð4Þ

The non-zero components of B, written in terms of the
principal Cauchy stresses and the strain-energy function W, are

Biijj ¼ Bjjii ¼
lilj

J

@2W

@li@lj
,

Bijij ¼ l2
i

si�sj

l2
i �l

2
j

, ia j, lialj,

Bijij ¼ ðBiiii�BiijjþsiÞ=2, ia j, li ¼ lj,

Bijij�Bijji ¼ Bijij�Bjiij ¼ si, ia j,

9>>>>>>>>>=
>>>>>>>>>;

ð5Þ

where si are the principal values of the Cauchy stress tensor
given by

si ¼ J�1liWi, ð6Þ

li are the principal stretches, the positive eigenvalues of U where
U2
¼FTF and J¼ detðFÞ40 is the dilatation. See Ogden [7], for

example, for further details.
Using cylindrical base vectors the displacement increment is

given by the vector

_x ¼ uðr,y,zÞerþvðr,y,zÞeyþwðr,y,zÞez, ð7Þ

and the corresponding matrix of the increment of the deforma-
tion tensor has components

_F0 ¼

ur ðuy�vÞ=r uz

vr ðuþvyÞ=r vz

wr wy=r wz

2
64

3
75, ð8Þ

with respect to cylindrical coordinates, where subscripts denote
partial derivatives. In order to obtain a purely real formulation of
the problem we assume, without loss of generality, that the
incremental displacement functions have the form

u¼ if ðrÞeiðmtþazÞ,

v¼ gðrÞeiðmtþazÞ,

w¼ hðrÞeiðmtþazÞ: ð9Þ

Instead of simply substituting (8) with (5), (9) and (3) into (1) to
obtain three second order equations for f, g and h, we keep the
three incremental stresses srr, sry and srz (having dropped the
superposed dot and subscript zero from the components of _s0) as
dependent variables. The constitutive equations

srr ¼ ifB1111f 0 þB1122ðf þgmÞ=rþB1133hageiðmtþazÞ,

sry ¼ fB1212g0�B1221ðmf þgÞ=rgeiðmtþazÞ,

srz ¼ fB1313h0�B1331fageiðmtþazÞ, ð10Þ
which are obtained from (3), (8) and (9), are then used to provide
three equations for f 0,g0,h0. The incremental equilibrium equations
(1) can then be written as

r2s0rrþrsrrþð2B1212�B1111Þrf 0�ðB3131a2r2þB1212m2þB1111Þf

þB1212mrg0�mðB1111þB1212Þg�arðB1133h�B1313rh0Þ ¼ 0,

mðB1111�2B1212Þrf 0 þmðB1111þB1212Þf�B1212rg0

þðB1111m2þB3131a2r2þB1212Þg�r2s0ryþmB1133hra
þB1313rhma�rsry ¼ 0,

B1133ar2f 0 þB1133arf þmarðB1313þB1133Þg

þðB1313m2þB3333a2r2Þh�r2s0rz�rsrz ¼ 0, ð11Þ

which provide three equations for s0rr ,s
0
ry and s0rz. To obtain a

compound matrix eigenfunction method we consider the six first
order equations, (10) and (11), for y¼ ðf ,g,h,srr ,sry,srzÞ in the form

f 0 ¼ a1f þa2gþa3hþa4srr , ð12Þ

g0 ¼ b1f þb2gþb3hþb4sry, ð13Þ

h0 ¼ g1f þg2gþg3hþg4srz, ð14Þ

s0rr ¼ a1f þa2gþa3hþa4srrþa5sryþa6srz, ð15Þ

s0ry ¼ b1f þb2gþb3hþb4srrþb5sryþb6srz, ð16Þ

s0rz ¼ c1f þc2gþc3hþc4srrþc5sryþc6srz, ð17Þ

where the prime denotes differentiation with respect to r and the
coefficients ai,bi and gi, i¼1,y,6, will depend on the parameter l,
say, that we are looking for and in general on r. We also have
boundary conditions

srr ¼ sry ¼ srz ¼ 0, r¼ a,b, ð18Þ

and this is the significant aspect of the formulation so far as the
numerical method is concerned. The boundary conditions in terms of
displacements can be found in [2] and are much more complicated.

We suppose that, in principle, Eqs. (12)–(17) are solved three
times with three linearly independent initial conditions (at r¼a)
which ensure that the boundary conditions (18) (at r¼a) are
satisfied. The three solutions thus obtained are labelled fi, i¼1, 2,
3 and similarly for the other dependent variables. The full
solution can then be written

f ¼ C1f 1þC2f 2þC3f 3,

g ¼ C1g1þC2g2þC3g3,

h¼ C1h1þC2h2þC3h3,

srr ¼ C1s1
rrþC2s2

rrþC3s3
rr ,

sry ¼ C1s1
ryþC2s2

ryþC3s3
ry,

srz ¼ C1s1
rzþC2s2

rzþC3s3
rz, ð19Þ

where C1, C2 and C3 are arbitrary constants.
For the usual compound matrix method of solution to deter-

mine the bifurcation parameter l we now introduce 20 new
compound matrix variables fiðrÞ, i¼1,y,20, defined by 3� 3
determinants. If we introduce the notation

ðu,v,wÞ ¼

u1 u2 u3

v1 v2 v3

w1 w2 w3

2
64

3
75, ð20Þ

then the compound matrix variables are given by a symmetric
permutation of the entries in y to give

f1 ¼ ðf ,g,hÞ, f2 ¼ ðf ,g,srrÞ,
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f3 ¼ ðf ,g,sryÞ, f4 ¼ ðf ,g,srzÞ,

f5 ¼ ðf ,h,srrÞ, f6 ¼ ðf ,h,sryÞ,

f7 ¼ ðf ,h,srzÞ, f8 ¼ ðf ,srr ,sryÞ,

f9 ¼ ðf ,srr ,srzÞ, f10 ¼ ðf ,sry,srzÞ,

f11 ¼ ðg,h,srrÞ, f12 ¼ ðg,h,sryÞ,

f13 ¼ ðg,h,srzÞ, f14 ¼ ðg,srr ,sryÞ,

f15 ¼ ðg,srr ,srzÞ, f16 ¼ ðg,sry,srzÞ,

f17 ¼ ðh,srr ,sryÞ, f18 ¼ ðh,srr ,srzÞ,

f19 ¼ ðh,sry,srzÞ, f20 ¼ ðsrr ,sry,srzÞ: ð21Þ

We now differentiate (21) and use (12)–(17) with f replaced with
f1, etc. as required, to obtain the compound matrix differential
equations:

f01 ¼ ða1þb2þg3Þf1þf11a4�f6b4þf4g4,

f02 ¼f1a3þða1þa4þb2Þf2þf5b3�f11a3þf3a5�f8b4þf4a6,

f03 ¼f1b3þf2b4þða1þb5þb2Þf3�f14a4�f12a3þf4b6þf6b3,

f04 ¼f1c3þf2c4þf3c5þða1þc6þb2Þf4�f15a4

�f13a3þf10b4þf7b3,

f05 ¼�f1a2þf2g2þða1þg3þa4Þf5þf11a2þf6a5�f9g4þf7a6,

f06 ¼�f1b2þf3g2þf5b4þða1þg3þb5Þf6

þf12a2�f10g4�f17a4þf7b6,

f07 ¼�f1c2þf4g2þf5c4þf6c5þða1þg3þc6Þf7þf13a2�f18a4,

f08 ¼�f2b2þf3a2�f5b3þf6a3þða1þb5þa4Þf8

þf14a2þf17a3þf9b6�f10a6,

f09 ¼�f2c2þf4a2�f5c3þf7a3þf8c5

þða1þa4þc6Þf9þf15a2þf18a3þf10a5,

f010 ¼�f3c2þf4b2�f6c3þf7b3�f8c4þf9b4þða1þb5þc6Þf10

þf16a2þf19a3þf20a4,

f011 ¼f1a1�f2g1þf5b1þðg3þa4þb2Þf11þf17b4

þf12a5�f15g4þf13a6,

f012 ¼f1b1�f3g1þf6b1þf11b4þðb2þb5þg3Þf12þf13b6�f16g4,

f013 ¼f1c1�f4g1þf7b1þf11c4þf12c5

þðb2þg3þc6Þf13�f19b4,

f014 ¼f2b1�f3a1þf8b1�f11b3þf12a3

þðb5þb2þa4Þf14þf17b3�f16a6þf15b6,

f015 ¼f2c1�f4a1þf9b1�f11c3þf13a3þf14c5

þðb2þc6þa4Þf15þf18b3þf16a5�f20b4,

f016 ¼f3c1�f4b1þf10b1�f12c3þf13b3

�f14c4þf15b4þðc6þb2þb5Þf16þf19b3,

f017 ¼f5b1�f6a1þf8g1þf11b2�f12a2þf14g2

þðg3þb5þa4Þf17þf18b6�f19a6þf20g4,

f018 ¼f5c1�f7a1þf9g1þf11c2�f13a2þf15g2þf17c5

þðg3þa4þc6Þf18þf19a5,

f019 ¼f6c1�f7b1þf10g1þf12c2�f13b2þf16g2�f17c4

þf18b4þðg3þb5þc6Þf19,
f020 ¼f8c1�f9b1þf10a1þf14c2�f15b2þf16a2

þf17c3�f18b3þf19a3þðb5þc6þa4Þf20: ð22Þ

Now using the boundary conditions (18) at r¼a, we see that initial
conditions for the fi’s are the trivial conditions fiðaÞ ¼ 0, i¼2,y,20.
We arbitrarily normalise the solution by setting f1ðaÞ ¼ 1.

It remains to ensure that the boundary conditions at r¼b are
satisfied. We take the solutions (19) and substitute them into the
boundary conditions (18) at r¼b. We then require the coefficient
matrix for the constants C1, C2, C3 to be singular for the existence
of non-trivial solutions. This then leads to the requirement that a
3�3 determinant is zero. This 3�3 determinant can be written
as f20ðbÞ and setting this to be zero gives our target condition. The
compound matrix method to determine the critical value of the
parameter l, contained in the coefficients of (22), is to choose l so
that the target condition is satisfied when (22) is integrated from
r¼a with the given initial conditions.

We note that the initial conditions and target condition are
now very similar to those encountered in typical fluids problems
(where the fluid velocities are usually taken to be zero on the
boundaries rather than the incremental stresses).

 

 

3. Compound matrix eigenfunction

Now suppose that we have found a critical value of our
parameter l. We can then arrange to obtain values of fiðxÞ for
any xAða,bÞ. If we differentiate the formal solution (19) we have

f 0 ¼ C1f 10 þC2f 20 þC3f 30,

g0 ¼ C1g10 þC2g20 þC3g30,

h0 ¼ C1h10 þC2h20 þC3h30,

s0rr ¼ C1s10
rrþC2s20

rrþC3s30
rr ,

s0ry ¼ C1s10
ryþC2s20

ryþC3s30
ry,

s0rz ¼ C1s10
rzþC2s20

rzþC3s30
rz: ð23Þ

Our proposed method now takes three of the equations (23) to
formally solve for the constants C1, C2 and C3. In the problem that
we are taking as our example the incremental displacement f is
of most interest and so we take equations (23)1,5,6. If we then
substitute the formal solutions for C1, C2 and C3 back into (23)1,5,6

we have

s0ryf10�ðf4b2þf7b3þf9b4þf10b5Þsry

þðf3b2þf6b3þf8b4�f10b6Þsrz

�ðf10b1þf16b2þf19b3þf20b4Þf ¼ 0,

s0rzf10�ðf4c2þf7c3þf9c4þf10c5Þsry

þðf3c2þf6c3þf8c4�f10c6Þsrz

�ðf10c1þf16c2þf19c3þf20c4Þf ¼ 0,

f 0f10�ðf4a2þf7a3þf9a4Þsryþðf3a2þf6a3þf8a4Þsrz

�ðf10a1þf16a2þf19a3þf20a4Þf ¼ 0, ð24Þ

having multiplied by f10 which we assume is non-zero throughout
the range rAða,bÞ, we have substituted for the derivatives f 10, etc.
from (12) with f replaced by f1, etc. and then made use of the
definitions of the fi. We note that f10 is zero at r¼a and so we
have to integrate (24) inwards from r¼b. This inevitably involves
some potential loss of accuracy but, as we see below, this does not
appear to be a serious limitation. Equations (24) are then the
equations that we use to determine f, sry and srz along with a
normalisation initial condition for f(b)¼1 and the boundary con-
ditions (2) at r¼b. The important feature of (24) is that there are no 
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Fig. 1. A plot of f(a), g(a), h(a), g(b) and h(b), which have been normalised by

setting f(b)¼1, against the undeformed shell thickness A/B. In each case three

(virtually indistinguishable) curves are plotted, the exact solution and the

approximate solutions found from the determinantal method and the compound

matrix method.
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unknown initial conditions, the calculation is perfectly straight-
forward. In previous versions of this method the original equa-
tions (12) are not used to calculate the eigenfunctions so the
coefficients depend only on the compound matrix variables fi.
Since we have introduced the original equations (at no extra
computational cost) it is clear (by reversing the derivation of
(24)) that a solution to (24) will also be a solution to the original
problem. If it is only the displacement f that is required we do not
need anything further and we simply have to solve the third order
system. If, however, other displacements are required then, in a
similar way, by choosing (23)2,4,6 to solve for C1, C2 and C3 we may
obtain

s0rrf15þðf4a1�f13a3�f15a4�f16a5Þsrr

�ðf2a1�f11a3þf14a5þf15a6Þsrz

�ðf9a1þf15a2þf18a3�f20a5Þg ¼ 0,

s0rzf15þðf4c1�f13c3�f15c4�f16c5Þsrr

�ðf2c1�f11c3þf14c5þf15c6Þsrz

�ðf9c1þf15c2þf18c3�f20c5Þg ¼ 0,

f15g0 þðf4b1�f13b3�f16b4Þsrr�ðf2b1�f11b3þf14b4Þsrz

�ðf9b1þf15b2þf18b3�f20b4Þg ¼ 0: ð25Þ

In this case we already know srz(r) from the solution to (24)
and so (25)2 is not required, we may solve (25)1,3 for g and srr, we
have the boundary condition (2) for srr(b) but we do not know g(b).
This is essentially the cause of the difficulties encountered in
previous attempts at this problem. However, We may use (25)2

evaluated at r¼b along with the boundary conditions (2) to
write

gðbÞ ¼
s0rzf15

ðf9c1þf15c2þf18c3�f20c5Þ
: ð26Þ

Now using (24)3 and f(b)¼1

gðbÞ ¼
ðf10c1þf16c2þf19c3þf20c4Þf15

ð�f9c1�f15c2�f18c3þf20c5Þf10

, ð27Þ

which is a known quantity. Using this as our initial condition we
may simultaneously solve the fifth order system (24)1,2,3 and
(25)1,3 to obtain f, g and all three stresses. Finally, if we also
require h we choose (23)2,4,6 to solve for C1, C2 and C3 we obtain

s0rrf17þðf6a1þf12a2�f17a4þf19a6Þsrr

�ðf5a1þf11a2þf17a5þf18a6Þsry

�ðf8a1þf14a2þf17a3þf20a6Þh¼ 0,

s0ryf17þðf6b1þf12b2�f17b4þf19b6Þsrr

�ðf5b1þf11b2þf17b5þf18b6Þsry

�ðf14b2þf17b3þf8b1þf20b6Þh¼ 0,

h0f17þðf6g1þf12g2þf19g4Þsrr�ðf5g1þf11g2þf18g4Þsry

�ðf8g1þf14g2þf17g3þf20g4Þh¼ 0, ð28Þ

but here we now need only (28)3 to solve for h(r) since everything
else is now known. Using (28)1 (or we could use (28)2)

hðbÞ ¼
s0rrf17

ðf8a1þf14a2þf17a3þf20a6Þ
ð29Þ

and, from (25)1

hðbÞ ¼
ðf9a1þf15a2þf18a3�f20a5ÞgðbÞf17

ðf8a1þf14a2þf17a3þf20a6Þf15

: ð30Þ

We now have a full set of known initial conditions at r¼b for the
sixth order system (24)1,2,3, (25)1,3 and (28)3 to simultaneously
solve for everything by integrating inwards.

The method for determining f, g and h (and also the three
incremental stresses) is then to integrate equations (24), (25)1,3

and (28)3 inwards from r¼b with initial conditions given by (2),
f(b)¼1, (27) and (30). However, we have made the tacit assump-
tions that f15 and f17 (for Eqs. (25) and (28)) do not change sign
in the interval (a,b). This may not be the case and we then have to
modify our approach. For example that we consider below we
find that f15 may have a zero in the interval and so we must
choose a different set of equations for g. In the above derivation of
the differential equations for g we have used the equations for srr ,
g and srz to determine the constants C1, C2 and C3. We can simply
work our way through all of the possible combinations avail-
able to us to find alternatives. For the problem below the most
favourable combination appears to be to take srr , g and h.
This then leads to the two equations

s0rrf11�ðf1a1þf11a4þf12a5þf13a6Þsrr

�ðf5a1þf11a2þf17a5þf18a6Þg

þðf2a1�f11a3þf14a5þf15a6Þh¼ 0,

g0f11�ðf1b1þf12b4Þsrr�ðf5b1þf11b2þf17b4Þg

þðf2b1�f11b3þf14b4Þh¼ 0: ð31Þ

This has the effect of linking the equations for g and h so that we
have to calculate both. If, however, we do require all three
incremental displacements there is no disadvantage.

 

 

4. Example: an elastic tube under axial compression

The purpose of this section is to show that the compound
matrix analysis does lead to a reliable method for calculating the
eigenfunctions that does not suffer from the problems encoun-
tered in [2]. The example that we consider is taken from [8] and
has an exact solution in terms of Bessel functions (this is also the
example considered in [2]). This allows us to compare results
obtained in three distinct ways, the new compound matrix
method outlined above, an exact solution and the determinantal
method, see [1,2] for a description of this approach.

We suppose that the cylindrical tube is composed of a
compressible neo-Hookean material with a strain-energy function
of the specific form

W ¼ mðI1�3Þ=2�ðkþm=3ÞlogðJÞ�ð2=3m�kÞðJ�1Þ, ð32Þ

where I1 ¼ l2
1þl

2
2þl

2
3 and J¼ l1l2l3 in terms of the principal

stretches li, i¼1,y,3. We take the shear modulus m¼ 1, to



Table 1
The absolute differences between the exact solution and the solutions obtained from the determinantal method and the compound matrix method, respectively. The mode

number m¼1 and k¼ 5.

(A/B, L/B, l) f(a) g(a) h(a) g(b) h(b)

(0.8, 5, 0.857156) 0.740D�09 0.104D�08 0.146D�08 0.148D�08 0.111D�08

(0.8, 5, 0.857156) 0.390D�07 0.988D�05 0.502D�04 0.627D�07 0.562D�08

(0.8, 5, 0.237732) 0.815D�08 0.113D�08 0.555D�08 0.204D�08 0.175D�07

(0.8, 5, 0.237732) 0.463D�04 0.333D�05 0.266D�07 0.598D�05 0.782D�08

(0.8, 10, 0.665951) 0.183D�08 0.586D�09 0.237D�08 0.630D�09 0.436D�08

(0.8, 10, 0.665951) 0.156D�06 0.864D�06 0.908D�05 0.431D�06 0.131D�08

(0.8, 10, 0.360244) 0.200D�07 0.504D�09 0.130D�07 0.445D�09 0.988D�08

(0.8, 10, 0.360244) 0.278D�04 0.121D�06 0.440D�06 0.394D�06 0.129D�08

(0.5, 5, 0.542021) 0.286D�07 0.170D�08 0.302D�08 0.116D�06 0.159D�06

(0.5, 5, 0.542021) 0.198D�07 0.114D�04 0.517D�04 0.399D�07 0.941D�08

(0.5, 5, 0.382195) 0.727D�07 0.140D�07 0.499D�07 0.149D�07 0.205D�07

(0.5, 5, 0.382195) 0.452D�04 0.700D�06 0.821D�05 0.102D�05 0.811D�08

(0.5, 10, 0.481038) 0.231D�06 0.187D�07 0.155D�06 0.723D�08 0.368D�07

(0.5, 10, 0.481038) 0.567D�07 0.532D�05 0.465D�04 0.624D�06 0.207D�08

(0.5, 10, 0.449951) 0.890D�04 0.724D�05 0.600D�04 0.304D�06 0.489D�06

(0.5, 10, 0.449951) 0.431D�04 0.844D�06 0.657D�05 0.451D�05 0.755D�07
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normalise the equations. Values for the other parameters are
what might be regarded as reasonably typical. The bulk modulus
for a moderately compressible material is taken to be k¼ 20. The
undeformed tube has a length to outer radius ratio L=B¼ 10. The
mode number is taken to be m¼1.

Although this problem admits an exact solution in terms of
Bessel functions we still have to evaluate the zero’s of a 6�6
determinant in order to find the bifurcation parameter l (for a
given mode number m). Having found l (and in general there will
be two distinct physically reasonable values for this problem) we
compute the 6�6 coefficient matrix and find the eigenvector
corresponding to the smallest eigenvalue (which, ideally, will be
zero) to determine the constants Ci. Since we do not have a simple
direct numerical evaluation of the exact results we cannot be sure
that they will be anymore accurate than either of the two other
methods that we consider, see [2] for more details.

In Fig. 1 we have plotted the values determined for the three
incremental displacements at the ends of the range, excluding f(b)
which is taken to be unity, against the increasing undeformed
thickness A/B of the tube. In each case we have plotted all three
solutions determined from the exact solution, the determinantal
method and the present compound matrix method. Clearly the
results are indistinguishable on this scale. The curves are plotted
for the first critical value of l to occur and this will also change
with changing thickness A/B.

In Table 1 we give some more detailed calculations. We have
taken a cylinder with a bulk modulus of k¼ 5 and we have chosen
a number of combinations of shell thickness A/B and aspect ratio
L/B. In successive rows of Table 1 we record the absolute
difference between values calculated using the determinantal
method and the exact solution followed by the absolute differ-
ence between values calculated using the compound matrix
method and the exact solution. We note that there are two values
for the bifurcation parameter l for a given geometry.

If, for example, we look at the values in the first two rows of
Table 1 it appears that the determinantal method is universally
more accurate. However, if we look at the final two rows the
reverse is true (apart from g(b)). Also, from the final two rows of
Table 1 we note that the results for f(a) are not as good as others
for this set of parameters. The compound matrix results were
calculated using the full sixth order system (24)1,2,3, (31) and
(28)3. However, if we now repeat the calculation using the third
order system (24) the difference between the exact and com-
pound matrix calculations change from 0.431D�04 to
0.289D�05 while maintaining the same tolerance ð5� 10�7

Þ set
in the differential equation solvers. (Although the smaller system
also allows a smaller tolerance to be set.) The method that we
have introduced here is also very flexible in the way that it can be
used. Also, we could use the calculations set out above to
determine the unknown initial conditions and then return to
the method used in [1] to complete the calculations, although this
is not an immediately attractive proposition due to the require-
ment of two different formulations of the basic compound matrix
method.
5. Concluding remarks

We now seem to have two reliable, fast and accurate methods
for determining eigenfunctions for bifurcation problems in non-
linear elasticity (the determinantal method and the compound
matrix method). In practice either method is likely to give
acceptable results. If there are anomalies in the results, or if an
independent check is required, a comparison of the results from
the two methods will be useful since the two methods are
fundamentally different.
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