
0885-8993 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2016.2606417, IEEE
Transactions on Power Electronics

>TPEL-Reg-2016-03-0597 < 

 

1 

1 

Abstract—To achieve high performance control of modern 

DC-DC converters, using direct digital design techniques, an 

accurate discrete model of the converter is necessary. In this 

paper, a new parametric system identification method, based on 

a Kalman filter (KF) approach is introduced to estimate the 

discrete model of a synchronous DC-DC buck converter. To 

improve the tracking performance of the proposed KF, an 

adaptive tuning technique is proposed. Unlike many other 

published schemes, this approach offers the unique advantage 

of updating the parameter vector coefficients at different rates. 

The proposed KF estimation technique is experimentally 

verified using a Texas Instruments TMS320F28335 

microcontroller platform and synchronous step down DC-DC 

converter. Results demonstrate a robust and reliable real-time 

estimator. The proposed method can accurately identify the 

discrete coefficients of the DC-DC converter. This paper also 

validates the performance of the identification algorithm with 

time varying parameters; such as an abrupt load change. The 

proposed method demonstrates robust estimation with and 

without an excitation signal, which makes it very well suited for 

real-time power electronic control applications. Furthermore, 

the estimator convergence time is significantly shorter 

compared to many other schemes, such as the classical 

Exponentially weighted Recursive Least Square (ERLS) 

method. 

 

Index Terms — DC-DC converter, Kalman Filter, Parameters 

Estimation, RLS method, System Identification. 

I. INTRODUCTION 

WITCH mode DC-DC power converters are widely used in 

a variety of applications, ranging from DC motor drives, 

personal computers, home appliances, and portable 

electronic devices [1, 2]. All of these applications require 

efficient and cost effective dynamic and steady state voltage or 

power regulation over a wide range of operating conditions.  

Traditionally, pre-designed PID controllers are applied to 

achieve the required dynamic performance in these systems. 

However, poor knowledge of the power converter parameters 

may cause inaccuracies in controller design. Moreover, 
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unpredicted behaviours such as sudden load variations, 

components aging, noise, and unpredictable changes in 

operating mode may degrade the controller performance and 

can lead to instability within the entire system [3, 4]. For these 

reasons adaptive and auto-tuning controllers, based on system 

identification of the converter parameters, are now gaining 

more attention. 

Recently, several techniques for system identification of 

DC-DC converters have been proposed. Two main classes of 

system identification are commonly employed: parametric and 

non-parametric techniques. In non-parametric identification 

methods, the system frequency response is determined directly, 

with no prior knowledge of the system model [5, 6]. Proposed 

strategies include correlation analysis [7, 8], transient response 

analysis [9, 10], Fourier, and spectral analysis [11, 12]. 

Typically, non-parametric system identification approaches 

assume steady state operation and the system identification 

process is carried out while the control loop is open to inject the 

excitation signal. In addition, the frequency response 

measurements are usually performed off-line on a host PC or an 

FPGA which increases the complexity and hence the cost of the 

implementation [6]. Also, by incorporating these techniques in 

real time applications such as DC-DC power converters, abrupt 

changes in the parameters can potentially yield unpredicted 

behaviour or even an unstable output response. The second 

paradigm, parametric system identification, assumes a known 

model structure with pre-specified order and number of 

coefficients to be estimated [5].  According to literature, 

conventional Least Squares (LS) [5, 13] and its recursive 

version, Recursive Least Squares (RLS) [4, 14, 15], are the 

most commonly used algorithms for parameter estimation of 

DC-DC converters. In [4], the classical RLS algorithm is 

reviewed and tested in real-time on an open loop buck 

converter. It is confirmed that the classical RLS algorithm can 

result in accurate parameter estimation for systems with fixed, 

or slow varying, loads while operating at sampling frequency 

much lower than the switching frequency. However, the 

algorithm fails to track fast parameter changes. In order to 

overcome this problem, the Exponentially weighted RLS 

(ERLS) algorithm is often applied to estimate abrupt changes in 

converter parameters. An off-line parameter estimation 

approach is presented in [14] using the Biogeography-Based 

Optimization (BBO) method. Due to the low sampling rate 

used in this approach, the estimation process takes around 100 

ms to converge to its final values. In addition, the proposed 

method has a considerably higher computational cost compared 

to ERLS. A low computational complexity ERLS identification 

technique, based on a Dichotomous Coordinate Descent (DCD) 

algorithm, is introduced in [2]. However, according to 

simulation and initial experimental results, the proposed 
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method is tested off-line showing a slow convergence time for 

zero coefficients with modest fluctuation due to measurement 

noise. In addition, the performance of the proposed algorithm is 

not investigated during abrupt load changes. Regardless of the 

improvement introduced by ERLS in terms of estimating 

abrupt changes, it is reported that a compromise must be made 

between noise sensitivity and dynamic tracking performance 

[15]. Typically, this technique applies equal weight to all 

parameters during the estimation process. As a result, if the rate 

of variation of one of the estimated parameters is greater than 

the other parameters, the same adaptation gain correction is 

applied to all parameters irrespectively which greatly affects 

the estimator output [16]. The estimation of coefficients with 

small values will suffer from slow convergence speed and 

higher estimation error. Practically, the measurement noise 

may increase this deviation, which impacts on the reliability of 

the estimation results when used in fault detection applications 

or controller design on the fly. This scenario is illustrated in 

parameter estimation of DC-DC converters, where sluggish 

convergence of the zero coefficients is observed and their final 

value is highly affected by the measurement noise [2]. Another 

drawback of the ERLS implementation is the requirement of 

superimposing the input signal with a frequency rich signal 

(such as those generated by a Pseudo Random Binary 

Sequence: PRBS) to enhance the estimation accuracy and 

prevent estimator wind up due to an exponential growth of the 

adaptation gain matrix [16].  This necessitates keeping the 

output voltage perturbed for long periods or resetting the 

estimator periodically, which can lead to some abrupt changes 

not being observed. To overcome this, the error covariance 

matrix can be updated using a different approach to add more 

freedom to the adaptive algorithm when calculating the 

adaption gain. In this paper, a state of the art Kalman Filter 

(KF) algorithm is proposed for real-time parameter estimation 

of switch mode power converter (SMPC). The proposed 

technique has the advantage of providing an independent 

strategy for adaptation of each individual parameter. Compared 

to existing system identification approaches, the proposed 

algorithm can be readily implemented online and is well suited 

for real-time dynamic applications. Furthermore, unlike 

classical RLS approaches, the effects of the excitation signal 

and parameter uncertainty can be factored into the proposed 

algorithm. This results in greater precision parameter 

estimation and much faster convergence speed. The 

effectiveness of the proposed technique is experimentally 

verified on a synchronous buck converter operating in 

continuous conduction mode (CCM); however, it can be easily 

transferred to other converter topologies. Results also confirm 

the ability of the proposed KF algorithm to produce improved 

performance compared to commonly applied ERLS schemes. 

II. PARAMETER ESTIMATION OF SWITCH MODE POWER 

CONVERTER 

A. Discrete Time Modelling 

Generally, in parametric paradigms, the candidate model of 

the unknown system should be known in advance. In this 

research, a synchronous DC-DC buck converter is considered 

(see Fig.1). The analytical model of this converter is well 

understood and defined in the literature [2, 14]; consequently, 

the validated result will be used directly in this paper. 

Furthermore, the derivation of the average model for the buck 

converter is well reported [17]; and hence, it is not shown in 

detail. Therefore, starting here from the state-space model, the 

transfer function relating the output voltage (vout), to input duty 

cycle (d) of the buck converter can be expressed as follows: 

 

𝐺𝑑𝑣(𝑠) =
𝑣𝑜𝑢𝑡  (𝑠)

𝑑(𝑠)

=
𝑉𝑖𝑛 (𝐶𝑅𝐶𝑠 + 1)

𝑠2𝐿 𝐶 (
𝑅𝑜 + 𝑅𝐶

𝑅𝑂 + 𝑅𝐿
) + 𝑆 (𝑅𝐶𝐶 + 𝐶 (

𝑅𝑂𝑅𝐿

𝑅𝑂 + 𝑅𝐿
) +

𝐿
𝑅𝑂 + 𝑅𝐿

) + 1
 

 

(1) 

 

In (1), Vin is the input voltage,  RO is the load resistance , L is 

the inductance with DC resistance RL,  and C is the output 

capacitance with equivalent series resistance RC. In Fig 1, the 

parasitic elements are included to improve the model accuracy 

and to demonstrate the importance of considering non-ideal 

components for system identification in applications such as 

power electronic converters. For instance, in the buck converter 

the equivalent series resistor RC cannot be ignored because it 

adds a zero to the transfer function (1), which has a negative 

impact on the dynamic behaviour of the converter [18]. In 

addition, its value may be used as a diagnostic indicator of 

capacitor aging [14].  In real time applications, it is typical to 

use discrete analysis, hence the digital equivalent transfer 

function is preferred [5, 14]. The transfer function parameters 

rely on the actual component values including the parasitic 

elements; (such as  RL , RC , and the  conduction losses of the 

switch), therefore, a more accurate digital controller can be 

designed when the converter losses are considered.   In this 

paper, a zero-order-hold mapping technique is applied to 

compute the equivalent discrete transfer function as follows: 

 

 
 𝐺𝑣𝑑 =

𝑏1𝑧−1  + 𝑏2𝑧−2 

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2
 (2) 

 

 

Here, the values of coefficients a and b are dependent on the 

Laplace transfer function coefficients defined in (1), and on the 

digital sampling time, T [2, 4]. 
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Fig. 1. Synchronous buck converter 
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B. ERLS for Parameter Estimation  

In this paper, we apply the conventional ERLS scheme as a 

testbed for assessing the performance of the proposed KF 

algorithm. To estimate the parameters in (2), the relation 

between the input and output signals can be re-written as 

follow: 

 
y

k
+a1y

k-1
+a2y

k-2
=b1uk-1+b2uk-2                                                                                        (3) 

Where,  𝑦𝑘  and 𝑢𝑘 denote the output voltage and the duty cycle 

control signal respectively at sampling instant 𝑘. For system 

identification purposes, the difference equation in (3) is 

rewritten in linear regression form: 

 
𝑦𝑘 = 𝜑𝑇

𝑘
𝜃𝑘 (4) 

By comparing (2) with (4), the unknown coefficients [a1 a2 b1 

b2] are lumped in a vector 𝜃𝑘 ∈ R𝑁, while the data vector  𝜑𝑘 

(regression vector) contains the sampled input and output 

measurements. It is important to emphasise that minimizing the 

weighted sum of the quadratic error in (5), yields an accurate 

estimation of 𝜃 ̂[2, 16]. 

 

 

 
 𝐸𝑚𝑖𝑛 = ∑ λ𝑛−𝑘(𝑦𝑘 − 𝜑𝑇

𝑘
𝜃̂𝑘)

2
𝑛

𝑘=1

 (5) 

Where (λ) ∈ [0,1] is the forgetting factor, and 𝑛 is the number 

of available samples to date. The estimated parameter vector 

𝜃̂𝑘 = [𝑎̂1 𝑎̂2  𝑏̂1 𝑏̂2] is updated at every sampling instant 
through simple modification of 𝜃̂𝑘−1. For conciseness, details 

of the algorithm are depicted in Table I  [16] . In Table I, 𝑃𝑘 

∈ R𝑁×𝑁is the error covariance matrix, 𝐾𝑘 ∈ R𝑁is the adaptation 

gain vector or Kalman gain, and 𝑁 is the number of parameters 

to be estimated. The initial choices of the system parameters 𝜃̂0 

and covariance matrix  𝑃0 are selected by the designer, and the 

role of experience and intuition is paramount [19].  

C. Kalman Filter Configured for Parameter Estimation 

The Kalman Filter is a mathematical method widely used to 

estimate unmeasured states using the measured input and 

output [20]. In this paper, the classical KF recursive algorithm 

is applied to estimate the set of unknown parameters 𝜃𝑘 instead 

of the states. This offers reduced convergence time, tracking 

performance and estimation accuracy compared to other 

recursive algorithms [21]. As a result, one can consider a 

parameter variation model and a linear regression equation 

described by: 

  

 𝑦𝑘 = 𝜑𝑇
𝑘

𝜃𝑘 + 𝑣𝑘 

𝜃𝑘 = 𝜃𝑘−1 + 𝑤𝑘  
(6) 

 

Here, the parameter changes are driven by random vector 𝑤𝑘  

with covariance matrix Q ∈ R𝑁×𝑁 , and 𝑣𝑘  is the observation 

noise with variance 𝑟 ∈ R [22].  

 

 

 

 

 

TABLE I 
ERLS ADAPTIVE ALGORITHM  

Step Formula  

Initialization  𝑃0 = 𝑔 ∗ 𝐼 , and 𝜃0 = 0 , where 𝐼  is an 𝑁 ×
𝑁 identity matrix , 𝑔 is large number usually >1, 

(λ) ∈ (0,1], 
  Do for k ≥ 1 

1- Prediction error 
calculation 

ℇ𝑘 = 𝑦𝑘 − 𝜑𝑇
𝑘

𝜃𝑘−1 

2-Calculate Kalman 

gain 
𝐾𝑘 =  

𝑃𝑘−1𝜑𝑘

(𝜆 + 𝜑𝑇
𝑘

𝑃𝑘−1𝜑𝑘)
 

3-Update the 

parameter vector 𝜃 
𝜃𝑘 = 𝜃𝑘−1 + 𝐾𝑘  (𝑦𝑘 − 𝜑𝑇

𝑘
𝜃𝑘−1) 

4-Update the 

covariance matrix 𝑃 
𝑃𝑘 =

1

λ
[𝑃𝑘−1 − 𝐾𝑘𝜑𝑇

𝑘
 ] 

 

Table II demonstrates the implementation sequence of the 

Kalman filter as a parameter estimator [22] . As shown in Table 

II, at the prediction step the error covariance matrix is 

computed by the additional inclusion of a diagonal matrix 𝑄 to 

account for time varying parameters. The size of the diagonal 

elements are conducive to the corresponding parameter 

variation in a random walk. Thus, the adaptation gain is 

adjusted for each parameter individually. This yields improved 

estimation accuracy for all elements in the vector θ with 

comparable convergence time and more flexibility in tuning. In 

contrast to the ERLS illustrated in Table I, a linear growth of 

the covariance matrix 𝑃 is observed in the Kalman filter. As a 

result, the estimator may work for longer periods without any 

significant output perturbation and yet continues to exhibit 

operational responsiveness. This makes the KF approach an 

excellent option for real-time applications such as DC-DC 

converters where long periods of perturbation in the output 

voltage are highly undesirable.  

D. Kalman Filter Tuning  

The tracking capability of the KF relies entirely on the value 

of  Q, which has to be determined by the designer using off-line 

tuning, until the desired filter output response is attained [19, 

23]. However, this is a major challenge when using the KF for 

real-time state or parameter estimation. In this paper, an 

adaptive tuning method for determining Q is introduced. This 

approach was initially suggested for KF based state estimation 

in [24]. However, here a modified version of this tuning scheme 

is applied; each diagonal element in the matrix Q
k
 is calculated 

based on its related innovation term and Kalman gain. 

Therefore, individual parameters with different rates of 

variation can potentially be tracked more accurately. This is 

fundamentally different to many existing schemes. Referring to 

Table II, in step 2 the parameter variation can be estimated 

from: 

 

 𝓌̂𝑘 = 𝜃̂𝑘 − 𝜃̂𝑘−1 = 𝐾𝑘[ 𝑦𝑘 − 𝜑𝑘𝜃̂𝑘]  (7) 

 

As a result, a different variance estimate is obtained for each 

element in the vector 𝓌̂𝑘 as follows: 

 

                           Q̂
𝑖𝑖

(𝑘) = [𝓌̂𝑖(𝑘)]2                                                            (8) 
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TABLE II 

KF CONFIGURED FOR PARAMETER ESTIMATION 
Step Formula 

Initialization  

𝑃(0) = 𝑔 ∗ 𝐼, and 𝜃(0) = 0, where 𝐼 is an 

N×N identity matrix, 𝑔 is large number , 𝑟 is 

scaler > 0, Q is diag [Q
11

, Q
22

,..,Q
NN

] 

 Do for 𝑘 ≥  1 

`1-Kalman gain 𝐾𝑘 = 𝑃𝑘−1
+ 𝜑𝑘

𝑇[𝜑𝑘𝑃𝑘−1
+ 𝜑𝑘

𝑇 + 𝑟𝑘]−1 

2-Parameters estimate 𝜃𝑘 = 𝜃𝑘−1 + 𝐾𝑘[ 𝑦𝑘 − 𝜑𝑘𝜃𝑘−1] 

3-Estimate dispersion 
update 

𝑃𝑘 = 𝑃𝑘−1
+ (𝐼 − 𝐾𝑘𝜑𝑘) 

4-Covariance matrix             
project ahead 

𝑃𝑘
+ =  𝑃𝑘 + Q 

 

The deduced model error covariance in (9) is used to improve 

the tracking capability of the filter in the event of any sudden 

change in system parameters, such as abrupt load change in 

dc-dc converters. 

 

Q̂
𝑘

= diag[[𝓌̂1(𝑘)]2; [𝓌̂2(𝑘)]2; [𝓌̂3(𝑘)]2; [𝓌̂4(𝑘)]2]  (9) 

 

Using this matrix in step (4), each diagonal element in the error 

covariance matrix P will be updated according to the 

corresponding innovation term, hence the components of 

parameter vector 𝜃̂𝑘will have a different variance estimate due 

to the assigned adaptation gain. This new tuning approach, 

overcomes the difficulties faced in ERLS in estimating small 

parameters from noisy real time data. Therefore, the estimation 

accuracy and the tracking performance can be improved 

significantly for all transfer function coefficients. Simulation 

Results 

III. SIMULATION RESULTS 

In order to verify the performance of the proposed 

identification algorithm, a voltage controlled synchronous DC–

DC buck SMPC circuit is implemented in MATLAB/Simulink. 

The component values for the converter depicted in Fig. 1 are: 

Vin =10 V, RO = 5 Ω, L= 220 μH, C=330 μF, RC =25 mΩ, RL = 

63mΩ, RDS(on)= 18 mΩ, the switching frequency and sampling 

rate are 20 kHz, and the sensing gain is 0.5. The output voltage 

is regulated at 3.3V using digital PID controller (10), designed 

based on pole placement technique. 

 

 
𝐺𝐶(𝑧) =    

4.672 − 7.539 𝑧−1  + 3.184 𝑧−2 

(1 − 𝑧−1)(1 +  0.374 𝑧−1)
 

(10) 

 

In the early stages of the estimation process, no preliminary 

knowledge of the converter parameters is assumed. The same 

initial values of covariance matrix and parameter vector for 

both ERLS and KF are selected to be P(0) = 10000 I, and 𝜃̂ (0) 

= 0. A 9 bit PRBS signal (a rich frequency excitation signal) is 

injected into the control signal to enhance the parameter 

estimation performance. To justify the identification results, the 

discrete transfer function of the average model in (11) is 

calculated in advance, at a sampling time of 50 μs. In line with 

many other sources of literature, convergence time and 

accuracy are considered to be the important metrics in 

evaluating the adaptive algorithm performance [2, 4]. 

 

 𝐺𝑣𝑑  =    
0.2262 +  0.1119 𝑧−2 

1 − 1.913 𝑧−1 +  0.946 𝑧−2
 (11) 

 

For the ERLS, the forgetting factor λ= 0.95 is carefully 

chosen to facilitate a compromise between estimator sensitivity 

and convergence speed. Unlike the preliminarily simulation 

results presented by the authors in [19], the modified tuning 

method in (9) is adopted in this paper to mitigate the 

disadvantages of using a trial and error procedure in the KF 

tuning and the measurement noise variance r is set to 0.095. 

Fig. 2 shows the parameter estimation results obtained using 

the ERLS identification algorithm and KF identification 

algorithm during the steady state operation. As depicted in Fig. 

2, both estimation algorithms rapidly identify the transfer 

function coefficients with final estimation values very close to 

the average model in (11). However,  the KF estimation  

convergence to steady state is less than 0.5 ms, while the ERLS 

estimator takes around 1.5 ms to converge to the final values.  

 

   

   
Fig. 2. On-line parameter estimation results using ERLS and KF. (a) 

Denominator coefficients. (b) Numerator coefficients. 

 

To further evaluate the performance of the propsed KF 

algorithm, a sudden and significant load change is applied at 

0.02 s. The simulation results, illustrated in Fig.3, indicate that 

after a sudden change in the load the KF identifies the transfer 

function denominator coefficients accurately with a 

convergence time less than 1 ms. In contrast, the ERLS 

estimation exhibits under/over shoot before it settles to the final 

values with a convergence time more than 5 ms. The stability of 

both identification algorithms is evaluated during the absence 

of the PRBS signal. The estimation results, shown in Fig. 4, 

demonstrate that the KF estimator has the ability to produce a 

smooth and stable estimation with no effect of the estimator 

wind up. In contrast, the ERLS suffers from estimator the wind 

up phenomenon as the adaptation gain value increases over 

time and yields a clear offset in the final estimation value.  
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Fig. 3. On-line parameters estimation during a step load change from 5 Ω to 1 Ω 

at 0.02s for ERLS and KF 

 

 
Fig. 4. Estimator win-up effect on ERLS and KF. 

IV. EXPERIMENTAL RESULTS 

To validate the proposed algorithm, experimental verification 

is conducted on a 5 W synchronous buck converter. Fig.5 

shows the experimental setup for the proposed real time 

parameter estimation algorithm. In order to compare the 

simulation and the experimental results, the converter 

parameters are selected to be the same as those outlined in 

Section III. In addition to the digital controller described in 

(10), the entire identification process including PRBS 

generation, filtering, and the adaptive algorithm is performed 

online on a Texas Instruments TMS320F28335 digital signal 

processor (DSP) platform to validate the proposed structure in 

real-time. This is accomplished using the Embedded Coder 

Support package in MATLAB/Simulink to generate C code for 

all related blocks in the Simulink model and to run this model in 

‘External Mode’. This feature enables the user to tune and 

monitor the algorithm parameters in real time without stopping 

the application. The obtained real-time results are transferred to 

Simulink via a RS232 communication interface as shown in 

Fig.5. To demonstrate the previously explained advantages of 

the KF over the ERLS algorithm, the identification process is 

enabled for 20 ms, while the PRBS signal is injected into the 

duty cycle for 10ms only as depicted in Fig.6.  A small 

amplitude signal is selected for the excitation signal to keep the 

perturbation within 5% of the nominal output voltage during 

the identification procedure; it then reverts back to normal 

operation as shown in Fig.6. Before real-time implementation, 

the proposed algorithm is tested off-line to investigate the 

suitability of the data being used, the selected model structure, 

and the filter type. The logged output voltage and the control 

signal are both sampled at 20 kHz and exported to MATLAB.  

To accomplish a good estimation result, the measured output 

voltage and the control signal must be filtered before being 

applied to the estimation algorithm.  
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Fig. 5. Experimental setup of a synchronous buck converter for rea-time 

parameter estimation. (a) Block diagram (b) Overview of test board.  

 

 The filtering step is performed using a simple four tap Moving 

Average (MA) filter.  These filtered signals are illustrated in 

Fig.7. In the filtered output voltage (Fig.7.a), the ripple content 

due to the excitation signal is approximately ±2.5% with 

respect to the nominal dc output voltage. The achieved offline 

estimation results confirm that the presented model structure in 

(3) is suitable to describe the dynamics of the converter. 

Furthermore, the simple four-tap MA filter is sufficient to carry 

out the filtering task for a successful parameter estimation 

process. Due to space limitations, only real-time results are 

presented here as they are of primary importance. 

 

            
 

Fig. 6. Experimental output voltage during identification process with PRBS 

signal disabled after 10ms. 

DSP 

PRBS perturbation 

Synchronous 

buck 

converter 

ID   enabled 
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Fig. 7. Experimental filtered data sampled at 20 kHz (a) output voltage 

(zoom-in) (b) duty cycle.    

A. ERLS Real-Time Results 

Similar to the simulation procedure, the ERLS with 

forgetting factor λ= 0.95 is investigated. The online estimation 

results of the unknown parameters of the DC-DC model in (12) 

are illustrated in Fig. 8. As shown in Fig. 8, the ERLS requires 

around 5 samples (0.25 ms, at sampling time 50µs) to converge 

to a steady state value for the denominator coefficients (𝑎1, 𝑎2 ) 

with accuracy range ±7%, while the numerator taps take a 

longer time to converge (around 1 ms), and there is a clear 

offset in the final estimation. The limited accuracy of the ERLS 

estimator during the excitation period can be clearly 

demonstrated via the estimation error signal, as shown in Fig 9.  

Consequently, if the estimated coefficients are used for health 

monitoring purposes, as introduced in [14], inaccurate 

decisions may be taken in terms of predicting the health or age 

of the circuit components. In comparison with the simulation 

results presented earlier, the estimation accuracy of the ERLS 

estimator is highly affected by the measurement noise in the 

experimental implementation. To study the impact of the 

excitation signal on the estimation results, the PRBS signal is 

actively disabled after 10 ms, as shown in Fig. 6. Due to the 

scaler-forgetting factor used in ERLS, the estimated parameters 

start to deviate from steady state, which agrees with the 

simulation results in Fig.4. This phenomenon is known as 

estimator wind-up, where the error covariance matrix grows 

exponentially and yields a high adaptation gain, as applied in 

the correction step [9]. Therefore, the ERLS is not a reliable 

estimator if a self-tuning controller is desired. Hence, in direct 

digital control design, such as the pole placement approach, the 

estimation results are fed to the controller directly and can 

potentially cause the system to be unstable since the values of 

(𝑏1, 𝑏2) are not guaranteed to be accurate.  

B. KF Real-time Results 

In this section, the proposed KF algorithm is evaluated. 

Similar to ERLS, the poles and zeroes parameters in (11) are 

compared with the average model parameters at a resistive load 

equal to 5 Ω. In Fig. 9, the parameters a1, a2 converge to steady 

state values in less than 0.15 ms, which is faster than the ERLS 

method with less over/undershoot and 0.3% estimation error. 

This confirms the simulation result depicted in Fig. 2. In  

 

 
Fig. 8. The estimation results using ERLS with λ=0.95. (a) Denominator 

coefficients. (b) Numerator coefficients. 

 

       

  
Fig. 9. The estimation error for ERLS during steady state operation. (a) 

Denominator coefficients. (b) Numerator coefficients. 

 

comparison with ERLS, the parameters 𝑏1, 𝑏2  are estimated 

within a similar period of time, but with enhanced accuracy. 

Importantly, the execution time of the proposed KF, measured 

in real time using Code Composer Studio, is only 3μs longer 

than the ERLS. Similarly, to ERLS, the stability of the KF is 

examined when the PRBS signal is disabled. As shown in 

Fig.10 KF has the ability to produce a smooth and stable 

estimation with no effect of the estimator wind up. Therefore, 

the obtained results can provide a stable self-tuning 
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compensator since the zero coefficients do not fluctuate and 

stay very close to the pre-calculated ones.  In addition, the 

observed prediction error illustrated in Fig.10 confirms the 

advantages of the KF over the ERLS in terms of accuracy and 

improved convergence speed for transfer function estimation. 

The results obtained for both investigated algorithms are 

summarised in Table III, which demonstrates that the KF 

outperforms ERLS in terms of accuracy and convergence time. 

Only a very small amount of additional execution time is 

required, due to the tuning step introduced in (9). In Table III, 

the achieved real-time results show that the KF approach 

outperforms the classical ERLS in terms of accuracy of all 

transfer function coefficients, as well as the minimal 

convergence time required to reach the steady state. 

Importantly, in comparison to similar tests introduced in [14] 

and [2], in this paper all system identification steps, including 

filtering and the adaptive algorithm implementation, are 

performed online without interrupting the normal system 

operation.  

  

 
Fig. 10. The estimation results using KF. (a) Denominator coefficients. (b) 

Numerator coefficients. 

 
TABLE III 

STEADY STATE PARAMETER ESTIMATION COMPARISON BETWEEN ERLS AND 

KF 

Parameter KF ERLS MODEL 

𝑎1 -1.922 -1.822 -1.913 

𝑎2 0.946 0.842 0.946 

𝑏1 0.161 0.087 0.2259 

𝑏2 0.0991 -0.00573 0.1119 

Convergence time 0.15ms 0.25ms  
Computational time 

per iteration 

37µs 33µs  

 

 
Fig. 11. The estimation error for KF during steady state operation. (a) 

Denominator coefficients. (b) Numerator coefficients 

 

Here, the sampling frequency is set similar to the converter 

switching frequency to take one sample of the output voltage 

and the control signal every switching period, while in [14] a 

slow sampling rate is selected which leads to a very slow 

convergence time.  Furthermore, the impact of the excitation 

signal on the estimator behaviour is examined here and 

confirms that the KF approach does not require long 

perturbation periods to achieve accurate and robust estimation 

results. Therefore, if a similar mapping method to that 

presented in [14] is applied on KF estimation, the values of the 

converter components such as L,C  can be easily and  accurately 

extracted online.  Even though low computational effort is 

required in the estimation algorithm proposed in [2], the same 

shortcoming of the ERLS is observed where the numerator 

parameters are highly effected by measurement noise hence the 

final estimation cannot be used for health monitoring or 

self-tuning controller design. 

C. Parameter Estimation During Abrupt Load Change 

In SMPC it is well recognised that the mode of operation can 

potentially be diverted from continuous conducting mode 

(CCM) to discontinuous conducting (DCM) if a wide load 

variation is applied, as a result loop stability margins are 

decreased and the converter may exhibit instability upon the 

mode transition [25]. Traditionally, this phenomenon is treated 

by designing a conservative controller (effectively a worst-case 

design) to cope with any abrupt changes and ensure the system 

stability.  

 
Fig. 12. Output voltage recorded on the DSP during a step load change from 5 Ω 

to 1 Ω at 0.015 s 
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Therefore, it is a great benefit if the load value is estimated and 

the controller is tuned to meet the desired bandwidth and 

stability margins. For this reason, a wide and abrupt load 

change is applied to further investigate the performance of the 

proposed self-tuned KF. Fig.12 shows the dynamic response of 

the output voltage when the load is changed from 5 Ω to 1 Ω at 

0.015 s. As previously confirmed, the KF provide excellent 

estimation performance without any perturbation in the 

observed data. This can be seen clearly in the recorded output 

voltage in Fig.12, where no excitation signal is injected. This 

scenario is deliberately applied, because in the case of ERLS 

the estimated parameters deviate immediately once the PRBS is 

disabled, so if the load changes after this instant the ERLS is 

unable to detect the new variation and another perturbation 

period is required to perform the estimation process. Therefore, 

a PRBS signal is injected before the step change applied to 

investigate the performance of ERLS during load variation. On 

the other hand, the KF estimator stays alert to the situation for a 

longer period, hence no perturbation is required to detect the 

load change. Fig.13 (a), shows the KF estimation results, with 

the transfer function poles accurately estimated before and after 

the load change with convergence time less than 1ms.  In 

contrast, the ERLS estimation has a clear offset during steady 

state, which improves after the load change as illustrated in 

Fig.13 (b). This behaviour confirms that the ERLS estimator 

requires a large perturbation signal to provide accurate and 

reliable estimation. It is worth noting that, the numerator 

parameters are not illustrated here due to the small effect of the 

load change that can be ignored according to the computed 

transfer function (12). 

 

 
𝐺𝑣𝑑  =    

0.2243 𝑧−1  + 0.1062 𝑧−2 

1 − 1.814 𝑧−1 +  0.8437 𝑧−2
 (12) 

 

To demonstrate the advantages of using the proposed tuning 

method, the related adaptation gains of a1 and a2 are recorded in 

steady state and during the load change as illustrated in Fig.14 

(a). As stated in (11), each element in the matrix Q is tuned 

accordingly to the contribution of the related parameter vector 

component in the estimator output (𝜑𝑘𝜃̂𝑘).  Therefore, the 

assigned Kalman gain elements for K1 for a1, and K2 for a2, vary 

with different rates in the correction step. This yields improved 

overall tracking performance to the newly applied load. This 

variation is confirmed by referring to (12) and (13), where 

parameter a1 decreases by 5.5% and a2 simultaneously 

decreases by 1% when the load abruptly reduces from 5Ω to 1 

Ω. Therefore, the impact of load change varies between one 

coefficient and another in the discrete transfer function. In 

contrast, the ERLS algorithm react to the load change by 

applying similar magnitude with different directions for both a1 

and a2 in the correction step, due to the single forgetting factor 

scheme as shown in Fig.14 (b). Thus, the KF approach is 

considered to be the ideal candidate in this case to provide 

reliable estimation for time varying parameters; such as load 

change which is a common scenario in power converter 

applications. 

 

 
Fig. 13. Real-time parameters estimation during a step load change from 5 Ω to 

1 Ω at 0.015s, (a) KF, (b) ERLS 

    

 
Fig. 14. Kalman Gains, (a) KF, (b) ERLS. 

V. CONCLUSION 

This paper presents a new real-time parameter estimation 

technique for DC-DC converter systems, based on a self-tuned 

Kalman Filter approach. The proposed technique has the 

potential for use in real time system identification and adaptive 

control systems for power electronic applications, such as 

switch mode power supplies. The mathematical description of 

the proposed algorithm is presented, and the algorithm is fully 

validated using a digitally controlled buck power converter.  In 

this paper, unlike a significant proportion of existing literature, 

the entire system identification and closed loop control process 

is seamlessly implemented in real-time hardware, without any 
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remote intermediate post processing analysis. Experimental 

results show that the proposed Kalman Filter provides accurate 

and fast estimation of the discrete transfer function. The 

performance of the Kalman filter is also tested without a 

perturbation signal, and the results obtained prove that the 

covariance matrix update scheme keeps the estimator stable 

and responsive for longer periods of time. Furthermore, and 

important from a practical perspective, the effect of estimator 

wind up is reduced. Additionally, a new state-of-the-art tuning 

method for the process covariance matrix has been introduced 

to optimise convergence speed and allow the estimator to track 

time varying parameters. The advantage of this has been 

successfully validated via an abrupt step change in load.  
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