
 

J Supercomput
DOI 10.1007/s11227-016-1625-y

SaaS-based enterprise application integration approach
and case study

BeiLie Wang1 · Hui Liu2 · Jie Song1

© Springer Science+Business Media New York 2016

Abstract Software-as-a-Service (SaaS) has been well studied, and it is being adopted
at a very fast pace. Enterprise application integration (EAI) is the key factor in many
enterprises. Traditionally, SOA technique can be applied to EAI, especially the appli-
cation of Web Service. In this paper, we propose that SaaS can also be applied to the
field of EAI. Based on this, we propose the SaaS-based EAI approach which rebuilds
one analog of legacy applications into SaaS architecture makes the rest applications
be configured, and further solves the EAI problem. Besides, we also update the tra-
ditional SaaS maturity model, discuss relationships between SOA and SaaS in EAI,
and explain how to further integrate SaaS applications by SOA. We implement an
Eclipse plug-in which can introduce SaaS capabilities into traditional Web applica-
tion automatically. Finally, the proposed approach is proved to be effective through a
case study.

Keywords Cloud computing · SaaS · SOA · Enterprise application integration
(EAI)

1 Introduction

Nowadays, Software-as-a-Service (SaaS) has become one of the most popular com-
puting paradigms in the field of cloud computing. With the rapid development of
the Internet technology and the maturity of Web-based applications, SaaS, which is
known as a completely innovativemodel of software, is being adopted to developmore

B BeiLie Wang
133268682@qq.com; wangbl@swc.neu.edu.cn

1 Software College, Northeastern University, Shenyang, China

2 School of Materials and Metallurgy, Northeastern University, Shenyang, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1625-y&domain=pdf


 

B. Wang et al.

and more Web applications. People believe that the cloud computing is essentially the
large-scale delivery of services to end users over Internet, and SaaS is a software deliv-
ery model that allows customers to shift and restrict their IT responsibilities, rather
than a application integration model.

The computer infrastructure of a typical today’s enterprise can be seen as a software
ecosystem that involves several complementary applications purchased from different
providers or built at home [1]. A recurrent challenge is to make these applications
interoperate with each other to keep their data synchronized or to create a new piece of
functionality, this problem is known as enterprise application integration (EAI). EAI is
the process of bringing two application programs together with data or a function from
them [2]. When these programs already exist, the process is sometimes implemented
using middleware, either packaged by a vendor or written by a custom. We define
the “analogs” is the term for the applications are similar in function. Some EAI tasks
integrate these analogs together, and treat them as a uniform one. There is a common
challenge that is the communication between analogs because some of them may
be developed in different languages or based on heterogeneous data. In this case,
EAI is urgently on demand. In general, for applications, the use of object-oriented
programming, actual or de facto standard development tools and interfaces (such as
Java or .NET)will be beneficial for another new application to be easily integrated. The
Extensible Markup Language (XML) promises to serve as a tool for exchanging data
amongst disparate programs in a standard way. Traditionally, there are two patterns to
implement EAI:

• Mediation: the Mediated system acts as broker between multiple applications.
• Federation: the Federated system acts as the overarching facade across multiple
applications.

Well-known Service-Oriented Architecture (SOA) can be adopted in EAI, espe-
cially the application of Web Service [3]. As organizations strive to build loosely
coupled systems based on SOA principles, the issues about data redundancy, quality
and consistency are exacerbated and become significant barriers to successful inte-
gration. Most of EAI-related previous works are based on mediation or federation,
in which SOA architecture is adopted as the implementation of interoperability [4–
6]. But there exists some shortcomings in the two patterns. First, wide knowledge is
required when integrating the heterogeneous applications; second, the wrappers for
interoperability will cause high complexity in both interface and logic; third, the cost
of maintaining multiple applications is still high even if they are integrated. For exam-
ple, most EAI projects usually start off as point-to-point efforts. It will create lots of
connections as the number of applications increases so that the exposed interfaces are
unmanageable.

In this paper, we propose an approach that can partly solve the EAI problem by
SaaS Paradigm. Sometimes, the EAI problems can be solved by customizing a single
instance for multiple tenants, instead of multiple applications. We SaaSify (terms for
converting an application into SaaS paradigm) one of analogues in legacy applications,
making it can be customized to be the other applications by clients, and then we update
the SaaS maturity model for such an approach; we explain that SOA could also be
used for integrating SaaSified applications. We propose a SaaSify tool for introducing

123



 

SaaS-based enterprise application integration approach. . .

SaaS capabilities to a certain Web application automatically. Finally, the proposed
approach is proved to be effective by a case study.

2 Materials and methods

SaaS has been widely studied in lots of fields. Karabulut and Nassi [7] provide a secure
and trusted service consumption environment by creating a fine-grained operating cost
model for SaaS. Liu et al. [8] analyse methods and communication infrastructure,
which enables distributed SaaS applications over the data network. Yan and Zhang [9]
enable progressive migration of multi-version applications in SaaS through schemas.
Lu and Sun [10] create a fitness evaluation model to estimate whether SaaS is suitable
for the information system evaluated. The above-mentioned works of SaaS do not
apply to EAI.

System integration can be performed on different levels [11]. Following the work
described in [12]: integration on the data source level provides a unified view on
heterogeneous data sources [13]; integration on the business logic level unifies different
implementations of business logic, each using its own data sources, under a common
user interface. The most prominent approaches on this level are semantic web services
[14] and ontology-based agents [15]; integration on the user interface level unifies
different user interfaces in one common system, e.g. a portal or a plugin-based user
interface. The proposed SaaSified approach can integrate the application in both three
levels but performing in the interface level is much easier. Most researches in EAI
are focused on loose coupling, easy expansion and flexibility issues. He et al. [4]
propose an SOA-based application integration solution through JavaEE approach. Ji
[5] proposes an application integration framework on the basis of Web Services. Chen
et al. [6,16,17] also adopt the SOA and Web Services. Comparing these methods
with SaaSified approach proposed in this paper, there are some shortcomings such as
requiring wide knowledge, high complexity of interfaces and high cost.

3 SaaS approach

And SaaS maturity model will be updated to meet practical requirements of EAI.
We will also discuss relationships between SaaS and SOA, and then explain how to
integrate SaaS applications by SOA.

3.1 SaaS-based EAI approach

Presently, SOA-based EAI has been widely used. To achieve interoperability, SOA-
based approach encapsulates original applications into services on the basis of same
standards, which is the way for services to interoperate (see Fig. 1).

Figure 2 shows how to achieve EAI through SaaS solution. First, an appropriate
analog is selected as the target analog, and other analogs can be configured in accor-
dance with the target analog. As shown in Fig. 2, applications A and B are similar. In
this case, A is selected as the target analog; B can be configured in accordance with A.

123



 

B. Wang et al.

Fig. 1 SOA-based EAI
approach

User Interface

Business Logic

Database

Application A

User Interface

Business Logic

Database

Application B

User Interface

Business Logic

Database

Application A

Wrapper

User Interface

Business Logic

Database

Application B

Wrapper

SOA Based Approach

Interoperation

Besides, it makes no difference for tenants to use application B in the form of SaaS,
compared directly with the use of original application B.

Some problems in EAI, including data format problem, can be solved through the
SaaS-based approach we proposed. SaaS-based approach focuses on configurability
whilst SOA-based approach focuses on interoperability. The later has some shortcom-
ings, such as it requires programmers to have wide knowledge, and its interface has
high complexity and cost. The business concept of SaaS has to change if the SaaS-
based EAI approach is adopted in an enterprise, SaaS application will be deployed in
the enterprise’s context instead of the vendor’s. In this situation, there is no need for the
enterprise to worry about data security, SLA and sustainability of SaaS. At the same
time, SaaS applications will cut down the cost of maintaining multiple applications in
each branch.

Configurability of SaaS is the key point here. Thus, we need to update maturity
model of SaaS to evaluate its configurability. Details about the updatedmaturitymodel
are shown in the following part.

3.2 Updating SaaS maturity model

In this section, we update the SaaS maturity model for clear and detailed evaluating
EAI capabilities of SaaS applications. Mladen [18,19] considers four levels of SaaS
maturity models related to support of tenants vis-a-vis instances of software solution

123



 

SaaS-based enterprise application integration approach. . .

Fig. 2 SaaS-based EAI
approach

User Interface

Business Logic

Database

Application A

User Interface

Business Logic

Database

Application B

User Interface

Business Logic

Database

Application A

User Interface

Business Logic

Database

Application B

Configure

SaaS

SaaS Based Approach

Configure

Configure

and database. For the page limitation, the details of these four levels are abbreviative.
Due to the SaaS solution for EAI, the configurability of the SaaSified application
should be paid close attention to. So we add another dimension to SaaS maturity
model and name it as “Configuration level”. Thus, the maturity model is changed as a
two-dimension model: the one dimension is the original Level 2, Level 3 and Level 4;
the new dimension “Configuration level” divides them into three levels individually.
Software systems most often consist of three layers: the data source layer, the business
logic layer, and the user interface layer [20], so that the Configuration levels are
Interface Level, Interface-store Level, Interface-store-logic Level.

User interface configurability makes the system interface to be easily configured
according to tenants’ expectation. It consists of two aspects including configurability
of interface and page content. Configurability of interface means tenants can adjust
the appearance according to their preferences, such as position, number and size of
interface elements. Configurability of page content means tenants can adjust service
content according to their preferences. SaaS applications of multi-tenants are used
by different tenants under the same instance. Thus, the system should meet tenants’
different requirements on data issues. There are mainly three solutions in data con-
figurability, including customized fields, pre-assigned fields and name–value pairs.
Business logic configurability means tenants can adjust and modify the process and
approach of service’s implementation according to their requirements.

There are two reasonswhy theupdatedSaaSmaturitymodel is defined in the order of
interface, data and logic. First, configurability of user interface is the basic requirement

123



 

B. Wang et al.

in SaaS. As the entrance of SaaS applications, it is easy to configure the user interface,
compared with that of data and logic. Second, changes of data configurability will
affect logic layer. The business logic of a SaaS application involves operation on data.
Thus, it is clear that logic configurability is more complex than data configurability.
With the updated SaaSmaturitymodel, SaaS-based EAI approach hasmore feasibility,
and SaaS application can be configured from the original ones.

3.3 Integrating SaaS applications by SOA

In this section, we discuss how to integrate the SaaS application. As mentioned before,
applications could be integrated by SOA and SaaS, but there is a new challenge, that
is, the SaaS applications from different vendors could also be integrated to implement
the coarser-grained business process. Traditional applications? integration is the inte-
gration of a system. On the contrary, SaaS is a package of services. The integration of
SaaS applications is a higher level of application integration. This kind of integration
can be solved through the SOA technique. To achieve the integration of SaaS services
through SOA approach, large numbers of small SaaS services are integrated together
so as to provide more abstract and coarse-grained software services.

The difference between SaaS and SOA is that, in sum, the former is a software-
delivery model whereas the latter is a software-construction model [21]. SaaS, also
known as the “subscription software”, essentially separates software ownership from
the user—the owner is a vendor who hosts the software and lets the user execute it on
demand through some form of client-side architecture via the Internet or an intranet.
In an SOA model, the constituent components of the software system are reusable
services. A collection of services interacts with each other through standard interfaces
and communication protocols. SOA promises to fundamentally change the way we
build internal systems as well as the way internal and external systems interact. SOA
and SaaS both define the interaction model amongst its components, and they both
need techniques (e.g.Web Services) to achieve their interactionmodel. However, SOA
consists of service components whilst the components of SaaS are not all services.

Although there are significant differences, SaaS and SOA are closely related and
complementary for large-scale information systems. Software can be treated as a
service and published through SaaS, and then SaaS provides components that SOA
uses. Moreover, SOA can search and use the published services, and these service
components can be combined to rapidly create new software system. In this way,
the cost of software design and development can get significantly reduced. The new
system can also be treated as a service, and then published through SaaS. In addition,
SaaS allows a software system to deliver with multiple different granularity levels of
services, and therefore provides more services of different complexity to build SOA-
based system. In a word, SaaS provides components that are able to be used by SOA,
and SOA can help to implement SaaS more quickly.

As shown in Fig. 3, existing software systems (i.e. system 1 to n) could be accord-
ingly converted to standardWebServices, and registered to ServiceRegistry to provide
service description that is available for search. Service request could be sent out by
Service Consumer (e.g. combined request shown in Fig. 3) and construct new soft-

123



 

SaaS-based enterprise application integration approach. . .

Service
Registry

Service
Provider

Service
Consumer

Publish

Service 1 Service 2 Service 3

Publish

Send out service
combination request,
build new software
system.1

2

Service Description Information

Service 1

...

Service 2

Service n

New Service

Software
System 3

SaaSify Web
Service 3

Software
System 2

SaaSify Web
Service 2

Software
System 1

SaaSify Web
Service 1

New
Software
System

SaaSify New Web
Service

← ←

Fig. 3 Relationships between SOA and SaaS

Service
Registry b

Centralized Service Discription Information

Service
Consumer

Service
Registry a

Service
Registry c

SaaS Provider a

SaaS Service a1

SaaS Service a2. ..

SaaS Service an

SaaS Provider b

SaaS Service b1

SaaS Service b2.. .
SaaS Service bn

SaaS Provider c

SaaS Service c1

SaaS Service c2. ..

SaaS Service cn

Service Description
Information

SaaS Service a1

.. .
SaaS Service a2

SaaS Service an

SaaS Service b1

...

SaaS Service b2

SaaS Service bn

Service Description
Information

SaaS Service c1

...

SaaS Service c2

SaaS Service cn

SaaS Service a1

. ..

SaaS Service a2

SaaS Service an

SaaS Service b1

...

SaaS Service b2

SaaS Service bn

SaaS Service c1

...

SaaS Service c2

SaaS Service cn

Service Description
Information

Fig. 4 Registration information federated cloud for SaaS services

ware system (such as service 1 →service 2 →service 3). For simplifying, Fig. 3 only
represents the searching process of service 1 and the binding process, similar to other
services. The new constructed software system could also be SaaSified and published
to Service Registry so that it is able to be used by Service Consumer. Thus, exist-
ing service components can be combined to rapidly create new software systems and
services.

So far Service Registries of different SaaS service providers are dispersed, and
maintain their separate service registration information, respectively [22]. Therefore,
by theway of collecting service registration information of different Service Registries
together, we can achieve the purpose of unified management and then build service
registration information federation cloud. In this way, the efficiency of service discov-
ery can be greatly improved, which is helpful for Service Consumers to find service
combinations that meet their needs transparently. Meanwhile, service discovery-based
applications such as combination and selection of services can be further improved,
which is shown in Fig. 4.

123



 

B. Wang et al.

JDBC

Database

Te
na

nt
in

fo
rm

at
io

n

Original
Pages

Logic
Modules

View Layer

Tenant-specified Requests Filter

Pages
GeneratorTemplates

Configured
Pages

JDBC Proxy

Business
Logic Layer

Data Access
Layer

Original Application

M
em

or
y

in
Th

re
ad

Data Flow
Control Flow
Original Application
SaaSified Application

Legend:

U
se

rI
nf

or
m

at
io

n
Se

ss
io

n

DAOs

Fig. 5 The extended architecture of the target application

4 SaaSify tool

In this paper, for easily introducing the configuration capabilities to no-SaaS applica-
tions, we proposed an automatic SaaSify tool which adopts several technologies and
extends the architecture of Web applications. Figure 5 shows the modified architec-
ture of the SaaSified application, which extends the original one without modifying
the source code. The extensions are transparent to the original application, thus the
original architecture is reinforced but not refactored.

The expanded SaaSify architecture is still divided into three layers [20], including
View Layer, Business Logic Layer and Data Access Layer (see Fig. 5). First, user
logins through user interfaces in the view layer. Then, user’s information is delivered
to business logic layer, in the meantime tenant information is intercepted by the filter
and stored in memory thread in the process of login. Then, page builder generates
corresponding configuration page on the basis of tenant information stored in memory
thread. After that, user information is obtained from the session in business logic layer.
Users can use the functions of their respective tenants which have been ordered.Whilst
connecting to the database (i.e. the process of executing SQL commands), JDBCproxy
is responsible for adding tenant restrictions to SQL commands.

There are two kinds of configurabilities in SaaS paradigm, the first one is “con-
figurable interfaces”, and the other one is “configurable functions”. We do not use
a priori knowledge to provide functions of the original knowledge to SaaSify tool,
so the tool extracts the function list by analysing buttons and links in pages. Above
all, web pages should display according to tenants configurations. First, the position
and colour of page elements should be in accord with tenants’ configurations; second,

123



 

SaaS-based enterprise application integration approach. . .

Fig. 6 Example of dividing
page blocks

Center 
Left

Top Left

Bottom

Center Center
Center
Right

Top 
Right

Center Top

tenants can only see the links and buttons whose corresponding functions have been
paid. An operation named configurable interfaces is adopted to support the former,
and another operation named configurable functions’ is adopted to support the later.

To implement “configurable interfaces”, we divide the original page into blocks,
then it is possible to select and regroup this blocks by configurations. The “configurable
interfaces” follow seven steps:

Step 1: Scan the HTML sources of pages
Step 2: Divide the page into visual blocks according to the visual effect as shown
in Fig. 6, which is concluded by us and satisfied most of web pages layouts.
Step 3: Analyse the HTML code of each visual block, extract them into page
blocks;
Step 4: Number these blocks, re-implement page blocks, and then distinguish them
from each other by adding some HTML invisible tags such as < div >.
Step 5: Assign the page blocks to tenants’ configuration.
Step 6: Implement algorithm for freely compositing page blocks into page by script
language.
Step 7: When a user visits a page, the page generator retrieves the tenant-info
which the user belongs to, and then dynamically regroups the pages according to
tenant’s configuration.

To implement “configurable functions”, we extract URL from links and buttons
in each page block. Then, it is possible to show or hide these elements selected by
configurations. The operations follow seven steps:

Step 1: Scan all links and buttons of each page blocks, extracting their URLs.
Step 2: Analyse these URLs, retrieve a proper name from eachURL as the function
name. In practice, these names are not intuitive. Therefore, we provide an interface
to let the administrator replace these namespaces with intuitive ones. Some non-
functional URLs are also be excluded by administrator.
Step 3: Make these links and buttons independent from pages by adding some
HTML invisible tags such as <div>.
Step 4: Assign the functions to tenants’ configuration.
Step 5: Implement algorithm for freely show or hide these links and buttons by
script language.

123



 

B. Wang et al.

Step 6: When a user visits a page, the page generator retrieves the tenant-info
which the user belongs to, and dynamically shows the links and buttons whose
corresponding functions have been paid by current tenant.
Step 7: Introduce a request filter to the web server, for example, add a filter servlet
to “web.xml” in JavaEE application, and make sure that the URLs are requested,
even they are unpaid. Because they will be discarded.

Many other technologies are also used for implementing SaaSifying. For example,
metadata are used for implementing data isolation. SQL parser is used for scanning
SQL script. Dom4j is used when page templates are generated. Log4j is used for log
whilst SaaSifying. These technologies are already widely accepted and will not be
introduced in this paper. We have developed an Eclipse plug-in of SaaSify tool. Cur-
rently, it can only SaaSify the JavaEE-based web application. The meta-information
can be provided by the configurations: the SQL_Config_File describes the database
information of web application; the Function_Points_File lists all functions of web
application; the JDBC_Property specifies the location of JDBC driver which could
be updated; the Login_Page specifies the login page of web application, it will be
modified by introducing the tenant information; the JSP_Directory specifies the root
directory of JSP pages; the Login_Path specifies the login URL of web application
to be transformed. This plug-in is success to SaaSify the Java Pet Store which is a
well-known standard application given by Sun Co., and designed to illustrate how the
Java Enterprise Edition 5 Platform can be used.

5 Case study

In this section, a case studywill be used to show that the proposed approach is effective.

5.1 Background

In DanDong Power Equipment Group, there are three vote systems. One is subsystem
of ERP system, another one is individual vote system as the legacy, and the rest one is
a local system used by one of branches in another city. The functions of three systems
are similar but have different focuses and different basis. The Group wants to integrate
the three systems for higher functionality and getting statistical data more easily. In
this case, our proposed SaaSified approach is suitable for the Group.

According to the rules mentioned in Sect. 2, the subsystem of ERP is chosen as the
one to be SaaSified. In such cases, two systems are integrated for quantitative analysis
of the performance of proposed SaaSified approach. After that, a comparison with
SOA solution is discussed.

5.2 System performance

To get the atomic performance comparison, we design a single user condition and
evaluate the process times (PTs) of SaaSified system and original system under a
voting process (several requests and responses).

123



 

SaaS-based enterprise application integration approach. . .

0

20

40

60

80

10 20 50 100 200 500

PT
(s

)

Number of users
(a) Fixed Tenants

Original SaaSified

30

40

50

60

1 2 3 4 5

PT
(s

)

Number of tenants

(b) Fixed Users

Original SaaSified

Fig. 7 Experiment results of process time

The average PTs we got from the experiment are “7.8 s for the Original and 9.2
s for the SaaSified (time of user operations are not included)”. It is obvious that the
SaaSified takes a little more time than the Original. By analysing, the additional time
is consumed by the following process:

• When the user logs on the system, the tenant-info is selected from database and
loaded to current thread.

• When searching a record, the tenant-info is retrieved from current thread and
queried as a condition.

Though the PT for SaaSified application is a little higher than the Original one, it is
neglectable comparing to the functional improvement. In the following experiments,
we use LoadRunner [10] to simulate the concurrent scenario for evaluating the three
measures. In every experiment, we design the following two methods.

• Fixed Tenants: Under the 5 tenants, compare the performance of two applications
in N concurrent users (N /5 users per tenant), N is 10, 20, 50, 100, 200 and 500.

• Fixed Users: Under the 100 concurrent users, compare the performance of two
applications inM tenants (100/M users per tenant),M is 1, 2, 3, 4 and 5.

In this experiment, we study the average PTof serverwhen running two applications
in Fixed Tenants and Fixed Users, and compare them. The results are shown in Fig. 7.

From Fig. 7, the conclusions can be drawn that:

• In both two methods, PT of the SaaSified is larger than that of the Original, it
matches the results of the first experiment. The additional time is consumed to
process tenant-info.

• As is shown in Fig. 7a, PTs of both the SaaSified and the Original keep stable at
first, then increase apparently when the users aremore than 100. Bymonitoring the
Tomcat server, we found that some exceptions of database connection occurred;
the database reached the bottleneck. This is the main reason for the increase of PT.

• FromFig. 7b, when the tenants increase, PT of the SaaSified keeps stable whilst PT
of the Original decreases. It is because that the deployed architecture of SaaSified
is not changed with tenants, so as its PT. On the contrary to the Original, the
concurrent users per tenant (per instance in Tomcat server) decrease when the
tenant increases, so the process capacity of each instance improves. Thus, the PT
of Original tends to reduce.

123



 

B. Wang et al.

40

50

60

70

10 20 50 100 200 500

M
U

(%
)

Number of users
(a) Fixed Tenants

Original SaaSified

40

50

60

70

1 2 3 4 5

M
U

(%
)

Number of Tenants
(b) Fixed Users

Original SaaSified

Fig. 8 Experiment results of memory usage

In this experiment, we study the memory usage (MU) of server whilst running two
applications in Fixed Tenants and Fixed Users, and compare them. The results are
shown in Fig. 8.

From Fig. 8, some conclusions can be drawn that:

• The overall trend of MU is similar to PT, in Fig. 8a, MUs of both the Original and
the SaaSified increase when users increase. In Fig. 8b, when tenants increase, MU
of the SaaSified keeps stable whilst that of Original increases. We do not explain
it in detail.

• The advantage of SaaSified emerges when the number of tenants is more than
three, because at that point, the memory to maintain instance of the Original is
more than the memory to maintain tenant-info in SaaSified.

Summarizing all the experiments, several general conclusions are drawn and listed
here:

• PT of the SaaSified is little higher than that of the Original. The additional cost on
maintaining the tenant-info is worth the cost of SaaS functionality.

• PT and the MU of the SaaSified are apparently lower than those of the Original,
because of the advantage of SaaSified architecture.

In all the above experiments, we prove that the SaaS-based Enterprise Application
Integration approach is efficient and does not bring too much performance cost when
SaaS capabilities are introduced. The experimental results are from an typical JavaEE-
based ERP system in industry, thus the similar results could be also drawn.

5.3 Comparison

After vote system in ERP is SaaSified, it integrates the features of two original vote
systems in user interface, data and logic. The two systems are integrated into the one
in ERP system, thus all the users can configure the SaaS system to implement their
original requirements and vote through a uniform interface; the vote data are no longer
distributed; the statistical results can be calculated more easily; users from different
branches are also classified well; EAI is well implemented. Table 1 compares the
characters of the original vote systems and new SaaSified system.

123



 

SaaS-based enterprise application integration approach. . .

Table 1 Quantitative analysis of SaaSified approach

System Original system SaaSified system Legacy system

Feature Count One of the legacy systems is
developed in .NET, and SqlServer
is chosen to be the database. The
total lines of codes in this system
are nearly 5000 lines

JSP 10 files 21 files

Java 19 files 18 files

Configuration 5 files 5 files

CSS 4 files 4 files

JS 7 files 7 files

Table 3 files 8 files

Code 5300 lines 7200 lines

Database: Oracle

Table 2 Comparison of SOA
and SaaS approaches

Comparison item SOA approach SaaS approach

Applied area More Less

Integration times More than one Once

Scalability Low High

Cost Higher Relatively lower

Required knowledge More Less

From both the case study, the data in Table 1, and SaaSified tool mentioned in
Sect. 4, we know that after dealing with EAI by proposed SaaSified approach, (1)
heterogeneous systems, for example Oracle and MS SqlServer, are well integrated;
(2) systems do not expand too much; (3) most workload of re-architecting systems
for SaaS are done by proposed tool automatically; (4) the proposed approach can cut
down the cost of infrastructure, operation and maintenance if the SaaS system can
reach the maturity Level-3. These prove that the proposed approach is effective and
efficient.

Then, the differences between SOA and SaaS approaches for EAI are discussed in
Table 2.

From Table 2 the conclusions can be drawn:

• Applied area: The SOA approach can be used for all kinds of legacy integration
by service wrapping. The SaaS approach for EAI aims at analogues of legacy
software in different branches of the same enterprise.

• Integration times: The SOA approach should be applied to each of the legacies
that should be integrated. The SaaS approach could be applied only once, for the
selected legacy, the rest legacies can be configured by their customs.

• Scalability: The SOA approach encapsulates the original applications as services
according to the same standard, so that applications can interoperate with each

123



 

B. Wang et al.

other, but they are not changed for supporting large numbers of users. The SaaS
approach with Level-4 maturity can handle with the great scalability.

• Cost: The cost of SOA approach depends on the number of legacies that should
be integrated and potential investment on infrastructure and maintenance that may
be high. The cost of SaaS approach depends on the difficulty of re-architecting,
but the potential investment can be cut down if the SaaS application can reach the
maturity Level-3, and the proposed SaaSify Tool could be well adopted.

• Required knowledge: For SOA approach, all the applications are considered as
white boxes, they should be studied in detail. But for SaaS approach, the only one
white box is the application which is chosen to be SaaSified. So the knowledge
required by SOA approach is more than by SaaS approach.

After the comparison, the proposed SaaSified approach is superior to the traditional
SOA approach in many areas such as required less knowledge and better scalability.
What’s more, the proposed SaaSified approach can avoid many problems such as data
security, SLA and sustainability.

6 Conclusions

In this paper, an SaaS-based approach for EAI is proposed. It rebuilds one selected
analogue of legacy applications in different branches, makes the rest of applications to
be configured from the SaaSified one by customs, and further solves the EAI problems.
The primary works of this research has following aspects:

• Propose an SaaS-based approach for EAI.
• Update the SaaS maturity model for the proposed approach.
• Explain how the SOA technique can be adopted to integrate SaaSified application.
• Propose a tool to introduce configuration capabilities to original web application
automatically.

The proposed approach enhances applicability of SaaS paradigm and avoids short-
comings of traditional EAI approach. Our future work is to implement an SOA-based
tool for integrating SaaSified applications by the approachwhich is proposed in Sect. 3.

Acknowledgments Jie Song, National Natural Science Foundation of China under Grant (61433008).
Yichuan Zhang, National Natural Science Foundation of China under Grant (61502090). Beilei Wang, the
School Basic Scientific Research Business Expenses for Northeastern University Grant (N130317004).

References

1. Messerschmitt DG, Szyperski C (2005) Software ecosystem: understanding an indispensable technol-
ogy and industry. Springer, US

2. HohpeG,WoolfB (2003)Enterprise integration patterns: designing, building, anddeployingmessaging
solutions, 1st edn. Addison-Wesley Professional, Boston

3. Sushil J (2006) Enterprise flexibility. Glob J Flex Syst Manag 2:53–58
4. He X, Li H, Ding Q (2009) The SOA-based solution for distributed enterprise application integration.

In: IFCSTA, pp 330–336
5. Ji X (2009) A web-based enterprise application integration solution. In: ICCSIT, pp 135–138

123



 

SaaS-based enterprise application integration approach. . .

6. ChenM (2009) Research and implementation on enterprise application integration platform. In: IFITA,
pp 93–96

7. Karabulut Y, Nassi I (2009) Secure enterprise services consumption for SaaS technology platforms.
In: ICDE, pp 1749–1756

8. Liu F, Li L, ChouW (2009) Communications enablement of software-as-a-service (SaaS) applications.
In: GLOBECOM, pp 1–8

9. Yan J, Zhang B (2009) Support multi-version applications in SaaS via progressive schema evolution.
In: ICDE, pp 1717–1724

10. Lu Y, Sun B (2009) The fitness evaluation model of SAAS for enterprise information system. In:
ICEBE, pp 507–511

11. Nilsson EG, Nordhagen EK, Oftedal G (1990) Aspects of systems integration. In: ICSI, pp 434–443
12. Daniel F, Jin Y, Benatallah B, Casati F, Matera M, Saint-Paul R (2007) Understanding UI integration: a

survey of problems, technologies, and opportunities. IEEE Internet Comput (INTERNET) 11(3):59–66
13. Doan AH, Halevy AY (2005) Semantic integration research in the database community: a brief survey.

AI Mag (AIM) 26(1):83–94
14. Studer R, GrimmS,Abecker A (2007) Semantic web services: concepts, technologies and applications.

Springer, London
15. Paolucci M, Sycara K (2004) Ontologies in Agent Architectures. In: Handbook on Ontologies, 1st edn.

Springer, New York, p 343–364
16. Chen H, Yin J, Jin L (2007) JTang synergy: a service oriented architecture for enterprise application

integration. In: CSCWD, pp 502–507
17. Scheibler T, Mietzner R, Leymann F (2008) EAI as a service: combining the power of executable EAI

patterns and SaaS. In: EDOC, pp 107–116
18. Vouk MA (2008) Cloud computing-issues, research and implementations. In: 30th International con-

ference on information technology interfaces, pp 31–40
19. Gonzalez LMV, Rodero-Merino L, Caceres J, Lindner MA (2009) A break in the clouds: towards a

cloud definition. Comput Commun Rev (CCR) 39(1):50–55
20. FowlerMJ (2003) Patterns of enterprise application architecture. AddisonWesley Professional, Boston
21. Laplante PA, Zhang J, Voas JM (2008) What’s in a Name? Distinguishing between SaaS and SOA. IT

Prof (ITPRO) 10(3):46–50
22. Wei Y, Brian BlakeM (2010) Service-oriented computing and cloud computing: challenges and oppor-

tunities. IEEE Internet Comput (INTERNET) 14(6):72–75

123


	SaaS-based enterprise application integration approach and case study
	Abstract
	1 Introduction
	2 Materials and methods
	3 SaaS approach
	3.1 SaaS-based EAI approach
	3.2 Updating SaaS maturity model
	3.3 Integrating SaaS applications by SOA

	4 SaaSify tool
	5 Case study
	5.1 Background
	5.2 System performance
	5.3 Comparison

	6 Conclusions
	Acknowledgments
	References




