

FILE SYSTEM – A COMPONENT OF OPERATING SYSTEM

Brijender Kahanwal*1, Tejinder Pal Singh2, Ruchira Bhargava1, Girish Pal Singh4

1Department of Computer Science & Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu,
Rajsthan imkahanwal@gmail.com

2Department of Applied Sciences, R. P. I. I. T., Bastara Karnal, Haryana
3Department of Computer Science and Information Technology, Maharaj Ganga Singh University, Bikaner, Rajasthan

ARTICLE INFO

Corresponding Author:
Brijender Kahanwal Department
of Computer Science &
Engineering, Shri Jagdishprasad
Jhabarmal Tibrewala University,
Jhunjhunu, Rajsthan
imkahanwal@gmail.com

KeyWords: File System, OS
Component, Disk Controller,
Buffer Cache, Hard Disk, Device
Drivers.

INTRODUCTION

ABSTRACT

The file system provides the mechanism for online storage and access to file
contents, including data and programs. This paper covers the high-level details
of file systems, as well as related topics such as the disk cache, the file system
interface to the kernel, and the user-level APIs that use the features of the file
system. It will give you a thorough understanding of how a file system works
in general. The main component of the operating system is the file system. It is
used to create, manipulate, store, and retrieve data. At the highest level, a file
system is a way to manage information on a secondary storage medium. There
are so many layers under and above the file system. All the layers are to be
fully described here. This paper will give the explanatory knowledge of the file
system designers and the researchers in the area. The complete path from the
user process to secondary storage device is to be mentioned. File system is the
area where the researchers are doing lot of job and there is always a need to
do more work. The work is going on for the efficient, secure, energy saving
techniques for the file systems. As we know that the hardware is going to be
fast in performance and low-priced day by day. The software is not built to
comeback with the hardware technology. So there is a need to do research in
this area to bridge the technology gap.

Data management is an important functionality

provided by the operating system. File systems are tasked
with volume of data management, including storing data on
the disk or over the network, and naming. These are
complex and very difficult to extend. The file system
developers are hesitant to make major changes to them,
because file system bugs may corrupt all the data on the
secondary storage device. It is a difficult and time
consuming job to develop a file system. A file system may
be a general purpose, caching, cryptographic, compressing,
or a replicated one which provides consistency control
among the copies spread across the file systems.

The Figure 1 shows all the possible layers
including hardware and the virtual views of spaces namely
user space and the kernel spaces by the operating systems.
This figure is further explained in detail in the following
sections.
A file system is that part of an operating system that
controls the storage and manipulation of files on media,
such as disks. At first thought, that may seem like a rather
straightforward task. However, to carry out this function, a
file system supporting a multiuser operating system must
perform a variety of difficult jobs.
A successful file system must do the following:

 Impose upon a blank medium a structure capable of
representing highly organized data,




 Be able to multiplex the use of storage units among
many concurrent processes,



 Contain internal synchronization for all processes,




 Enforce security by allowing data access only to those
who have legitimate authority,




 Manage the sharing of individual files by multiple
processes concurrently,




 Isolate faults stemming from imperfect physical
media or improper access (This implies minimizing the
potential for data loss due to hardware faults.), and



 Provide a standard set of interface routines to
upper layers of the operating system and user programs
and make them apply equally to devices with dissimilar
interfaces.



In conclusion, a file system must do all these things with
minimal impact on system performance.



FILE SYSTEMS ELEMENTARY TERMINOLOGY
When we talk about file systems then there are many terms
for referring to certain concepts, and so it is necessary to
define how we will refer to the specific concepts that make
up a file system. We list the terms from the ground up, each
definition building on the previous.

Figure 1: The positions of all file systems in the computer system.

 Disk: A permanent storage medium of a certain
size. A disk also has a sector or block size, which is the
minimum unit that the disk can read or write. The block
size of most modern hard disks is 512 bytes.



 Block: The smallest unit writable by a disk or file
system. Everything a file system does is composed of
operations done on blocks. A file system block is always the
same size as or larger (in integer multiples) than the disk
block size.



 Inode: The place where a file system stores all the
necessary metadata about a file. The inode also provides
the connection to the contents of the file and any other data
associated with the file. The term “inode” (which we will
use in this book) is historical and originated in UNIX. An
inode is also known as a file control block (FCB) or file
record.




 Extent: A starting block number and a length of
successive blocks on a disk. For example an extent might



 Partition: A subset of all the blocks on a disk. A start at block 1000 and continue for 150 blocks. Extents are


disk can have several partitions.
 Volume: The name we give to a collection of blocks
on some storage medium (i.e., a disk). That is, a volume
may be all of the blocks on a single disk, some portion of the
total number of blocks on a disk, or it may even span
multiple disks and be all the blocks on several disks. The
term “volume” is used to refer to a disk or partition that has
been initialized with a file system.



 Superblock: The area of a volume where a file
system stores its critical volume wide information. A
superblock usually contains information such as how large
a volume is, the name of a volume, and so on.



 Metadata: A general term referring to information
that is about something but not directly part of it. For
example, the size of a file is very important information
about a file, but it is not part of the data in the file.



 Journaling: A method of insuring the correctness of
file system metadata even in the presence of power failures or
unexpected reboots.



always contiguous. Extents are also known as block runs.


 Attribute: A name (as a text string) and value associated
with the name. The value may have a defined type (string,
integer, etc.), or it may just be arbitrary data.

DEVICE DRIVER
The device drivers have many definitions. These are
written by the programmers. Essentially, it is simply a way
to “abstract out” the details of peripheral hardware so the
application programmer doesn’t have to worry about them.
In simple systems a driver may be nothing more than a
library of functions linked directly to the application. In
general purpose operating systems, device drivers are
often independently loaded programs that communicate
with applications through some OS-specific protocol. In
multitasking systems, the driver should be capable of
establishing multiple “channels” to the device originating
from different application processes. In all cases though the
driver is described in terms of an application programming

interface (API) that defines the services the driver is
expected to support.
The device driver paradigm takes on additional significance
in a protected mode environment such as Linux. There are
two reasons for this. First, User Space application code is
normally not allowed to execute I/O instructions. This can
only be done in Kernel Space at Privilege Level 0. So a set of
device driver functions linked directly to the application
simply would not work. The driver must execute in Kernel
Space.
Actually, there are some loops we can jump through to
allow I/O access from User Space but it is better to avoid
them. The second problem is that User Space is swappable.
This means that while an I/O operation is in process, the
user’s data buffer could get swapped out to disk. And when
that page gets swapped back in, it will very likely be at a
different physical address.
So data to be transferred to or from a peripheral device
must reside in Kernel Space, which is not swappable. The
driver then has to take care of transferring that data
between Kernel Space and User Space.

1 DEVICE DRIVERS CATEGORIES
UNIX, and by extension Linux, divides the world of
peripheral devices into three categories:
 Character




 Block




 Network


The principal distinction between character and block is
that the latter, such as disks, are randomly accessible, that
is, you can move back and forth within a stream of
characters. Furthermore data on block devices is usually
transferred in one or more blocks at a time and pre fetched
and cached. With character devices the stream moves in
one direction only. You can’t for example go back and
reread a character from a serial port. Block devices
generally have a file system associated with them whereas
character devices do not.
Network devices are different in that they handle “packets”
of data for multiple protocol clients rather than a “stream”
of data for a single client. Furthermore, data arrives at a
network device asynchronously from sources outside the
system. These differences necessitate a different interface
between the kernel and the device driver.

BUFFER CACHE
The purpose of the buffer cache is to increase system
throughput by minimizing the time the CPU has to wait for
disk I/O to complete. It does this by caching recently used
data in the systems memory (read caching) and by delaying
write operation (write caching).
The buffer cache is implemented as four queues of buffers,
the locked queue, the clean queue, the dirty queue and the
empty queue. A buffer contains information about the
cached data such as the logical block number (The logical
block number is an offset into the file, i. e. zero for the first
block and one for the second etc.) and the physical disk
block number and a pointer to the cached data. Each buffer
can be used to cache between 512 byte (a sector) and 64
kilobyte worth of data but the file systems usually only
reads and writes in complete file system blocks (defaults to
8 kilo byte for Fast File System).
The locked queue is used for important data and the
buffers on this queue can’t be recycled they are always in
memory. The clean queue is for buffers that have invalid
data, valid but unchanged data or data that has already

been committed to the disk. The buffers in the clean queue
are stored in Least recently Used (LRU) order which means
that heavily accessed buffers will be stored longer in the
cache and less used buffers will be recycled quickly. The
buffers in the dirty queue are also stored in LRU-order and
it contains data that needs to be written to disk. Write
operations are delayed because a buffer that has been
written to are likely to be written to again and by
submitting all dirty buffers to the device driver
simultaneous it can sort the write operation to minimize
the seek time. The drawback of write caching is that in case
of a system crash all unwritten data is lost. The risk of data
loss is minimized by a special synchronization process that
flushes all dirty blocks to disk every 30 seconds. Data in the
dirty queue can also be flushed by a buffer cleaner process
if the number of dirty pages exceeds 25 percent or the
number of clean pages is less than 5 percent. The empty
queue is for buffers that don’t have any memory pages tied
to them.

Table 1: The buffer cache interface

System Call Description

Bread Read a block from a file.
Breadn Read a block from a file and read n

 additional blocks asynchronously.
Baread Read a block asynchronously.
Bwrite Write a block to the file.
Bawrite Write a block asynchronous to a file.
Bdwirte Place the buffer on the dirty queue but

 don’t start any I/O.
Brelse Release a buffer back to the buffer

 cache.
The buffer cache interface is presented in Figure 1. In
general a file system reads data with bread or if the file is
being read sequentially with breadn. This means that if a
file is read in logical block number order when block
number n is read it also starts to read block number n + 1
asynchronous so that when the user actually read block n +
1 it is already in memory.
File systems write data with the bdwrite function to
increase performance but critical data is written with
bwrite to maintain file system consistency in case of a
crash. The bawrite is used by the buffer cleaner to start
write operations on dirty buffers.

HARD DISKS
Hard disk drives are classified as non-volatile, random
access, digital, magnetic, data storage devices. Introduced
by IBM in 1956, hard disk drives have decreased in cost
and physical size over the years while dramatically
increasing in capacity and speed.
A hard disk drive (HDD) is also named as a hard drive, or a
hard disk, or disk drive. It is a device for storing and
retrieving digital information, primarily computer data. It
consists of one or more rigid (hard) rapidly rotating discs
(platters) which are coated with magnetic material and
with magnetic heads arranged to write data to the surfaces
and read it from them.
In this subsection we introduce the terminology related to
hard disks. In the Figure 5.1, important parts of the hard
disk are shown. It consists of one or more circular
aluminum platters, of which either or both surfaces are
coated with a magnetic substance used for recording the
data. For each surface, there is a read-write head that
examines or alters the recorded data. The platters rotate on
a common axis; typical rotation speed is 5400 or 7200
rotations per minute, although high-performance hard
disks have higher speeds and older disks may have lower

speeds. The heads move along the radius of the platters;
this movement combined with the rotation of the platters
allows the head to access all parts of the surfaces.
The processor (CPU) and the actual disk communicate
through a disk controller that is discussed in the previous
subsection. This relieves the rest of the computer from
knowing how to use the drive, since the controllers for
different types of disks can be made to use the same
interface towards the rest of the computer. The controller
may also do other things, such as caching, or automatic bad
sector replacement.

The above is usually all one needs to understand
about the hardware. There are also other things, such as
the motor that rotates the platters and moves the heads,
and the electronics that control the operation of the
mechanical parts, but they are mostly not relevant for
understanding the working principles of a hard disk.

The surfaces are usually divided into concentric
rings, called tracks, and these in turn are divided into
sectors. This division is used to specify locations on the
hard disk and to allocate disk space to files. To find a given
place on the hard disk, one might say ``surface 6, track 1,
sector 9''. Usually the number of sectors is the same for all
tracks, but some hard disks put more sectors in outer
tracks (all sectors are of the same physical size, so more of
them fit in the longer outer tracks). Typically, a sector will
hold 512 bytes of data. The disk itself can't handle smaller
amounts of data than one sector.

Each surface is divided into tracks (and sectors) in
the same way. This means that when the head for one
surface is on a track, the heads for the other surfaces are
also on the corresponding tracks. All the corresponding
tracks taken together are called a cylinder. It takes time to
move the heads from one track (cylinder) to another, so by
placing the data that is often accessed together (say, a file)
so that it is within one cylinder, it is not necessary to move
the heads to read all of it. This improves performance. It is
not always possible to place files like this; files that are
stored in several places on the disk are called fragmented.
The number of surfaces and the number of heads is the
same thing. The cylinders, and sectors vary a lot; the
specification of the number of each is called the geometry
of a hard disk. The geometry is usually stored in a special,
battery-powered memory location called the CMOS RAM,
from where the operating system can fetch it during boot
up or driver initialization.
Unfortunately, the Basic Input Output System (BIOS) has a
design limitation, which makes it impossible to specify a
track number that is larger than 1024 in the CMOS RAM,
which is too little for a large hard disk. To overcome this,
the hard disk controller lies about the geometry, and
translates the addresses given by the computer into
something that fits reality. For example, a hard disk might
have 8 heads, 2048 tracks, and 35 sectors per track. Its
controller could lie to the computer and claim that it has 16
heads, 1024 tracks, and 35 sectors per track, thus not
exceeding the limit on tracks, and translates the address
that the computer gives it by halving the head number, and
doubling the track number.

The mathematics can be more complicated in
reality, because the numbers are not as nice as here. This
translation distorts the operating system's view of how the
disk is organized, thus making it impractical to use the all-
data-on-one-cylinder trick to boost performance.

Hard disk drives have been the main device for

secondary storage of data in general purpose computers
since the early 1960s. They have maintained this position
because advances in their recording capacity, cost,
reliability, and speed have kept pace with the requirements
for secondary storage.

Figure 2 A schematic figure of a hard disk.

DISK CONTROLLER

Storage is an important part of our computer
system. In fact, most personal computers have one or more
of the following storage devices:
 Floppy drive




 Hard drive




 CD-ROM drive


Usually, these devices connect to the computer

through an Integrated Drive Electronics (IDE) interface.
Essentially, an IDE interface is a standard way for a storage
device to connect to a computer. IDE is actually not the true
technical name for the interface standard. The original
name, Advanced Technology Attachment (ATA), signified
that the interface was initially developed for the IBM AT
computer.

The disk controller is the circuit which enables the
Central Processing Unit (CPU) to communicate with a hard
disk, floppy disk or other kind of disk drive. It is a file that
lets the operating system of our computer to communicate
with the hard drives attached to the computer. The most
common hard disk controllers are Intelligent Drive
Electronics (IDE) and Small computer system interconnect
(SCSI). IDE controllers are used in personal computers
while SCSI is used in high end PCs, professional
workstations, and network file servers.

The disk controller has its own CPU with Random
Access Memory (RAM) buffer. It also has a Programmable
Read Only Memory (PROM) that adds disk commands to
Extended Color BASIC, a disk controller chip, and a little
glue to make it all work.

It is the interface that enables the computer to
read and write information to the hard disk drive. Today,
hard disk drives have the controller built on to them,
usually a circuit board that covers the bottom or on the
back portion of the drive.

Early disk controllers were identified by their
storage methods and data encoding. They were typically
implemented on a separate controller card. Modified
frequency modulation (MFM) controllers were the most
common type in small computers, used for both floppy disk
and hard disk drives. Run length limited (RLL) controllers
used data compression to increase storage capacity by

about 50%. Priam created a proprietary storage algorithm
that could double the disk storage. Shugart Associates
Systems Interface (SASI) was a predecessor to SCSI.

Modern disk controllers are integrated into the
disk drive. For example, disks called "SCSI disks" have
built-in SCSI controllers. In the past, before most SCSI
controller functionality was implemented in a single chip,
separate SCSI controllers interfaced disks to the SCSI bus.

The most common types of interfaces provided
nowadays by disk controllers are Parallel Advanced
Technology Attachment (PATA IDE) and Serial ATA for
home use. High-end disks use SCSI, Fiber Channel or Serial
Attached SCSI.
As can be seen in the above Figure 6.1, the bottom of the
drive has a circuit board, which contains the hard disk
controller of the laptop hard drive.

Figure 3: The disk controller circuit board on the bottom part of the
hard drive.

CONCLUSION
This paper gives a light on the layer of file system in the
computer system. All the upper layers and the lower layer
are shown in it that gives a sound knowledge about the file
system interaction between them. This review paper also
tells about the view of file systems that may be the user file
systems which has the interface kernel module like FUSE,
LUFS, and Callback File System. These interface modules
are intermediate between the VFS and the user space file
systems.

REFERENCES
[1.] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P.

Wright (2006), “On Incremental File System
Development”, ACM Transaction on Storage, Vol. 2,
No. 2, pp. 1-33.

[2.] M. A. Halcrow (2004), “Demands, Solutions, and
Improvements for Linux Filesystem Security”, in the
proceedings of the Linux symposium, Ottawa, Canada,
pp. 269-286.

[3.] E. Zadok et. al (1999), “Extending File Systems Using
Stackable Templates”, in proceedings of the annual
USENIX Technical Conference, USENIX Association,
Monterey, CA, pp. 57-70.

[4.] Brian Carrier (2005), “File System Forensic Analysis”,
Addison Wesley Professional, ISBN 0-32-126817-2.

[5.] Steve D. Pate (2003), “UNIX Filesystems: Evolution,
Design, and Implementation”, Wiley Publishing, Inc.,
ISBN: 0-471-16483-6.

[6.] Dominic Giampaolo (1999), “Practical File System
Design with the Be System”, MORGAN KAUFMANN
PUBLISHERS, INC. San Francisco, California, ISBN 1-
55860-497-9.

[7.] Silberschatz, P. B. Galvin, and G. Gagne (2002),
“Operating System Concepts”, 6th Ed. John Wiley &
Sons, Inc., ISBN: 9971-51-388-9.

[8.] “Hard Disk” (2009), Ver. 1.0, pp. 1-58. [Online]
Available: http://www.hdat2.com/

[9.] “Design of an IDE Hard Drive Controller”, Rensselaer
Polytechnic Institute, Advanced Computer Hardware
Design – ECSE-6700, Ver. 2.2, pp. 1-46, 2006.

[10.] B. Kahanwal, T. P. Singh, and R. K. Tuteja (2011),
“Performance Evaluation of Java File Security System
(JFSS)”, Pelagia Research Library—Advances in
Applied Science Research (ISSN: 0976-9610), Vol. 2,
No. 6, pp. 254-260.

[11.] B. Kahanwal, T. P. Singh, and R. K. Tuteja (2011),
“Towards the Framework of the File Systems
Performance Evaluation Techniques and the
Taxonomy of Replay Traces”, International Journal of
Advanced Research in Computer Science (IJARCS
ISSN: 0976-5697), Vol.2, No. 6, pp. 224-229.

