
Systems Modeling & Requirements Specification Using ECSAM:

A Method for Embedded Computer-Based Systems Analysis

Abstract

ECSAM is a requirements engineering and modeling

method for computer-based systems (CBS). It is

practiced and enhanced since 1980 by large numbers of

systems and software engineers. ECSAM was developed

in part at Israel Aircraft Industries for the analysis and

design of complex reactive embedded systems and

software.

ECSAM guides the developers in systematic analysis

and modeling of systems being developed and describing

those using three consistent views; its conceptual

architecture, operating modes, and system’s capabilities.

Each capability is further analyzed and described as a

dynamic process. Using ECSAM it is possible to

generate systematically the system’s use cases and the

resulting operational scenarios. The modeling technique

is applicable in the analysis of systems and any level of

subsystems. The method guides the developer in the

derivation of the system requirements and their

systematic allocation to and association with the model’s

elements at the respective levels.

ECSAM was the prime motive for the development of

the Statecharts technology developed by Prof. David

Harel as part of the method.

The paper provides an overview of the ECSAM

method, which is described in detail in a book that will be

published in 2004 [1].

1. Introduction

Computer-based systems have become ubiquitous in

recent years. Raising your eyes, you are bound to notice
numerous, common devices that are computer-embedded

or computer-based: cellular phones, digital watches, cars,

CD and mini-disc players, and many more. The
pervasiveness of computer-based devices and the ability

to interconnect them into integrated systems brought

about the development of larger, more complicated
systems. Some of these are relatively small and simple,

such as digital cameras; some are more complicated, such

as the networked computer-based devices controlling the

operation of our cars; while others are large and complex,
such as telephone exchanges or integrated air-traffic

control systems.

This paper introduces ECSAM, an Embedded
Computer Systems Analysis and Modeling method [1].

The ECSAM model-based method allows systematic
analysis of the interaction of a system with its operational

environment, and provides a procedure for the systematic

identification of characteristics needed by the system to
fulfill its missions. Among these characteristics are the

outputs the system must produce, the inputs needed to

produce these outputs, the dynamic processes that
transform the inputs to outputs, and the operating modes

that determine when specific processes should be

performed. The ECSAM method supports a systematic
object-based decomposition of the proposed system into

conceptual subsystems or objects, allowing the analysis
and the specification of the subsystems and how they

should interact to satisfy the system’s objectives.

Although the method was originally developed to help
in the analysis of embedded systems—which typically

consist of hardware and software—over the years it has

shown its effectiveness in the analysis of a wide range of
system types. It was successfully applied in the analysis

of systems composed of software only, hardware-

software systems, as well as in the analysis of operation
of organizations and teams.

The ECSAM method addresses both the static and
dynamic characteristics of such systems, as well as their

hardware and software aspects. By providing a

consistent model of the system, ECSAM supports the
systematic treatment of stakeholders’ requirements, as

well as the methodical derivation of requirements that

specify the mandatory characteristics of the system and of
its subsystems. Such characteristics are properties that

the resulting system must possess to be able to fulfill its

mission.
The analysis process focuses initially on the E-level

model, an extended scope of the system. That scope
includes the system—presented as a “black box” whose

inner workings are not of concern at this stage of

analysis—and the environmental systems with which it
interacts. The E-level model defines the system

boundary, the external (“environmental”) systems with
which the system interacts, the interfaces between the

system and the external systems, and the known

interfaces between the external systems. The dynamic
view of the E-level model provides the basis for the

systematic derivation of use cases and the resulting

operational scenarios that define the required dynamic
behavior of the system, as well as for the derivation of

operational and test requirements.
The static and dynamic properties of the system

discovered through analysis of the E-level model serve as

a starting point for the second phase of analysis in which
the inner workings of the system to be built are modeled

and analyzed using a “white box” modeling approach.

The transition between black-box and white-box models
is carried out by limiting the scope of analysis to the

system and its interfaces, creating a system model that is

called the “S-level model.” The S-level model is a
hierarchical conceptual model of the system, which

allows separate analysis of conceptual subsystems to a

level of refinement deemed appropriate by the analyst.
The analysis of the S-level model addresses its static and

dynamic properties in a manner similar to the one
employed in the analysis of the E-level model. During

successive iterations of modeling and analysis, the system

is broken down into lower-level conceptual (logical)
subsystems.

The analysis process verifies the correctness of the

decomposition and the consistency of the properties of
the system and its subsystems (at any level). Correctness

is verified when the analyst can demonstrate that the

static and dynamic properties of the system (or any of its
subsystems) can be expressed in terms of the properties

of its conceptual components.
Requirements originally allocated to the system are

iteratively allocated to progressively lower-level

subsystems. This flow-down process drives the
refinement of high-level requirements and determines the

mandatory characteristics of the individual subsystems.

The ECSAM method uses several complementary and
interrelated views,1 all of which utilize graphical

representations. ECSAM also uses formal (graphical and

mathematical) semantics, wherever applicable, in the
specification of the E-level and S-level models producing

executable specifications that allow the analysts to test

the system’s conceptual, static specification and simulate
its dynamic behavior.

Figure 1. The ECSAM views

2. The ECSAM modeling approach

ECSAM facilitates the creation of clear, consistent,

and testable conceptual black-box and white-box models
of reactive CBSs; it also enables the systematic derivation

of the computer-based systems’ requirements and their
allocation and association with the model elements.

Using the ECSAM method, analysts can investigate the

hardware, software, and human-related aspects of single-
and multi-computer systems concurrently during all

development phases. The method also dictates

concurrent and iterative analysis of static and dynamic
aspects, to provide for internal consistency of the model.

Following the recommendations of Swartout [2], ECSAM

suggests concurrent analysis of requirements and top-
level design, as appropriate, during development of the

conceptual model.

Conceptual models specify families of systems (or

products) that can be mapped onto different design

architectures having similar functionality (although not
necessarily similar performance or other non-functional

characteristics), depending on implementation
constraints. Existing model templates and generic

specifications of known systems and subsystems can be

reused, considerably shortening the development process.

2.1 Overview of the ECSAM model

The following sections describe the general

characteristics of ECSAM models. Due to the inherent

complexity of embedded computer systems, it is
impractical to try to describe all of their essential

properties using a single view or model. A practical

solution for the modeler is to use several interrelated
views, modeling the system’s static and dynamic aspects,

as shown in Fig. 1. Focusing on various model views,

one at a time, reduces the level of complexity the analyst
faces at each analysis step.

As shown in Fig. 1, we can view ECSAM as a kind of
prism that splits the system description into a conceptual

model and a design model. The conceptual model is

further divided into three interrelated views.

2.1.1 The ECSAM conceptual model. The ECSAM

conceptual model is described by three views:

The conceptual architecture view describes the

system’s conceptual structure, namely, its
internal conceptual subsystems, their

functionality, and the external and internal

interfaces of the system.

The functional capabilities view describes the

activities representing the functional capabilities
of the system. Each of these capabilities is

Figure 2. Structural vs. behavioral ECSAM views

described as a dynamic process expressed in
terms of the transformations it performs, its data-

flow, and the associated process control.

The operating modes view describes the main

operating modes of the system and the transitions

between them.
Jointly, the functional capabilities and operating

modes views describe the dynamic behavior of the

system.
These three views are complementary and interrelated,

as discussed later in the paper. During the system
analysis phase, the various views are iteratively examined

to assure consistency and completeness of the model and

its resulting specifications.

2.1.2 The ECSAM design model. The ECSAM

design model describes the design architecture of the

system, the structure of its hardware and software
subsystems, and their relationship with one another. It

also specifies the dynamic interaction of the architectural
elements in various system modes, addressing both the

data flow and control flow aspects of the interaction.

The design model also expresses performance and
implementation constraints, and describes the human-

machine interface.

2.1.3 Structural versus behavioral (static versus

dynamic) system models. As stated previously, ECSAM

models address the system’s static and dynamic aspects.
Another way to group the model views is by means of

their structural (static) and behavioral (dynamic)

characteristics, as shown in Fig. 2.

The static model represents the system’s structure,

while the dynamic model represents its behavior. The

static model is described by the system’s conceptual and
design architectures. The dynamic model is described by

the dynamic views of the conceptual and design models.

Since this paper does not address the dynamic aspects of
design models, this issue was omitted from the figures

used in this paper.
Experience shows that the architecture of systems

changes little, if at all, over the years. There are several

reasons for that, such as the difficulty of changing the
“building blocks” from which a system is constructed or

the way they are interconnected, and the high cost of

retrofitting systems already in operation. To provide for
that, the modeler must focus on creation of conceptual

and design architectures that will maintain their stability

throughout the system’s life cycle.
Such stability can’t be guaranteed with respect to the

system’s desired behavior, which tends to change during
the system’s life cycle as its environment changes.

Change may be brought about either as the result of some

type of influence of the system itself on its environment,
or because of improvement in the user’s understanding of

the system’s operation, or because of changes in the

user’s needs and expectations [3]. Hence, the dynamic
model is the one that usually changes most dramatically

as a system evolves. Provisions for the adaptation of the

system’s behavior over its life cycle must be incorporated
into the models during the analysis process.

Figure 3. The generic model of a system

3. The relationship between conceptual

views.

ECSAM assumes that every system and every

subsystem can be modeled as a hierarchical control

system [4, 5]. All systems, including computer-based
ones, can be modeled using a generic model like the one

presented in Fig. 3. Since this generic model is crucial in

explaining the relationships between the ECSAM views,
we find a brief discussion of its generic characteristics to

be justified here.

The model describes the system’s conceptual
architecture, and is based on the assumption that every

system or subsystem is composed of

a number of conceptual subsystems

a conceptual controller

The model’s components act jointly to carry out the
system's mission. Each of the subsystems can be viewed

as an abstract machine or object, that is, as a kind of

information-hiding module (as defined by PARNAS [6]).
These subsystems provide services (that is, capabilities,

such as C1,1, C1,2) that participate in the realization of the

system’s capabilities. In fact, each of the system’s
capabilities can be presented as a combination of

functional contributions provided by the subsystems.
The conceptual controller governs the joint behavior

of the subsystems that is required to accomplish the

system's mission. It controls the system’s operating
modes and the dynamics of the processes performed by

the system. The subsystems can be mapped to hardware,

software, and mixed hardware-software systems, and—in
systems implementing a man-in-the-loop approach—also

to humans.

Figure 4. The multilevel model

The controller can be

implemented in software and/or hardware or

assigned to human operators

real or conceptual

centralized or distributed among the subsystems

implemented on one or multiple levels

When users or operators are involved (which is quite
common at the E-level), it is not unusual to find that at

least some of the control functions are performed by

humans.
The model presented in Fig. 3 identifies three types of

information-flows2:

process information-flows

control information-flows

feedback information-flows

Process information represents data, signals, and
physical entities that are transformed by the system and

its subsystems. Control information, produced by the

system’s controller, governs the operation of the
subsystems and their behavior. Furthermore, external

control data is exchanged between the system’s controller

and the higher-level systems that manage the system’s
overall behavior. Feedback information provides the

controller with details about the actual state of any given

subsystem at any time.
One of the goals of the analysis is to identify all of

these information-flows, as well as their sources,

destinations, types, and scope.
Each conceptual subsystem can be further decomposed

into lower-level conceptual subsystems and a conceptual

controller of its own, using white-box modeling methods
shown in Fig 4.

Systems analysts in charge of developing a conceptual

model of a system usually limit the depth of
decomposition to a single level, the S-level. The S-level

model typically identifies conceptual subsystems,
describes their behavior, their interfaces, and the

capabilities performed by them. Analysis and

decomposition of subsystems at lower levels are
performed by analysts in charge of these subsystems.

However, when internal conceptual subsystems are very

large or complex, the analyst in charge of the S-level

Figure 5. The relationships between components of the conceptual model

model may find it necessary to analyze and detail some
(or all) of the subsystems. Although different analysts

may be involved in the analysis of S-level system and its

subsystems, the analyst responsible for the S-level must
review the results of the analysis performed at both levels

to ensure that the subsystems jointly fulfill the system’s

mission. This review may reveal, for example, the need
to reallocate capabilities among the subsystems in order

to improve their cohesiveness and reduce their mutual
coupling.

The generic model of a system presented in Fig. 3

provides a starting point for the explanation of the
relationships between the conceptual views used in

ECSAM models.

Figure 5 presents the relationships between all types of
elements constituting each level of the model.

Chart (a) in Fig. 5 presents the module-chart of the

system or any of the conceptual subsystems, its
conceptual next-level subsystems, its conceptual

controller, and the associated external and internal

information-flows.3 The capabilities provided by each of

the subsystems are listed in Table (a). The activity-chart
describing the capabilities appears in Chart (b). The

operating modes are shown in the Statechart presented in

Chart (c); their correlation with the capabilities is

presented in Table (b). Each of the capabilities, P(n), is

presented as a process described by the activity-chart

shown in Chart (d) and by the Statechart shown in Chart
(e). Table (c) identifies the correlation between the

process states and the capabilities that are available in
each of them. The conceptual controller, shown in chart

(a), controls the operating modes of the system as well as

the dynamics of the processes.

It is important to remember that the capabilities listed

in Table (c) are members of the set listed in Table (a).
This is shown explicitly in Chart (d), where each

component of the process is related to the subsystem

executing it, using the notation M(k)>C(k,i)—that is,

capability C(k,i) is performed by conceptual subsystem

(or module) k.

A modeler using table notation—such as the one used

in Tables (b) and (c)—can tell only a partial story

regarding the invocation of system’s capabilities. This is
because such tables do not provide a detailed

specification of the events and conditions governing the

invocation and termination of the capabilities. This
information is provided in control tables located in the

model’s database.

4. Reuse of conceptual models and

specifications

Development of the conceptual model and preparation

of the system specification are intensely rewarding

activities, despite the extensive work required. The
reward is especially great when the developed system

belongs to a product family. In product families,

conceptual models can be reused in the development of
new systems with similar characteristics, considerably

reducing development time and development risks [7].

The authors have demonstrated such dramatic reduction
by developing a conceptual model of a new member of a

complex product family in one month. The development
of the original model took one year. Conceptual models

can also be mapped to different system designs to allow

rapid development of products. The mapping of the
conceptual model to the design model is described in [8].

5. Products of the ECSAM modeling and

analysis process

The main products of the ECSAM modeling and

analysis process are the specifications of the system and

its components. These specifications support the analysis
process, describe the models, and summarize the

requirements that have been discovered using the method.

ECSAM provides a framework for systematic generation
of such specifications.

Although documentation is frequently the main

tangible product of an analysis process, it is not a goal of
the ECSAM process, but rather its side-effect or

derivative. What motivates the process is the need for
consistent and comprehensive models as well as

manageable requirements that can be used to describe and

understand the system and its underlying structural and
operational concepts.

6. Overview of the ECSAM process

The ECSAM process consists of several well-defined
activities, beginning with identification of stakeholders

and elicitation of their requirements, proceeding to

modeling and requirements refinement, and ending with a
top-level system and software design.

The process steps described in this paper have proven

their effectiveness in many projects. Nevertheless, the
order in which individual steps may be applied should be

adapted to suit a project’s particular needs.

Understanding and knowledge gained during an
analysis step often sheds light on earlier steps. To best

exploit this knowledge, one must sometimes reiterate

previous steps—a feature that is inherent to the ECSAM

method. The iterations cease, usually very rapidly, once
the internal consistency of the model is established.

Since ECSAM models represent real-world systems

(which must be internally consistent, if they are expected
to work), convergence of the aforementioned iterations is

assured.

The basic activities used in each process step are
described and explained (including an example of a real-

world system) in [1]. Modeling of the system is carried
out as a sequence of steps that form two major phases. In

the first phase, the system’s environmental model (the E-

model) is developed. The environmental model describes
the system’s external structure and behavior, as seen by

operators and users. In the second phase, the internal

conceptual model of the system, known as the S-model, is
developed. This model describes the system’s internal

conceptual structure and dynamics. Concurrently, the

system's behavior is simulated, technical requirements are
derived from the system's model and recorded, and the

top-level design model is developed.
The main steps of the ECSAM iterative analysis

process are

1. definition of the system’s mission, scope, and
establishment of external requirements and constraints

2. definition of the system’s boundaries, identification of

the environmental systems with which the system
interacts and of the system’s major inputs and outputs,

development of the system’s context diagram and the

resulting environmental system’s module-chart
3. identification of the system’s externally observable

capabilities, called E-level system capabilities
4. determination of basic, externally observable

operating modes (E-level modes) and the transitions

between them, and determination of the E-level
capabilities available in each E-level mode

5. specification of the system’s environmental processes

(E-level processes), and derivation of use cases that
describe dynamic interactions between the

environmental systems (such as operators) and the

system
6. systematic derivation of the system's operational

scenarios
7. elicitation of the system’s external requirements from

stakeholders, their refinement using the E-model,

extraction of requirements from the environmental
model, and preparation of the system’s external

specifications

8. simulation of the system’s external dynamics using

CAS2E tools
4

9. generation of the system’s external specifications,
based on the environmental model stored in the

CAS2E tool

10. identification of conceptual subsystems (objects),
their capabilities, and the major internal signals and

information-flows exchanged by them

11. determination of basic, internal operating modes,
called S-level modes

12. specification of the system’s internal dynamic
processes (the S-level processes) and their invocation

13. simulation of the system’s internal behavior based on

the dynamic model
14. specification of the system’s top-level design

architecture and mapping of the conceptual model

elements to the design architecture
15. refinement of system’s requirements through

flowdown

7. Supporting tools

The ECSAM analysis process produces large

quantities of information about the system being analyzed

at a surprisingly high rate. The volume of information
and its nontrivial relationship to various views and

models practically mandates the use of computer-based

tools.
Automated tools and skill sets that are needed by the

analyst include

graphic editors that support drawing the different

system views and that capture relevant textual
information

precise semantics that allow analysis of the
different views and the relationships among them

algorithms that support the testing of the
consistency and completeness of the evolving

model

methods and tools that simulate the dynamic

behavior of the system as represented by the

system’s modes and the transitions between them,
as well as the behavior of the dynamic processes

a database supporting the creation and
maintenance of data dictionaries

interrogation facilities that allow the investigation
of various aspects of the evolving model and the

requirements associated with it

report-generating facilities that document the

analysis results using varying sets of templates
suitable for various applications

ECSAM models and reports can be created using

widely available word processing programs that provide
graphic support. A major disadvantage to such programs,

however, is their inability to analyze the consistency and

completeness of a model. They are also unable to enforce

the precise semantics needed in various diagrams, often
making the resulting specifications ambiguous, difficult

to analyze and maintain, and their reuse in other systems

highly impractical.
CASE tools, providing varying levels of support of the

ECSAM method, have been developed over the years.

An advanced CAS2E tool, called Statemate®5, supports

most aspects of the ECSAM method.
Comprehension of the complex dynamic aspects of a

system’s model can be significantly enhanced during

early stages of development by tools that support
simulation or animation of the modeled system’s

behavior. Our experience shows that the effort invested

in modeling and simulation provides significant gains in
later phases of development by reducing rework needed

to correct erroneous system behavior caused by incorrect

specifications.6 These gains increase when tools based

on precise and rich semantics—allowing detailed
modeling and simulation of behavior—are used.

The successful implementation of ECSAM depends

heavily on the availability of appropriate CAS2E tools
during the early phases of the project, when the method is

first put into use.

8. The history of the ECSAM modeling

method

An early version of the ECSAM modeling method was

first used in 1980 at Israel Aircraft Industries (IAI) by its
principal developer the First author of this paper and his

team as they sought an effective method to model,

analyze, and design complex, reactive, embedded systems
and their software, as well as a method to communicate

effectively with systems users and stakeholders who
participated in specifying requirements for the systems.

The method evolved over the years, drawing upon

experience gained during application of the ECSAM
method on projects performed by IAI.

 Further development of the ECSAM generic model

led in 1983 to a cooperative effort between Dr. Lavi and
Professor David Harel of the Weizmann Institute of

Science. The collaboration consequently resulted in

development of the Statecharts formalism and the
subsequent development of Statemate.

Following Dr. Lavi’s retirement from IAI the authors

continued to develop ECSAM. Significant extensions of
the model and the analysis method—such as the

introduction of the E-level and S-level models concept,

and systematic derivation of operational scenarios—were
added by the authors in the late nineties, in response to

needs expressed by industrial projects.

9. Conclusions and future research

Present-day systems developers frequently face growing

challenges, as the complexity of the systems they are

tasked to develop increases from year to year, while the
required time-to-market and development budgets shrink.

One of the consequences of this situation is the need to

use methods that allow rapid development of “the right
system”, one that will meet the stakeholders’ needs and

expectations, on the first attempt. Failure to do so

frequently results in cancellation of projects, in expensive
budget and schedule overruns, or in deficient

functionality and performance of systems that are
eventually completed. Analysis of the causes that

brought about such failures usually identifies inadequate

requirements and specifications as the root cause. A
Standish Group study, quoted in the IEEE Software

Magazine [9], found out that in 1995 America spent $81

billion for cancelled development projects and $59 billion
for projects completed late, over budget, and lacking

essential functionality – in the area of software systems

alone! Among the primary causes for those gigantic
losses, the study identified incomplete and changing

requirements and specifications, as well as insufficient
user involvement in the specification of the systems.

ECSAM describes a systematic approach to the analysis

of systems that provides a solution to these problems, by
allowing practitioners to identify the properties that a

system must possess to be able to carry out its mission,

and translate these properties into requirements and
specifications.

Certain themes are stressed in the ECSAM approach:

The starting point for the specification and
analysis of a system is the identification of its

mission(s). Specification of the system’s
mission(s) determines the external behavior the

system must exhibit to carry out these missions.

Once the missions were specified, analysis
commences with the identification of the system’s

boundaries, its functions and other properties the

system must possess to implement that behavior.

Stakeholders must be involved in the specification

of the system’s mission(s), its boundaries and
other essential properties, as well as in the review

of the static and dynamic aspects of the system’s

conceptual model from the onset of development.
Their involvement in the specification and analysis

of the system’s externally observable properties

and behavior and in the specification of its

requirements is vital in assuring that “the right
system” is being specified.

Identical views and similar methods are used in

the modeling and analysis of the external
properties of a system as well as in the derivation

and modeling of its internals.

Analysis of the conceptual model provides the

basis for the identification of essential properties

the modeled system must possess to be able to
carry out its missions. Furthermore, the

conceptual model provides a framework for

systematic derivation, evaluation and refinement
of the system requirements.

Operational scenarios, derived from a system’s
conceptual model, describe its external behavior

and its interaction with its environment. The

hierarchical organization of the model allows
verification of consistency between scenarios that

describe the external behavior of the system and

the properties of its subsystems at various levels.

Formal languages must be used in the

specification of conceptual models to enable

automatic checking of their internal consistency
and completeness, and provide for simulation of

the dynamic behavior specified by the model,
using computer-based tools.

Although the ECSAM method was originally

developed to solve problems encountered in the analysis
of embedded systems, it has proven very effective in the

analysis of systems of all kinds, including systems that

contained no computers. This is hardly surprising, since
the method is, actually, a general way of thinking about

systems, as attested by former students who have learned

the method over the years.
Future research related to ECSAM will involve the use

of the UML-2 modeling language in the creation of
ECSAM models.

10. Acknowledgements

Thanks are due to our many colleagues in various

plants of Israel Aircraft Industries and its Corporate
Embedded Computer-Systems R&D Department, whose

technical needs, suggestions, and discussions stimulated
development of many of the ideas and methods that make

up ECSAM and whose projects provided the necessary

testbed for evaluation of the methods in real-world
situations. Special thanks are due to Prof. David Harel,

who developed Statecharts at IAI as part of the ECSAM

development effort, and to Prof. Amir Pnueli, whose
farsighted thinking and advice have contributed

immeasurably to our work. Thanks go as well to the

many students who participated in ECSAM courses—
from the early 1980s at IAI through the latest series of

classes at the Jerusalem College of Technology.

11. References

	footer1:

