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a b s t r a c t 

Background and Objective: Cancer is a complex worldwide health problem associated with high mor- 

tality. With the rapid development of the high-throughput sequencing technology and the application of 

various machine learning methods that have emerged in recent years, progress in cancer prediction has 

been increasingly made based on gene expression, providing insight into effective and accurate treatment 

decision making. Thus, developing machine learning methods, which can successfully distinguish cancer 

patients from healthy persons, is of great current interest. However, among the classification methods 

applied to cancer prediction so far, no one method outperforms all the others. 

Methods: In this paper, we demonstrate a new strategy, which applies deep learning to an ensem- 

ble approach that incorporates multiple different machine learning models. We supply informative gene 

data selected by differential gene expression analysis to five different classification models. Then, a deep 

learning method is employed to ensemble the outputs of the five classifiers. 

Results: The proposed deep learning-based multi-model ensemble method was tested on three public 

RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast 

Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the 

tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. 

Conclusions: By taking full advantage of different classifiers, the proposed deep learning-based multi- 

model ensemble method is shown to be accurate and effective for cancer prediction. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Cancer has been characterized as a collection of related diseases

nvolving abnormal cell growth with the potential to divide with-

ut stopping and spread into surrounding tissues [1] . According to

he GLOBOCAN project [2] , in 2012 alone, about 14.1 million new

ases of cancer occurred globally (not including skin cancer other

han melanoma), which caused about 14.6% of the death. Since

ancer is a major cause of morbidity and mortality, diagnosis and

etection of cancer in its early stage is of great importance for its

ure. Over the past decades, a continuous evolution of cancer re-

earch has been performed [3] . Among the diverse methods and

echniques developed for cancer prediction, the utilization of gene

xpression level is one of the research hotspots in this field. Data

nalysis on gene expression level has facilitated cancer diagnosis
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nd treatment to a great extent. Accurate prediction of cancer is

ne of the most critical and urgent tasks for physicians [4] . 

With the rapid development of computer-aided techniques in

ecent years, application of machine learning methods is playing

n increasingly important role in the cancer diagnosis, and vari-

us prediction algorithms are being explored continuously by re-

earchers. Sayed et al. [5] conducted a comparative study on fea-

ure selection and classification using data collected from the cen-

ral database of the National Cancer Registry Program of Egypt, and

hree classifiers were applied, including support vector machines

SVMs), k -nearest neighbour ( k NN) and Naive Bayes (NBs). The re-

ults showed that SVMs with polynomial kernel functions yielded

igher classification accuracy compared with k NN and NBs. Stat-

ikov et al. [6] carried a comprehensive comparison of random

orests (RFs) and SVMs for cancer diagnosis. The results were ob-

ained that SVMs outperformed RFs in fifteen data sets, RFs outper-

ormed SVMs in four data sets, and the two algorithms performed

he same in three data sets. These results were obtained by using

ull set of genes. Similar results were derived based on the gene se-
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t  
lection method. From a large body of literature in cancer prediction

research, none of these machine learning methods is fully accurate

and each method may be lacking in different facets in the classifi-

cation procedure. For instance, it is difficult for SVMs to figure out

an appropriate kernel function, and although RFs have solved the

over-fitting of decision trees (DTs), RFs may lead the classification

result to the category with more samples. 

In view of the fact that each machine learning method may out-

perform others or have defects in different cases, it is thus natural

to expect that a method that takes advantages of multiple machine

learning methods would lead to superior performance. To this end,

several studies have been reported in the literature that aim to in-

tegrate models to increase the accuracy of the prediction. For ex-

ample, Breiman [7] introduced Bagging , which combines outputs

from decision trees generated by several randomly selected sub-

sets of the training data and votes for the final outcome. Freund

and Schapire [8] introduced Boosting , which updates the weights

of training samples after each iteration of training and combines

the classification outputs by weighted votes. Wolpert [9] proposed

to use linear regression to combine outputs of the neural net-

works, which was later known as Stacking . Tan and Gilbert [10] ap-

plied Bagging and Boosting on cancerous microarray data for can-

cer classification. Cho and Won [11] applied the majority voting

algorithm to combine four classifiers using three benchmark can-

cer data sets. The Stacking and majority voting take advantages

of different machine learning methods. Although the majority vot-

ing algorithm is the most common in classification tasks, it is still

too simple a combination strategy to discover complex information

from different classifiers. Stacking , through the use of a learning

method in the combination stage, is a much more powerful en-

semble technique. Given that the small number of deep learning

studies in biomedicine have shown success with this method [12] ,

deep learning has become a strong learning method with many ad-

vantages. Unlike the majority voting which only considers the lin-

ear relationships among classifiers and requires for manual partic-

ipation, deep learning has the ability to “learn” the intricate struc-

tures, especially nonlinear structures, from the original large data

sets automatically. Thus, in order to better describe the unknown

relationships among different classifiers, we adopt deep learning in

the Stacking -based ensemble learning of multiple classifiers. 

In this paper, we attempt to use deep neural networks to en-

semble five classification models, which are k NN, SVMs, DTs, RFs

and gradient boosting decision trees (GBDTs), to construct a multi-

model ensemble model to predict cancer in normal and tumor

conditions. To avoid over-fitting, we employ the differential gene

expression analysis to select important and informative genes. The

selected genes are then supplied to the five classification models.

After that, a deep neural network is used to ensemble the out-

puts of the five classification models to obtain the final prediction

result. We evaluate the proposed method on three public RNA-

seq data sets from lung tissues, stomach tissues and breast tis-

sues, respectively. The final results indicate that the proposed deep

learning-based multi-model ensemble method makes more effec-

tive use of the information of the limited clinical data and gener-

ates more accurate prediction than single classifiers or the majority

voting algorithm. 

2. Methods 

The flowchart of the proposed deep learning-based ensemble

strategy is shown in Fig. 1 . Initially, differential expression analy-

sis is used to select the significantly differentially expressed genes,

namely the most informative features, which are then fed to the

following classification process. Then, we employ the technique of

S -fold cross validation to divide the initial data into S groups of

training and testing data sets. After that, multiple classifiers (first-
tage models) are learned from the training sets, each of which

onsists of S − 1 of the S groups, and then applied to the corre-

ponding test set, which is the remaining group of the S groups, to

utput the predicted class of the samples. Finally, we use a deep

eural network classifier (second-stage ensemble model) to com-

ine the predictions in the first stage with the aim of reducing the

eneralization error and procuring a more accurate outcome. 

.1. Feature selection 

The use of gene expression data with an increasing number

f features ( e.g. , genes) and information makes it more challeng-

ng to develop classification models. In clinical practice, the num-

er of cancer samples available is rather small in comparison with

he number of features, resulting in higher risk of over-fitting and

egradation of the classification performance. Feature selection is a

ood way to address these challenges [13] . By reducing the entire

eature space to a subset of features, over-fitting of the classifica-

ion model can be avoided, thus mitigating the challenges arising

rom a small sample size and a high data dimensionality. 

In this paper, we employ the DESeq [14] method to select infor-

ative genes for the downstream classification. The DESeq method

s usually used to decide whether, for a given gene, an observed

ifference in read count is significant, that is, whether it is greater

han what would be expected just due to natural random variation

14] . In differential expression analysis, by setting the thresholds of

he BH-adjusted p -value and the fold change level, the significantly

ifferentially expressed genes are screened and selected. 

.2. Cross validation 

For many classification models, the complexity may be gov-

rned by multiple parameters. In order to achieve the best predic-

ion performance on new data, we wish to find appropriate values

f the complexity parameters that lead to the optimal model for a

articular application. 

If data are plentiful, then a simple way for model selection is

o divide the entire data into three subsets, the training set, the

alidation set and the test set. A range of models are trained on

he training set, compared and selected on the validation set, and

nally evaluated on the test set. Among the diverse complex mod-

ls that have been trained, the one having the best predictive per-

ormance is selected, which is an effective model validated by the

ata in the validation set. In a practical application, however, the

upply of data for training and testing is limited, leading to an

ncrease of the generalization error. An approach to reducing the

eneralization error and preventing over-fitting is to use cross val-

dation [15] . 

The technique of S -fold cross validation [15] used in this pa-

er is illustrated in Fig. 2 for the case of S = 4 . S -fold cross val-

dation partitions the available data set D into S disjoint groups,

 1 , D 2 , . . . , D S , with all subsets maintaining consistency in the data

istribution. After that, S -1 groups are used as the training set and

he remaining group is used as the test set. The procedure is then

epeated for all S possible choices of the S−1 groups, and the per-

ormance scores resulting from the S runs are then averaged. In

ur study, we not only utilize S -fold cross validation to implement

odel selection for every single classifier separately, but also gen-

rate new data sets for the ensemble stage by using S -fold cross

alidation on the initial data sets in order to avoid over-fitting. 

.3. Classification methods 

After preprocessing of the data sets, we assess the predic-

ion performance of five popular classification methods towards
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Fig. 1. Flowchart of the proposed deep learning-based multi-model ensemble method. 

Fig. 2. The technique of S -fold cross validation ( S = 4 ). 
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he discrimination between normal and tumor samples. Specifi-

ally, we apply k -nearest-neighbor ( k NN), support vector machines

SVMs), decision trees (DTs), random forests (RFs), and gradient

oosting decision trees (GBDTs) as first-stage classification mod-

ls. All of these five classification methods are of high accuracy in

ractical applications and are reviewed as follows [4,13,16,17] . 

k NN is a non-parametric classification method that is used

hen there is little or no prior knowledge about the distribu-

ion of the data. k NN classifiers transform samples to a met-

ic space, where distances between samples are determined. The

istance function between a test sample and the training sam-

les is the basis, by calculating which, k NN classifies a test sam-

le based upon the most common class in its k -nearest training

amples. 

SVMs initially map the input vector into a feature space of

igher dimensionality and identify a hyperplane that separates the

ata points into two categories. The gap between the two cate-

ories is as wide as possible. New samples are then mapped into

he same space and predicted to belong to a category based on

hich side of the gap they fall on with higher confidence. 

DTs have tree-like structures in which the nodes represent the

nput variables and the leaves correspond to decision outcomes.

hen traversing the tree for the classification of a new sample,

e are able to predict the category of the data with adequate rea-

oning due to the specific architecture. 

RFs have only recently been applied in the field of cancer pre-

iction. RFs are an ensemble learning method that combines tree

redictors, each of which depends on the values of a random vec-

or sampled independently and with the same distribution. The fi-

al outcome is the most popular class that receives the majority of

otes from the trees in the forest, hence yielding an overall better

odel. 

GBDTs are a machine learning technique that combines an en-

emble of decision trees into a stronger prediction model. GBDTs

uild the model in a stage-wise fashion like other boosting meth-

ds do, and implement a generalization by allowing the optimiza-

ion of an arbitrary differentiable loss function. 

t  
Three classical methods ( i.e., k NN, SVMs and DTs) and two ad-

anced algorithms ( i.e. , RFs and GBDTs) are introduced. As sug-

ested in the literature, k NN is one of the simplest classification

ethods especially for distribution-unknown data. But k NN is sen-

itive to redundant features and requires effective feature selec-

ion prior to classification, and the choice of the number k can

reatly affect the performance of classifier. SVMs can be consid-

red as the most effective and common algorithm for cancer clas-

ification. Nevertheless, it is a challenge for SVMs to figure out an

ppropriate kernel for specific issues. In particular, there is no gen-

ral solution for nonlinear cases, thus the prediction accuracy can

ot be guaranteed. DTs, as the most fundamental and widely used

lassification method in various fields, however, tend to be a weak

lassifier to distinguish normal and cancer samples since it often

ver-fits the model. The latter two methods, RFs and GBDTs are

volutionary approaches which are ensembles of DTs, overcoming

he over-fitting problem to an extent, but may lead to the classifi-

ation result tending to the category with more samples. Consider-

ng that each method has its own shortcomings relative to others,

e come up with an ensemble strategy to make use of the advan-

ages of the multiple methods and avoid the shortcomings. Here,

e select both the fundamental and evolutionary methods in or-

er to increase the diversity of our ensemble model. 

.4. Multi-model ensemble based on deep learning 

In practice, several classification models are available for cancer

rediction, but none of these is fully accurate and each method

ay be making mistakes in different facets. Stacking of multiple

ifferent classification methods may lead to performance improve-

ent over individual models. Multi-model ensemble is a technique

n which the predictions of a collection of models are given as in-

uts to a second-stage learning model. The second-stage model is

rained to combine the predictions from first stage models opti-

ally to form a final set of predictions. 

In this paper, we adopt deep learning as the ensemble model

o stack the multiple classifiers. Neural networks are inspired by
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Fig. 3. An illustration of the neural network structure. 
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how the brain works and is widely used in many applications. A

neural network is trained to generate an output as a combination

among the input variables. Given a set of features and a target, it

can learn to be a nonlinear function approximator, where, between

the input and output layers, there can be one or more nonlin-

ear layers, called hidden layers. Deep learning involves deep neural

networks with many hierarchical hidden layers of nonlinear infor-

mation processing which endow the capabilities to learn complex

patterns from high dimensional raw data with little guidance [12] .

Shown in Fig. 3 is a neural network. The leftmost layer is the

input layer with neurons being called input neurons. The right-

most layer is called the output layer with an output neuron. The

middle layers are hidden layers that are made up of hidden neu-

rons. In order to classify samples correctly, we define an objective

function, which computes the error between the predicted scores

and the actual scores. Then, by training with the training sam-

ples, the machine modifies the values of its internal adjustable pa-

rameters that define the input-output function to reduce the er-

ror. In practice, the stochastic gradient descent (SGD) algorithm

is most commonly used in this machine learning procedure. In a

deep neural network, we denote the number of layers as n l and

layer l as L l , so layer L 1 is the input layer and layer L n l is the out-

put layer. We also let s l denote the number of neurons in layer

l . The neural network has parameters W = { W 

1 , W 

2 , . . . , W 

n l } and

b = { b 1 , b 2 , . . . , b n l } , where W 

l 
i j 
, j = 1 , 2 , . . . , s l−1 , i = 1 , 2 , . . . , s l , l =

2 , 3 , . . . , n l , denotes the weight associated the connection between

unit j in layer l − 1 and unit i in layer l , and b l 
i 
, i = 1 , 2 , . . . , s l , l =

2 , 3 , . . . , n l , denotes the bias of unit i in layer l . Suppose that we

have a training set { (x 1 , y 1 ) , (x 2 , y 2 ) , . . . , (x m , y m ) } of m samples,

with which we train the neural network using the SGD. We define

the cost function (the objective function mentioned above) as, 

J(W, b) = 

1 

m 

m ∑ 

i =1 

J(W, b; x i , y i ) + 

λ

2 

n l ∑ 

l=2 

s l−1 ∑ 

j=1 

s l ∑ 

i =1 

(W 

l 
i j ) 

2 

= 

1 

m 

m ∑ 

i =1 

(
1 

2 

‖ h W,b (x i ) − y i ‖ 

2 
)

+ 

λ

2 

n l ∑ 

l=2 

s l−1 ∑ 

j=1 

s l ∑ 

i =1 

(W 

l 
i j ) 

2 , (1)

where the first term is a mean square error term and the second

term is a regulation term used to constrain the magnitudes of the

weights and prevent over-fitting, and λ is the weight decay param-

eter that regulates the relative importance of the two terms. The

nonlinear hypothesis h W, b ( x ) of the neural network is defined as,
h W,b (x ) = f (W 

T x + b) , (2)

here f : R → R is called the activation function. In recent years,

he most popular nonlinear function used here is the rectified lin-

ar unit (ReLU) f (z) = max { 0 , z} which typically learns much faster

n multi-layer deep neural networks than the more conventional

yperbolic tangent and logistic sigmoid function [18] . For one sam-

le, we define the activation (output value) of unit i in layer l as a l 
i 

nd the weighted sum as z l 
i 
, so that 

a l i = f (z l i ) = f 

(
W 

l−1 
i 1 

a l−1 
1 + W 

l−1 
i 2 

a l−1 
2 + . . . + W 

l−1 
is l−1 

a l−1 
s l−1 

+ b l−1 
i 

)
, 

(3)

nd with x i as the unit i in the input layer L 1 , i.e. , 

a 1 i = x i . (4)

hus the activation of the unit in the output layer is 

 W,b (x ) = a 
n l 
i 

= f 

(
W 

n l −1 

i 1 
a 

n l −1 
1 

+ W 

n l −1 

i 2 
a 

n l −1 
2 

+ . . . + W 

n l −1 

is n l −1 
a 

n l −1 
s n l −1 

+ b 
n l −1 

i 

)
. (5)

his step to compute the activation of each unit is called the for-

ard propagation. In SGD, our goal is to minimize J ( W, b ) by ad-

usting parameters W and b . We first initialize each W 

l 
i j 

and b l 
i 

to a

mall random value near zero and then update the parameters in

ach iteration of SGD as, 

W 

l 
i j = W 

l 
i j − α

∂ 

∂ W 

l 
i j 

J(W, b) , (6)

b l i = b l i − α
∂ 

∂ b l 
i 

J(W, b) , (7)

here α is the learning rate. Then we employ the back propaga-

ion algorithm to compute the partial derivatives. In detail, given a

raining sample ( x, y ), the back propagation algorithm can be de-

cribed as follows. 

1. Conduct the forward propagation calculations to compute the

activation of each unit in layer L 2 up to the output layer L n l . 

2. For each unit i in layer n l , calculate the residual 

δn l 
i 

= 

∂ 
n l 

1 ‖ y − h W,b (x ) ‖ 

2 = −(y i − a 
n l 
i 
) f ′ (z 

n l 
i 
) . (8)
i 
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Fig. 4. The deep learning-based ensemble method. 
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o  

S  

(  

p  

o  
3. For each unit i in layer l , l = n l − 1 , n l − 2 , . . . , 2 , calculate the

residual 

δl 
i = 

( 

s l+1 ∑ 

j=1 

W 

l 
ji δ

l+1 
j 

) 

f ′ (z l i ) . (9) 

4. Calculate the desired partial derivatives 

∂ 

∂ W 

l 
i j 

J(W, b; x, y ) = a l j δ
l+1 
i 

, (10) 

∂ 

∂ b l 
i 

J(W, b; x, y ) = δl+1 
i 

. (11) 

The process of deriving from back forward is the intention of

ack propagation. By repeating the iterative steps of the SGD, we

an decrease the cost function J ( W, b ) so as to train the neural net-

ork. 

In our study, we have proposed a deep learning-based multi-

odel ensemble method with a 5-fold stacking. The overall algo-

ithm is shown in Fig. 4 . In the first stage, we divide the given

ata set D into five subsets, D 1 , D 2 , ..., D 5 , where D i = { x i , y i } , i =
 , 2 , . . . , 5 , contains labeled points drawn independent and iden-

ically distributed according to the same distribution. In the first

ound, the union of D 2 , D 3 , D 4 and D 5 is used as the training set,

nd D 1 = { x 1 , y 1 } is used as the test set. Given the input x 1 , five

lassification models in this stage propose corresponding hypothe-

es h 1 (x 1 ) , h 2 (x 1 ) , . . . , h 5 (x 1 ) , where h i ( x 1 ) is a binary variable, and

he subscript i of h i ( x 1 ) is referred to as the i th model. After the

lassifications in the first round, we assemble the predictions of

ach model into H 1 = [ h 1 (x 1 ) , h 2 (x 1 ) , . . . , h 5 (x 1 )] , which is merged

ith the corresponding label y 1 to form a new data set D 

′ 
1 , for

se in the second stage. This procedure is then repeated for five

imes, according to the S -fold cross validation technique discussed

n the section of Materials and methods. After all this, we obtain

ve new data sets, D 

′ 
1 
, D 

′ 
2 
, ..., D 

′ 
5 
, where D 

′ 
i 
= { H i , y i } , i = 1 , 2 , . . . , 5 .
n the second stage, we apply a deep neural network as the en-

emble model. To classify normal and tumor samples, we use a

ve-layer neural network. The input layer of the network contains

ve neurons, which represent features of samples in the new data

et. In the hidden layers, we experiment with different numbers of

odes in each layer for better classification performance. The out-

ut layer of the network contains one neuron whose output was 0

r 1, denoting normal or tumor, respectively. In this stage, we also

mploy 5-fold cross validation and take the mean value to obtain

he outcome. 

Unlike the commonly used weighted averaging and majority

oting algorithms in general ensemble strategy, which merely con-

ider the linear relationships among classifiers and need for man-

al participation, the deep learning-based ensemble model “learn”

he relationships automatically. Generally, the relationships be-

ween the multiple classifiers and the labels of test samples are

nknown, and the reliability of the prediction can not be guaran-

eed if only a simple linear relation is taken into account. However,

he deep learning used in the second stage in our method has the

bility to automatically learn intricate relationships, especially non-

inear relationships, and requires very little engineering by hand.

hus, the deep learning-based multi-model ensemble method can

ake full use of the information provided by data and guarantee

he prediction results. 

. Results 

.1. Data collection 

We evaluated the proposed method on three RNA-seq data sets

f three kinds of cancers, including Lung Adenocarcinoma (LUAD),

tomach Adenocarcinoma (STAD) and Breast Invasive Carcinoma

BRCA). The gene expression data were obtained from the TCGA

roject web page [19] . These data sets, which include all stages

f cancers, were collected from subjects of various clinical con-
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Fig. 5. The ROC curves for individual and ensemble methods on three data sets: (a) 

LUAD; (b) STAD; (c) BRCA. 

Table 1 

Data sets information. 

Data set Genes Samples 

Tumor Normal Total 

LUAD 20532 125 37 162 

STAD 29699 238 33 271 

BRCA 20532 775 103 878 
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itions and different ages, genders and races. As described in the

rofile [20] , the tumor tissues from patients not treated with prior

hemotherapy or radiotherapy were selected. The specific informa-

ion of the data sets is shown in Table 1 . In our procedure, we used

oth the raw count data and the normalized fragments per kilo-

ase per million (FPKM) data. The raw count data were used to se-

ected the significantly differentially expressed genes and the nor-

alized FPKM data were used to the following classification and

nsemble procedure. 

.2. Gene selection of normal and tumor samples 

We analyzed gene differential expression between normal sam-

les and cancer samples in three data sets. In order to filter

he significantly differentially expressed features, the technique of

ESeq was employed. Through the analysis and comparison, the

enes that satisfied the following conditions were considered most

ifferentially expressed [21] : (1) the BH-adjusted p -value less than

.01; (2) the fold change threshold of 4; (3) the mean FPKM of

ach gene in all the samples larger than 2. For the LUAD data,

385 differentially expressed genes were selected. For the STAD

ata, 801 genes were selected. For the BRCA data, 934 genes were

elected. The selected genes satisfying the estimate threshold set-

ings were significantly differentially expressed in different cancer

ata sets where the difference was greater than that in randomly

elected genes. 

We utilized the three mostly used evaluation metrics to com-

are the prediction performance with the entire set of genes and

he differentially expressed genes identified previously: precision,

ecall and accuracy. Precision is defined as the fraction of correctly

dentified cancer patients, recall measures the proportion of pre-

icted cancer patients to all the people sampled, and accuracy is

he weighted average of precision and recall, denoting the over-

ll correctness. Both the mean values and the standard deviations

ere calculated for multiple test sets in cross validation. These

valuation metrics were also used in the following assessment of

lassification models. 

We applied a DT classifier to train and test the entire data and

elected data separately. The obtained results are shown in Table 2 .

e observe that better accuracy and a better tradeoff between re-

all and precision are represented by feature selection. Besides, the

lassification performance is more stable on the selected data. The

omputation time is also compared, revealing the importance of

electing features. Therefore, we would use the selected data as

he input of the subsequent procedure, in consideration of a more

ccurate prediction of cancer as well as a greatly reduced running

ime of classification. 

.3. Multi-model ensemble based on neural networks 

We first applied five classification methods in the first stage

ndividually, which were k -nearest neighbor, support vector ma-

hines, decision trees, random forests and gradient boosting deci-

ion trees, and then averaged the predictions derived from these

ethods after using 5-fold cross validation technique. Then, we

ent a step further to employ the multi-model ensemble method
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Table 2 

The precision, recall, accuracy and CPU time of the entire data and selected data analyzed by DTs. 

Data set Data size Precision (%) Recall (%) Accuracy (%) CPU time(s) 

LUAD Entire set 97.10 ( ± 4.29) 97.37 ( ± 2.63) 95.60 ( ± 2.19) 0.0532 

Selected set 98.46 ( ± 2.29) 97.37 ( ± 2.63) 96.80 ( ± 2.28) 0.0039 

STAD Entire set 96.69 ( ± 1.22) 97.22 ( ± 1.39) 94.63 ( ± 2.04) 0.8608 

Selected set 99.42 ( ± 0.80) 96.67 ( ± 3.75) 96.59 ( ± 3.80) 0.0182 

BRCA Entire set 96.60 ( ± 1.26) 97.34 ( ± 0.98) 94.62 ( ± 1.64) 0.0591 

Selected set 97.77 ( ± 0.96) 97.42 ( ± 0.61) 95.76 ( ± 0.94) 0.0040 

Table 3 

The predictive accuracy (%) of individual and ensemble methods on three data sets. 

Classification algorithm LUAD STAD BRCA 

k NN 88.00 ( ± 5.10) 93.90 ( ± 2.99) 95.08 ( ± 0.89) 

SVM 97.20 ( ± 2.28) 81.22 ( ± 22.50) 79.55 ( ± 19.22) 

DT 96.80 ( ± 2.28) 96.59 ( ± 3.80) 95.76 ( ± 0.94) 

RF 93.20 ( ± 1.79) 96.83 ( ± 1.85) 94.17 ( ± 1.53) 

GBDT 96.80 ( ± 2.28) 96.59 ( ± 2.64) 95.76 ( ± 4.46) 

Majority voting 97.20 ( ± 1.79) 98.54 ( ± 1.34) 98.18 ( ± 0.73) 

Proposed method 98.80 ( ± 1.79) 98.78 ( ± 1.44) 98.41 ( ± 0.41) 
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o integrate all the first-stage predictions using a deep neural net-

ork. With 5-fold cross validation, the dimensionality of the new

ata set has decreased and the sample size has increased signif-

cantly, which provides the possibility for the application of deep

eural networks and also provides more information for the pre-

iction. 

We compare the predictive accuracy of each individual method,

he majority voting and our proposed ensemble method on three

ata sets, which are the LUAD, STAD and BRCA data sets. The re-

eiver operating characteristic (ROC) curve is also used to compare

he performance of different methods. In statistic, the ROC curve is

 graphical plot that illustrates the performance of a binary classi-

er as its discrimination threshold is varied. It is created by plot-

ing the fraction of true positives out of the positives ( i.e. , true pos-

tive rate) against the fraction of false positives out of the negatives

 i.e. , false positive rate) at various thresholds. Generally, the area

nder the curve (AUC) is estimated as an important measurement

or model comparison, which reflects the probability that a clas-

ifier will rank a randomly chosen positive instance higher than

 randomly chosen negative one. Because of the imbalance of the

amples we used, the precision-recall (PR) curve is required to deal

ith the highly skewed data. The area under the PR curve is typ-

cally used to measure the relationship between the precision and

ecall and the performance of a classifier. A large area represents

oth high precision and high recall. 

The predictive accuracy results are shown in Table 3 . In the

able, we describe the recognition rate of our proposed ensem-

le method compared with five single classifiers and the major-

ty voting algorithm for each cancer data set. From the table, it is

lear that the integration strategy of multiple models significantly

utperforms classification models using in isolation and results

n more stable performance. In addition, our deep learning-based

ulti-model ensemble method obtains better predictions than the

ajority voting, raising the accuracy to 99.20%, 98.78% and 98.41%,

or the LUAD, STAD and BRCA data sets, respectively. 

The three ROC curves are shown in Fig. 5 for the three cancer

ata sets, respectively. According to the results in the figure, the

ntegration strategy gets higher AUC scores by combining multiple

ifferent classifiers, thus obtains better classification performance

han each classifier operating alone. Furthermore, the AUC scores

f the proposed deep learning-based ensemble method are higher

han that of the majority voting for all three data sets, owing to its

bility to learn and discover hidden structure automatically. 
The three corresponding PR curves are shown in Fig. 6 . In the

gure, we observe that the proposed ensemble method obtains an

rea that is larger than or the same as that of each single clas-

ifier and the majority voting. We also observe that the proposed

nsemble method deals well with skewed data, which reflects the

mbalance of clinical samples. 

. Discussion 

Based on the results, we observe that the proposed deep

earning-based multi-model ensemble method yields satisfactory 

esults that are superior to single classifiers and the majority vot-

ng algorithm in cancer prediction. Due to the complexity and

igh mortality of cancer, timely and accurate diagnosis is criti-

al. Thus, improving the prediction accuracy by applying computer-

ided techniques is of great help to cancer treatment. 

In the study, we made a comparison between the multi-model

nsemble method we have proposed in this paper and five differ-

nt classification models acting solo. The five classifiers are classi-

al and advanced ones that have been widely used in cancer pre-

iction. According to the observations in a previous study [6] , for

VMs and RFs, each classifier may outperform the other on differ-

nt data sets. The same situation may happen for other classifiers,

hich indicates that each method has its own shortcomings rela-

ive to others. It is this observation that has motivated us to pro-

ose the strategy of integrating different classifiers in order to ob-

ain a more accurate and unbiased classification model. Our results

n three data sets show that the multi-model ensemble method

eads to higher accuracy than all the five classifiers acting solo on

ll the data sets. In addition, the ROC curves indicate that a sin-

le classifier exhibits unstable prediction performance for different

ata sets. This is probably a consequence of different sensitivities

f classifiers to different data distributions, sample sizes and re-

undant features. However, by going a step further to ensemble

he outputs of the five classifiers, our proposed method contin-

es to train the weight of each classifier. In this procedure, classi-

ers with higher accuracy have a greater role to play and interfer-

nce information of the classifiers with lower accuracy is excluded.

herefore, the advantages of each classifier are fully considered and

tilized, and better prediction performance is obtained. 

Additional tests were performed to compare the prediction ac-

uracy of the proposed deep learning-based ensemble method

ith the majority voting algorithm. As a commonly used ensem-

le approach in various fields, the majority voting algorithm is also

mployed in cancer prediction. Cho and Won [11] observed a bet-

er classification performance of the majority voting than SVMs

nd k NN on cancer data sets, which is also confirmed by our re-

ults. Furthermore, we observed that our deep learning-based en-

emble method obtains a higher accuracy and AUC score than the

ajority voting algorithm. The results may be attributed to the fact

hat the majority voting algorithm does not regard the weights of

ifferent classifiers and only considers linear relationships. As com-

ared to the majority voting algorithm, the deep learning used in

he ensemble stage in our proposed method automatically learns

idden intricate structures, including nonlinear structures. Through
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Fig. 6. The precision-recall curves for individual and ensemble methods on three 

data sets: (a) LUAD; (b) STAD; (c) BRCA. 
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the training of deep learning, the unknown relationships among

classifiers and the label of samples are discovered and fitted to the

best, so that both the outputs of different classifiers and the rela-

tionships among them are fully taken into account. Consequently,

higher accuracy of cancer prediction is achieved. Our results also

confirm that deep learning, with the ability to fit complex rela-
ionships, especially nonlinear relationships, and with very little

ngineering by hand, will be of great use in taking advantages of

ncreases in the amount of information and data. We believe that

he application of deep learning in the field of disease diagnosis

ill be very promising with a broad development space. 

We have to point out that the deep learning-based multi-model

nsemble method incurs a higher computational cost. To overcome

his limitation to a certain extent, we applied the feature selec-

ion technique in the data preprocessing phase, which greatly re-

uces the running time and improves the prediction accuracy in

he same time. With the rapid increase in the amount of gene ex-

ression data and the variety of features, feature selection is very

mportant and necessary. Overall, feature selection in the discovery

f important genes and in the study of pathology deserves more

ttention. 

. Conclusions 

Cancer is a major health problem worldwide. Although the ma-

hine learning methods have been more and more widely used in

ancer prediction, no one method outperforms all the others. In

his paper, we presented a deep learning-based multi-model en-

emble approach to the prediction of cancer. Specifically, we an-

lyzed gene expression data obtained from three kinds of tissues,

ung, stomach and breast. In order to avoid over-fitting in classi-

cation, we identified differentially expressed gene data between

ormal and tumor phenotypes with the DESeq technique. The re-

ults show that differential expression analysis is necessary to re-

uce the dimensionality of data and to select effective informa-

ion, thus increasing the accuracy of the prediction and reducing

he computational time to a large extent. The multi-model ensem-

le method then utilizes the predictions of multiple different mod-

ls as inputs to a deep neural network, which is trained to com-

ine the model predictions to form an optimal final prediction. The

ajority voting algorithm combines the predictions from different

lassifiers as a contrast. We analyzed the three kinds of cancer

ata on five classifiers separately as well as on the majority vot-

ng method and our proposed multi-model ensemble method. The

esults show that the proposed ensemble model outperforms every

ther classifier as well as the majority voting in various evaluation

etrics. The deep learning-based multi-model ensemble method

educes the generation error and obtains more information by us-

ng the first-stage predictions as features than it is trained in iso-

ation. Moreover, by using deep learning, the intricate relationships

mong the classifiers are learned automatically, thus enabling the

nsemble method to achieve better prediction. 
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