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Abstract—In this paper we consider non-parametric estimation
methods for software reliability assessment without specifying
the fault distribution, where the underlying stochastic process to
describe software fault-counts in the system testing is given by
a non-homogeneous Poisson process. A comprehensive approach
based on the kernel estimation is provided with several kernel
functions and bandwidth estimations. Next, we develop interval
estimation methods via the non-parametric bootstrap, and derive
the confidence regions of several reliability measures such as the
expected cumulative number of software faults, software intensity
function, quantitative software reliability as well. The resulting
data-driven methodology can give the useful probabilistic infor-
mation on the software reliability prediction under the incomplete
knowledge on fault distribution. In illustrative examples with a
real software fault data, it is shown that the proposed methods
provide useful software reliability measures under uncertainty
from the view point of frequentist analysis.

Index Terms—software reliability, non-homogeneous Poisson
processes, non-parametric estimation, kernel-based method, boot-
strap, confidence region

I. INTRODUCTION
Software reliability models (SRMs) are used to assess software
reliability and to control quantitatively software testing [14],
[16]. Since the quantitative software reliability is defined as
the probability that software failures caused by faults do not
occur for a given period of time, the probabilistic behavior
of fault-detection processes in the testing phase is modeled
by any stochastic point process to estimate the software
reliability. During the last four decades, SRMs based on non-
homogeneous Poisson processes (NHPPs) have gained much
popularity for describing the stochastic behavior of the number
of detected faults, because of their tractability and goodness-
of-fit performance. Goel and Okumoto [8], Musa and Okumoto
[17], Zhao and Xie [26], among others extensively develop
representative NHPP-based SRMs. Though almost all the
NHPP-based SRMs are classified into parametric models and
derived from simple debugging scenarios on the software
intensity functions, the lesson learned from a huge number of
empirical studies reported during the last four decades suggests
that the best parametric SRM does not exist, which can fit
every type of software fault data. This fact implies that the
utility to select the best parametric form may be somewhat
limited in the software reliability prediction.
On the other hand, some authors challenge to develop

the so-called non-parametric SRMs without specifying the

software intensity function or the mean value function. Miller
and Sofer [15] propose a piecewise linear function estimator
with breakpoints for the mean value function, and define
its slope as an estimate of the software intensity function.
Gandy and Jensen [7] use the well-known Aalen estimator to
estimate the software intensity function, though their estimator
is statistically consistent but not feasible in practice, because
it must be based on the multiple time-series samples of soft-
ware fault-detection time data. Barghout et al. [1] also apply
the kernel-based technique to represent the software fault-
detection time distribution for a generalized order statistics-
based SRM, where the likelihood cross validation and the
prequential likelihood approaches are used to estimate the
bandwidth. Wang et al. [21] try the similar kernel method for
an NHPP-based SRM, where they focus on an approximate
method with a local weighted log-likelihood function. Xiao
and Dohi [22],[23] develop the wavelet shrinkage estimations
without the detailed parametric form of the software intensity
function. Recently, Dharmasena et al. [6] treat the non-
parametric regression-based SRMs with kernel functions based
on local polynomial modeling, though they focus on only the
point estimation.
It should be worth noting that the above works focus on

only the point estimation of the software intensity function, but
that a comprehensive study to compare these non-parametric
methods has not been done yet in the past literature. In
this paper we consider the kernel-based technique [2],[5] and
investigate the dependence of the kind of kernel functions
and their estimation methods. More precisely, we consider
two types of SRMs; Model 1 and Model 2. Model 1 is
referred to as a kernel intensity model or an infinite failure
model whose intensity function is given by a kernel function.
Model 2 is referred to as a kernel density function or a
finite failure model whose intensity function is given by a
product of the kernel probability density and a given parameter
indicating the mean initial number of software faults before the
system test. For these two SRMs, we apply four representative
kernel functions; triangle function, quadratic function, triweigh
function and Gauss function, and two bandwidth estimation
methods; least-squares cross-validation (LSCV) [2],[5] and the
log-likelihood cross-validation (LLCV) [1],[9]. In addition, we
introduce an approximate method called the local likelihood
method in [21] with application to only Model 1 (but not
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Model 2). Further we predict the future behavior of the
software intensity function with a weighted kernel function
proposed by [3]. Hence, our models are somewhat similar to
Dharmasena et al. [6] in terms of the kernel-based estimation,
but quite different from it from several points of view on
modeling and parameter estimation.
Next we concern the interval estimation of the software

intensity function and its related software reliability measures
such as the mean value function and software reliability as
the probability that the software does not fail after the release.
Yamada and Osaki [24], Joe [10], van Pul [19], Zhao and Xie
[26] give asymptotically approximate confidence intervals of
model parameters for specific NHPP-based SRMs. Yin and
Trivedi [25] obtain an exact confidence interval of model
parameters for the exponential NHPP-based SRM. Okamura
et al. [18] develop the variational approach to approximate
the confidence interval of model parameters from the both
viewpoints of frequentist and Bayesian approaches. In this
way, considerable attentions have been paid to the interval
estimation of model parameters. However, these approach is
rather limited if one is interested in the confidence region of
arbitrary software reliability measures. For instance, when we
consider the confidence interval of the mean value function,
it does not mean the confidence region of NHPP itself. It
is worth mentioning that the probability distribution of an
arbitrary estimator has to be evaluated based on the underlying
software fault data. In other words, it is impossible to give the
confidence regions of software reliability measures themselves,
such as software intensity function, mean value function
and software reliability function, by means of the analytical
(approximate) techniques employed in the past work.
The statistical bootstrap is a combination of data re-

sampling and replication of estimation, and enables us to esti-
mate the probability distribution of arbitrary estimators under
interest, if they exist. To our best knowledge, van Pul [20] is
the first work to apply bootstrap methods to a specific SRM.
They utilize a parametric bootstrapping technique to the well-
known Jelinski and Moranda SRM [14], [16]. Apart from the
software reliability estimation, Lei and Smith [12] apply non-
parametric bootstrap methods to estimate confidence intervals
for software metrics. Very recently, Kaneishi and Dohi [11]
apply parametric bootstrapping to get the probability distri-
butions of estimators for some software reliability measures,
provided that the mean value functions for NHPPs are given.
This idea developed in [11] can be easily applied to the
non-parametric bootstrapping for NHPP-based SRMs. In this
paper, we also apply the different non-parametric bootstrap
methods from Lei and Smith [12] to estimate the software
reliability measures, where three bootstrap methods proposed
by Cowling et al. [4] are used for analysis under four kernel
functions and two bandwidth estimation methods. We estimate
95% confidence intervals of software intensity function, the
mean value function and software reliability as well as their
associated probability distributions. The results are useful to
predict the software reliability measures which have not been
studied in the past.

TABLE I
REPRESENTATIVE PARAMETRIC SRMS.

EXP Exponential
GMA Gamma
TRN Truncated normal
LTR Lognormal
TLG Truncated logistic
LLG Log logistic
TXA Truncated extreme (maximum)
LXA Logarithmic extreme (maximum)
TXI Truncated extreme (minimum)
LXI Logarithmic extreme (minimum)

II. SOFTWARE RELIABILITY MODELING

A. NHPP-based SRMs

Suppose that the system test of software starts at time t = 0.
Let {N(t), t ≥ 0} be the cumulative number of software faults
detected by time t and be a stochastic (non-increasing) point
process. In particular it is said thatN(t) is a non-homogeneous
Poisson process (NHPP) if the following conditions hold:

• N(0) = 0,
• {N(t), t ≥ 0} has independent increments,
• Pr{N(t+Δt)−N(t) ≥ 2} = o(Δt),
• Pr{N(t+Δt)−N(t) = 1} = λ(t)Δt+ o(Δt),

where λ(t) is the intensity function of an NHPP, and o(Δt)
is the higher term of Δt. Then the probability mass function
(p.m.f.) of the NHPP is given by

Pr{N(t) = n} =
{Λ(t)}n

n!
exp{−Λ(t)}, (1)

Λ(t) =

∫ t

0

λ(x)dx, (2)

where the function Λ(t) = E[N(t)] is called the mean
value function and denotes the expected cumulative number
of software faults detected by time t. Hence, the intensity
function is regarded as the expected number of software faults
per unit time at time t.
Suppose that n software faults are detected by time t and

that the fault-detection times, which are the random variables,
are given by 0 < T1 ≤ T2 ≤ . . . ≤ Tn. Given the realizations
of Ti (i = 1, 2, . . . , n), ti, we can regard the pair (i, ti) as a
realization of the underlying NHPP, N(t). Without any loss of
generality, we define the random variable Xi = Ti/Tn ∈ (0, 1]
with realizations xi = ti/tn ∈ (0, 1] for i = 1, 2, . . . , n.
If the parametric form of an NHPP is known with a specified
mean value function, the estimation of an NHPP is reduced
to an estimation of model parameters. Let θ be the model
parameters (vector) involved in the intensity function, so that
we re-express the mean value and the intensity functions by
Λ(t;θ) and λ(t;θ), respectively. For the scaled fault-detection
time data xi (i = 1, 2, . . . , n), the likelihood function is given
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(i) Intensity function.
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(ii) Mean value function.
Fig. 1. Behavior of estimates of software intensity and mean value functions
with piecewise-linear interpolation estimator.

by

L(θ) = exp{−Λ(xn;θ)}
n∏

i=1

λ(xi;θ). (3)

As described in Section I, the NHPP-based SRMs can be
classified into two types; Model 1 and Model 2. In Model 1,
the mean value function is arbitrary and may be unbounded,
i.e., limt→∞ Λ(t;θ) → ∞ with finite θ. On the other hand,
it is assumed that the mean value function in Model 2 is
bounded, so limt→∞ Λ(t;θ) → ω, where ω ∈ θ is the mean
residual number of software faults remaining in a software
system before the system testing. Then it is common to assume
Λ(t;θ) = ωF (t;α), where F (t;α) is an arbitrary cumulative
distribution function (c.d.f.) with the support (0, 1) having
the probability density function (p.d.f.) f(t;α) and α is the
parameter vector, i.e., θ = (ω,α) and λ(t;θ) = ωf(t;α). In
Table I, we summarize the representative NHPP-based SRMs
which can be categorized to Model 2, where each model
corresponds to the p.d.f. of software fault-detection time.

B. Kernel-based SRMs
Next consider the case where the software intensity function
λ(x) is completely unknown. In this case, the method of
maximum likelihood does not work under the incomplete
knowledge on the intensity function and/or fault-detection
time distribution. The most intuitive but simplest method to
estimate the software intensity function is a piecewise-linear

interpolation. For the n software fault-detection time data,
(i, xi) (i = 1, 2, · · · , n), define λ̂(x) = 1/(xi−xi−1) (xi−1 <
x ≤ xi;x0 = 0). Miller and Sofer [15] apply the following
step-function estimate with breakpoints xi:

Λ̂(x) = i+ (x− xi)/(xi+1 − xi),
xi < x ≤ xi+1; i = 0, 1, · · · , n− 1. (4)

The resulting estimate of the mean value function in Eq.(4) is
obtained by plotting n failure points and connecting them by
line segments. Since only one sample path ti; i = 0, 1, 2,
. . . , n, is available in a single software testing, it seems
to be the straightforward but the most natural estimate of
the cumulative number of software faults, because the mean
squares error with the underlying software fault data is always
zero. Figure 1 illustrates an estimate of the intensity function
and its associated mean value function with real time scale
ti = xitn (i = 0, 1, 2, . . . , n). It can be seen that an estimate
of the intensity function tends to fluctuate everywhere with big
noise. Miller and Sofer [15] propose a smoothing technique of
the intensity function by means of a quadratic programming,
and concern to smooth the fluctuated estimate.
In this paper we focus on alternative approach based on

the kernel function. Diggle and Marron [5] prove the equiv-
alence between the well-known kernel density estimation of
a continuous p.d.f. and the kernel intensity estimation of an
NHPP. Let xi ≡ ti/tn ∈ (0, 1] be the normalized data set and
define the arrival time sequence of the normalized NHPP by
χ = {x1, . . . , xn}. Then, an estimate of the intensity function
of the normalized NHPP, which is called the kernel intensity
function, is given by

λ̂(x | χ) = 1

h

n∑
i=1

K
(x− xi

h

)
, (5)

where the function K(·) is the kernel function and h (> 0)
is the bandwidth. Barghout et al. [1] and Wang et al. [21]
assume the Gaussian kernel function. In this paper we use the
following four kernel functions:

K1(x) = (1− |x|)I[−1,1](x) (Triangle), (6)

K2(x) =
3

4
(1− x2)I[−1,1](x) (Quadrtic), (7)

K3(x) =
15

16
(1− x2)2I[−1,1](x) (Triweigh), (8)

K4(x) =
1√
2π

exp(−x2

2
) (Gaussian), (9)

where

I[−1,1](x) ≡
{
1 for x ∈ [−1, 1],

0 otherwise
(10)

is the indicator function. Since the kernel function with an
arbitrary design parameter h is replaced by the intensity
function, the present model can be classified into Model 1.
On the other hand, the intensity function in Model 2 is

defined by λ(x;θ) = ωf(x;α). Since the function f(x;α)
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is the p.d.f., it is straightforward to apply the common kernel
density estimation by

f̂(x | χ) = 1

nh

n∑
i=1

K

(
x− xi

h

)
. (11)

The similar but rather simplified problems are considered
in Barghout et al. [1] with Eq.(11). In this case, another
parameter ω has to be estimated in addition to the bandwidth
h.

C. Non-parametric Estimation
It is well known in the kernel-based estimation that the
determination of bandwidth h but not the selection of the
kernel function is more sensitive to the estimation accuracy.
Diggle and Marron [5] apply the least-squares cross-validation
(LSCV) method to determine the bandwidth. In LSCV, the
software fault-detection time data are divided into training
data and validation data. By leaving out one of each i-th
(i = 1, 2, . . . , n) data from χ, we construct n training
data sets consisting of (n − 1) software fault-detection time
data. For an arbitrary time t, define the integrated least squares
error of the software intensity function λ̂(x) by

ISE(h) =

∫ 1

0

(
λ̂(x)− λ(x)

)2

dx. (12)

By removing independent terms of h in Eq.(12), Diggle
and Marron [5] show that obtaining the optimal bandwidth
minimizing ISE(h) is equivalent to obtaining h minimizing
the following function:

CV (h) =

∫ 1

0

λ̂(x)2dx− 2
n∑

j=1

λ̂h,j(xj), (13)

where

λ̂h,j(x) =
1

h

n∑
i=1,i �=j

K
(x− xj

h

)
. (14)

On the other hand, if one is interested in the maximization
on the likelihood function with the unknown mean value
function, we can apply the log-likelihood cross-validation
(LLCV) method [9] for the same n training data sets, and
determine the optimal bandwidth h maximizing it. Define the
log-likelihood function:

lnL(h) =

n∑
j=1

ln λ̂h,j(xj)−
n∑

j=1

Λ̂h,j(xj), (15)

Λ̂h,j(x) =

∫ x

0

λ̂h,j(s)ds. (16)

These two estimation methods; LSCV and LLCV, are used for
Model 1.
In Model 2, both LSCV and LLCV are applicable by

replacing the intensity functions in Eqs. (13) and (15) by
λ̂(x | χ) = ω̂f̂(x | χ), where the objective functions involve
two decision variables (ω, h). However, it should be noted
that the resulting intensity function based on LSCV in Model

2 is exactly equivalent to that in Model 1, because substituting
λ̂(x | χ) = ω̂f̂(x | χ) into Eq.(13) yields

CV (ω, h) =
(ω
n

)2
∫ 1

0

λ̂(x)2dx− 2
(ω
n

) n∑
j=1

λ̂h,j(xj)

(17)

and an estimate of the initial number of software faults before
the system testing in Model 2 is always given by ω̂ = n.
Focusing on the difference between estimates of the intensity
function in Eq.(5) and the p.d.f. in Eq.(11), Model 1 is exactly
same as Model 2 in the sense of LSCV. In LLCV, it is evident
to show that ω̂ 	= n in general and two models can be
distinguished.
Apart from two conventional methods, LSCV and LLCV,

Wang et al. [21] consider the so-called local likelihood method
(LLM) for Model 1 with the Gaussian kernel function in
Eq.(9). By utilizing the logarithmic transformation of the
intensity function, i.e., g(x) = log λ(x), they apply the linear
approximation around the point t0 to the function g(x) as

g(x) ≈ a+ b(x− t0). (18)

Substituting Eq.(18) into Eq.(3), we have the following ap-
proximate log likelihood function as a function of t0:

lnL(t0, a, b) = −
∫ 1

0

exp{a+ b(x− t0)}dx

+
n∑

i=1

{a+ b(xi − t0)}. (19)

To make this approximation effective at the points far from
t0, Wang et al. [21] modify the approximate log likelihood
function by regarding the Gaussian kernel function K4(·) as
weights, and give the weighted log likelihood function by

lnL(t0, a, b) =

n∑
i=1

K

(
xi − t0

h

)
{a+ b(xi − t0)}

−
∫ 1

0

K

(
x− t0

h

)
exp{a+ b(x− t0)}dx. (20)

The next step is to solve the simultaneous weighted log
likelihood functions:

n∑
j=1

K

(
xj − t0

h

)

=

∫ 1

0

K

(
x− t0

h

)
exp{a+ b(x− t0)}dx, (21)

n∑
i=1

K

(
xi − t0

h

)
(xi − t0)

=

∫ 1

0

K

(
x− t0

h

)
(x− t0) exp{a+ b(x− t0)}dx

(22)

with respect to t0 ∈ [0, x] and to seek the parameters (â, b̂),
where an estimate of the intensity function is given by λ̂(t0) =
exp(â). By changing the estimation point t0 sequentially for
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an arbitrary time point x ∈ (0, 1], the bandwidth h is estimated
so as to satisfy

ĥ =
xl+k − xl−k

2
, (23)

where xl is the closest scaled fault-detection time data to t0,
and k is the integer satisfying ĥ = t0 − xl−k if l + k > n
(ĥ = xl+k − t0 if l − k < 1)．Note again that LLM can be
applied to only Model 1, but not Model 2.

D. Prediction with Weighted Kernel Functions
Based on the past observation on software fault-detection time
χ, it is possible to estimate the software intensity and the
mean value functions defined on x ∈ [0, 1], However, since
the non-parametric estimation methods employed here are not
defined on x ∈ (1,∞), they cannot be applied to prediction
of the future behavior of software fault-detection phenomenon.
Caires and Ferreira [3] notice that an estimate of the intensity
function tends to take larger value if many arrival time data
are located around the estimation point of time, and propose
to apply a weighted kernel function for prediction. Define

λ̂p(x|χ) =
n∑

i=1

λ̂(xi)K(x−xi

h )∑n
j=1 K(

x−j

h )
. (24)

In the above expression, the weighted kernel function cor-
responds to a weighted normalized distance between the
software fault-detection time and its estimate. As an effect of
the weighted kernel function, it should be emphasized that the
information on the intensity function estimated at the closer
time to the prediction point reflects to the prediction in the
future. In this prediction method, the bandwidth h influences
to the range of software fault-detection time data and depends
on the accuracy of prediction. In the prediction of the intensity
function, we use the plug-in estimator ĥ with LSCV and LLCV
based on the past observation.

III. NON-PARAMETRIC INTERVAL ESTIMATION

A. Bootstrapping
The kernel-based estimation in Section II can classified
into a point estimation of the software intensity function.
Since the estimate is based on only one sample sequence
χ = {x1, . . . , xn}, it does not take the uncertainty of
the corresponding estimator itself as a random variable into
consideration. The statistical bootstrap is a combination of
data re-sampling and replication of estimation. If the under-
lying c.d.f. of the software fault-detection time is completely
known, the Monte Carlo simulation can be used to generate
realizations of the random samples. On the other hand, even
if the underlying c.d.f. is unknown, it is possible to re-sample
the data with replacement. This is called the bootstrap sample.
For the purpose in the software reliability assessment, we
replicate m software fault-detection time data sets from the
underlying data χ. Let X∗

ki be the random sample of xi at k-th
(= 1, 2, · · · , m) sampling. For the kernel-based estimation
in Model 1 and Model 2, we first estimate the bandwidth h

and/or ω. Second, we take the following three bootstrapping
(BSP) methods to replicate the data sets.

(i) BSP Method 1: Based on an estimate of software intensity
function λ̂(x) with one of four kernel functions (K1(·) ∼
K4(·)) and one of two estimation methods (LSCV, LLCV)
in each model (Model 1 or Model 2), we generate the pseudo
random time sequence X∗

ki at k-th simulation, where the well-
known thinning algorithm [13] is used to generate the random
variates. More precisely, suppose that the intensity (but not
mean value) function is bounded from the above and takes
the maximum value λ̄ (≥ λ(x)) for an arbitrary x ≥ 0.
Then, it can be shown that X∗

k1, X
∗
k2, · · · (k = 1, 2, · · · ,m)

follows an NHPP with the intensity function λ̄, and that the
i-th arrival time Xki having the intensity function λ(x∗

ki)/λ̄ is
independent of the other arrival times. The resulting bootstrap
sample x∗

ki (i = 1, 2, . . . , k = 1, 2, . . . ,m) is called BSP 1 in
this paper.

(ii) BSP Method 2: Next we consider the re-sampling based
method. Given the underlying software fault-detection time
data χ = {x1, . . . , xn}, we re-sample exactly n software
fault-detection time data with replacement. Let N∗

k be the
number of fault-detection time after removing the identical
data at the k-th sampling. Then, we have the bootstrap sample
x∗
ki (i = 1, 2, . . . , N∗

k , k = 1, 2, . . . ,m) and call this BSP 2.

(iii) BSP Method 3: The third method is almost similar to
BSP 2, where the number of software fault-detection times re-
sampled is given by the Poisson distributed (pseudo) random
number with mean n. We call this sample BSP 3.

Based on the above three methods, the BSP estimate of the
intensity function is given by

λ̂∗(x | χ) =

∑m
k=1 λ̂

∗
k(x | χ)
m

, (25)

where

λ̂∗
k(x | χ) = 1

h

N∗
k∑

i=1

K
(x− x∗

ki

h

)
(26)

and

λ̂∗
k(x | χ) = 1

N∗
kh

N∗
k∑

i=1

ω̂K
(x− x∗

ki

h

)
(27)

in Model 1 and Model 2, respectively.

B. Estimation of Probability Distributions of Estimators

Once an estimate of the software intensity function based on
the BSP sample is given, we can define the ordered statistics of
the intensity function by 0 = λ̂∗

(0)(x) ≤ λ̂∗
(1)(x) ≤ λ̂∗

(2)(x) ≤
. . . ≤ λ̂∗

(m)(x) at time x, and regard as the complete sample
from the random variable λ̂∗(X). If there exists the c.d.f.
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of λ̂∗(X), the empirical distribution function Gkm(λ) corre-
sponding to the sample estimates λ̂∗

(k)(x) (k = 0, 1, 2, . . . ,m)
is given by

Gkm(λ) =

{
k/m for λ̂∗

(k)(x) ≤ λ < λ̂∗
(k+1)(x),

1 for λ̂∗
(m)(x) ≤ λ.

(28)

It is well known that the above empirical c.d.f. approaches to
the real (but unknown) c.d.f. of the estimator λ̂∗(X) as m →
∞ and is strongly consistent. The confidence region of λ̂∗(X)
is defined as the quantile of Eq. (28), so that the two-sided
100p% confidence interval is given by (λ̂∗

(iL)(x), λ̂
∗
(iU )(x)),

where iL and iU are indices corresponding to 100(1 − p)%
and 100p%-quantiles satisfying Gkm(λ̂∗

(iL)(x)) = 100(1− p)

and Gkm(λ̂∗
(iU )(x)) = 100p, respectively. From the empirical

c.d.f. of λ̂∗(X), we can obtain not only the mean E[λ̂∗(X)] =
λ̂∗(x) and its higher moments, but also the confidence interval
with significant level 100p%. The similar approach can be
taken to the other reliability measures. For instance, if one is
interested in the cumulative number of faults by time x, then
it is possible to obtain the ordered estimates of the mean value
function 0 = Λ̂∗

(0)(x) ≤ Λ̂∗
(1)(x) ≤ Λ̂∗

(2)(x) ≤ . . . ≤ Λ̂∗
(m)(x)

and its associated empirical distribution, which is the c.d.f. of
an estimator of the mean value function Λ̂∗(X) (but not the
NHPP {N(x), x ≥ 0}).
This idea can be applied to an interval estimation of

the quantitative software reliability. The software reliability
function is defined as the probability that the software system
does not fail during the operational period τ after releasing at
time x = 1. For an arbitrary release time x, define the software
reliability function by

R(τ |x) = e−
∫ τ+x
t

λ(s)ds = eΛ(x)−Λ(τ+x). (29)

Since the prediction of the intensity function is given by
λ̂p(x + τ |χ) in Eq.(24), we obtain the point estimates of
the mean value function Λ̂p(x + τ |χ) and the reliability
function R̂p(τ |x) from Eq.(29). Next, based on an arbitrary
BSP method, we have the ordered statistics of the reliability
function R̂p,(1)(τ |x) ≤ R̂p,(2)(τ |x) ≤ . . . ≤ R̂p,(m)(τ |x) and
get the corresponding empirical c.d.f. of an estimator of the
reliability function R̂p(τ |X).

IV. NUMERICAL ILLUSTRATIONS
A. Data Set
We analyze four data sets on the software fault-detection
time data, which is observed in real software development
projects. Here we just introduce the results for one of them for
brevity. The underlying data set consists of 86 fault-detection
time data and is the well-known reference data recorded in
AT&T [14], [16]. We use four kernel functions and three
(one) parameter estimation methods in Model 1 (Model 2) for
the point estimation, and three BSP methods for the interval
estimation. As competitors of non-parametric NHPP-based
SRMs, we try to investigate the goodness-of-fit performance
on ten parametric NHPP-based SRMs in Table I, and calculate

TABLE II
COMPARISON OF GOODNESS-OF-FIT PERFORMANCE WITH PARAMETRIC

NHPP-BASED SRMS.

Model MLL MSE
EXP -686.538 0.219
GMA -686.348 0.172
TRN -687.012 0.295
LTR -685.840 0.127
TLG -686.799 0.253
LLG -686.125 0.139
TXA -686.724 0.244
LXA -685.854 0.129
TXI -687.205 0.334
LXI -686.293 0.168
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Fig. 2. Comparison of estimates of the initial number of software faults using
10 parametric NHPP-based SRMs.

the maximum log likelihood (MLL) and the mean squares
error (MSE) between the estimated mean value function and
the fault data given by

MSE =

√∑n
i=1{i− Λ̂(xi)}2

n
. (30)

B. Goodness-of-Fit Test
Table II presents MLL and MSE for ten parametric NHPP-

based SRMs, where LTR provides the largest MLL and the
smallest MSE among them. It is noted that the number of
free parameters in the parametric NHPP-based SRMs may be
different from each other (2 or 3), the comparison through
MLL and MSE should be adjusted with the information criteria
such as Akaike information criterion (AIC) and Bayesian
information criterion (BIC). In Fig. 2, we plot estimates of the
initial number of software faults using 10 parametric NHPP-
based SRMs. For the number of software faults detected in
the system testing n = 86, LTR overestimates the number of
residual faults, because the maximum likelihood estimate of
ω tends to approach to the number of underlying fault count
data. In other words, it can be concluded that except LTR and
LXA, almost parametric NHPP-based SRMs show the similar
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TABLE III
COMPARISON OF GOODNESS-OF-FIT PERFORMANCES WITH

NON-PARAMETRIC NHPP-BASED SRMS (MODEL 1).

Kernel Estimation MLL MSE
LLM -679.990 0.176

K1 LSCV -687.451 0.755
LLCV -675.813 0.197
LLM -682.939 0.182

K2 LSCV -687.752 0.737
LLCV -680.503 0.216
LLM -681.665 0.202

K3 LSCV -687.821 0.754
LLCV -677.493 0.190
LLM -684.114 0.113

K4 LSCV -687.876 0.784
LLCV -562.353 0.061

TABLE IV
COMPARISON OF GOODNESS-OF-FIT PERFORMANCES WITH

NON-PARAMETRIC NHPP-BASED SRMS (MODEL 2).

Kernel Estimation MLL MSE
K1 LLCV -675.803 0.110
K2 LLCV -680.487 0.119
K3 LLCV -677.485 0.108
K4 LLCV -562.386 0.141

goodness-of-fit.
Tables III and IV present MLL and MSE for the non-

parametric NHPP-based SRMs in Model 1 and Model 2,
respectively. In Model 1 it is seen that the Gaussian kernel
K4(·) with LLCV provides the largest MLL and smallest
MSE. Comparing with the results on the parametric NHPP-
based SRMs in Table II, the difference are quite remarkable
though Model 1 involves only one free parameter h. In Table
IV, we find that Model 2 also provides the better goodness-
of-fit performance than the parametric NHPP-based SRMs
when the Gaussian kernel is assumed. In this case, the kernel
function K3(·) with LLCV takes a bit smaller MSE than
K4(·), but this difference is not so remarkable. In general,
it is worth noting that Model 1 is superior to Model 2 under
the same kernel function and the same parameter estimation,
because the degree of freedom in Model 2 with parameters
(ω, h) is less than that in Model 1, and it has a restriction in
the form of λ(x) = ωf(x). Figure 3 is the plot of estimates
of the initial number of software faults using non-parametric
NHPP-based SRMs in Model 2. For n = 86, it is seen that
the estimation results on the initial number of faults are more
stable than the results in Fig. 2 and do not depend on the kind
of kernel functions.
In Fig.4, we show the estimation results of both software

intensity and mean value functions in Model 1 with different
parameter estimation methods, where the Gaussian kernel
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Fig. 3. Comparison of estimates of the initial number of software faults using
non-parametric NHPP-based SRMs (Model 2).
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Fig. 4. Behavior of estimates of software intensity and mean value functions
in Model 1 with K4.

function is assumed. The LLCV with largest MLLL and small-
est MSE gives a fluctuated estimate of the intensity function
with big noise, which is similar to that in the piecewise-
linear interpolation [15] in Fig. 1. On the other hand, the
estimates by means of LSCV and LLM are much smoother.
When we look at the mean value function, LLCV and LLM
rather fit the cumulative number of software faults, and this
observation is consistent to the results in Table III. Since MLL
and MSE are the criteria to measure the probabilistic distance
and the vertical distance between SRMs and the underlying
data, respectively, they do not essentially take account of
the functional smoothness. In Fig. 5, we depict estimates of
both software intensity and mean value functions in Model 2,
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Fig. 5. Behavior of estimates of software intensity and mean value functions
in Model 2.

TABLE V
COMPARISON OF PREDICTIVE MEAN SQUARES ERROR.

Kernel Estimation PMS
Models 1 & 2 (LSCV) 1017.75

K1 Model 1 (LLCV) 722.34
Model 2 (LLCV) 454.90

Models 1 & 2 (LSCV) 927.08
K2 Model 1 (LLCV) 1784.26

Model 2 (LLCV) 1311.97
Models 1 & 2 (LSCV) 1212.63

K3 Model 1 (LLCV) 1188.13
Model 2 (LLCV) 741.70

Models 1 & 2 (LSCV) 788.89
K4 Model 1 (LLCV) 4478.73

Model 2 (LLCV) 3144.91

where only the Gaussian kernel function tends to provide the
similar fluctuated estimate of the intensity function to Fig. 1 as
well. In this case, it can be checked that the Gaussian kernel
function somewhat overestimates the cumulative number of
faults, comparing with K1(·), K2(·) and K3(·).
C. Predictive Performance
Next we investigate the predictive performance of the

kernel-based methods. As mentioned in Section II, we predict
the future software intensity function with a weighted kernel
function in Eq.(24). Especially we concern the one-stage look-

ahead prediction of the fault-detection time and estimate the
next fault-detection time from the observation point [1]. More
specifically, we estimate the (k + 1)-st fault-detection time
x̂k+1 from k-th (k = 1, 2, . . . , n) data point so as to satisfy∫ x̂k+1

xk

λ̂p(x | χ)dx = 1. (31)

The predictive performance is measured by the predictive
mean squares error given by

PMS =

√∑l
j=1(x̂k+j − xk−1+j ])2

l
, (32)

where k is the number of detected faults at the observation
time xk and l is the number of predictions. In Table V we com-
pare the predictive mean squares errors with different kernel
functions and estimation methods. We do the one-stage look
ahead prediction of the fault-detection time from the 75% point
of the whole data. It is seen that Model 2 with K1 and LLCV
gives the smallest PMS and that the predictive performance is
different from the goodness-of-fit performance. This is a well-
known result in the software reliability engineering. Finally,
we recommend the kernel functions K1(·) and K4(·) with
LLCV for both Model 1 and Model 2.

D. Interval Estimation
Next, we estimate the confidence interval of estimates of

several reliability measures by applying three BSP methods.
Throughout this paper, we fix the significance level as 100p =
95%. We generate m = 10000 samples based on the three
BSP methods, and obtain m = 10000 estimates of software
intensity function and mean value function. Based on these
estimates, we obtain the corresponding empirical distributions
of estimators, and calculate the 95% confidence interval. In
Figs. 6-8, we plot the 95% confidence intervals of software
intensity function and mean value function at the observation
point, 25%, 50%, 75% and 100% of the whole data, where
Model 1 and Model 2 with LSCV, Model 1 with LLCV and
Model 2 with LLCV are examined for the Gaussian kernel
functionK4(·). Looking at Fig. 6, it is seen that the cumulative
number of detected faults is rather underestimated with LSCV.
Also, in Fig. 8, we find that Model 2 with LLCV tends to
overestimate the real cumulative number of faults. As Model
1 with LLCV provides the best goodness-of-fit performance
in Table III, we can check that the point estimate in Eq.(25)
based on the BSP sample shows the very nice goodness-of-fit
result on the mean value function.
On the confidence interval, it is seen that the two-sided

95% confidence intervals of software intensity function in
Model 1 with LSCV are almost similar among three BSP
methods. On the other hand, the interval length of the mean
value function for BSP 2 is shorter than those for BSP 1 and
BSP 3 in the latter system testing phase. From the results
including other models in Figs. 6 and 8, it can be seen that the
confidence intervals based on BSP 2 method provide narrow
bands comparing with the other BSP methods. Although we
omit the discussion for brevity, the comparison with parametric
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Fig. 6. Confidence intervals of software intensity and mean value functions
in Models 1 & 2 with LSCV.

bootstrapping [11] tells us that the non-parametric confidence
region of software intensity function tends to fluctuate in time
more than the parametric one, but the interval estimation of
the other reliability measures are quite stable in both methods.
In Table VI, we derive the two-sided 95% confidence intervals
of software reliability function, where the operational period
is given by τ = 581.11. When we focus on the Gaussian
kernel function, it tends to estimate the confidence interval
of quantitative software reliability as smaller value than the
other kernel functions for an arbitrary BSP method, except
with LSCV. That is, the estimation method based on LSCV
always provides the relatively higher lower limit λ̂∗

(iL)(x) than
the other methods in the case with the Gaussian kernel. Based
on the predictive performance in Table V, it can be checked
that Model 1 (LLCV) with K1(·) and Model 2 (LLCV) with
K1(·)/K3(·) give the similar two-sided confidence regions.
The lesson learned from this example is that the two-sided
95% confidence interval of quantitative software reliability
function has wide bands and depends on the kind of BSP
method, bandwidth estimation method and the kernel function.

V. CONCLUSIONS

In this paper, we have developed a comprehensive software
reliability assessment method under incomplete knowledge on
software fault-detection time distribution, and investigated the
goodness-of-fit performance and the predictive performance
under several combinations of estimation techniques. The pro-
posed kernel-based approach has been utilized to the interval
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Fig. 7. Confidence intervals of software intensity and mean value functions
in Model 1 with LLCV.

estimation of some significant software reliability measures
such as the software intensity function, mean value function
and the software reliability function.
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