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Can You See Me Now? Sensor Positioning for
Automated and Persistent Surveillance

Yi Yao, Chung-Hao Chen, Besma Abidi, Senior Member, IEEE, David Page,
Andreas Koschan, Member, IEEE, and Mongi Abidi, Member, IEEE

Abstract—Most existing camera placement algorithms focus on
coverage and/or visibility analysis, which ensures that the object
of interest is visible in the camera’s field of view (FOV). However,
visibility, which is a fundamental requirement of object track-
ing, is insufficient for automated persistent surveillance. In such
applications, a continuous consistently labeled trajectory of the
same object should be maintained across different camera views.
Therefore, a sufficient uniform overlap between the cameras’
FOVs should be secured so that camera handoff can successfully
and automatically be executed before the object of interest be-
comes untraceable or unidentifiable. In this paper, we propose
sensor-planning methods that improve existing algorithms by
adding handoff rate analysis. Observation measures are designed
for various types of cameras so that the proposed sensor-planning
algorithm is general and applicable to scenarios with different
types of cameras. The proposed sensor-planning algorithm pre-
serves necessary uniform overlapped FOVs between adjacent cam-
eras for an optimal balance between coverage and handoff success
rate. In addition, special considerations such as resolution and
frontal-view requirements are addressed using two approaches:
1) direct constraint and 2) adaptive weights. The resulting camera
placement is compared with a reference algorithm published by
Erdem and Sclaroff. Significantly improved handoff success rates
and frontal-view percentages are illustrated via experiments using
indoor and outdoor floor plans of various scales.

Index Terms—Camera handoff, camera placement, coverage
analysis, multi-camera surveillance, sensor placement.

I. INTRODUCTION

W ITH the increased scale and complexity involved in
most practical surveillance applications, it is almost

impossible for any single camera [either fisheye or pan-tilt-
zoom (PTZ)] to fulfill persistent tracking and monitoring tasks
with an acceptable degree of continuity and/or reasonable ac-
curacy. Systems with multiple cameras find extensive use in
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surveillance applications. Hu et al. [21] surveyed the state of
the art in visual surveillance with dynamic scenes to under-
stand and characterize object motion and behaviors. A more
recent survey of multimodel sensor planning and integration for
wide-area surveillance can be found in [1].

The need for sensor planning naturally comes when the ques-
tion of how multiple cameras can be placed and coordinated to
fulfill given tasks with given performance requirements arises.
One descriptive definition of sensor planning in [39] is quoted
as follows: “Given information about the environment as well
as the information about the task that the vision system is
to accomplish, develop strategies to automatically determine
sensor parameter values that achieve this task with a certain
degree of satisfaction.”

In the literature, most sensor placement algorithms, from the
Art Gallery problem [31] and the large-scale terrain guard-
ing [28] to the more recent research in surveillance appli-
cations [15], [30], focus on coverage and visibility analysis.
Cameras are placed such that a full or specified coverage
of the environment or object is achieved. The conventional
requirements in sensor planning, i.e., coverage and visibility,
cannot ensure by themselves a persistent automated tracking
in real-time surveillance systems. Such applications and sys-
tems require a continuous consistently labeled trajectory of
the same object across different camera views. To meet this
requirement, sufficient amounts of overlap between the FOVs
of adjacent cameras should be reserved so that consistent la-
beling and camera handoff can successfully be executed [45].
However, coverage and overlapped FOVs go in opposite di-
rections. Given the same camera configuration, an increase in
overlapped FOVs sometimes leads to a decrease in coverage.
Therefore, an optimal balance between coverage and over-
lapped FOVs will be found via sensor planning. The optimal
balance requires a maximum increase in handoff success rate
but at the cost of a minimum decrease in coverage if the same
number of cameras is used.

We refer to the necessary overlapped FOVs as a handoff
safety margin and design an observation measure to differen-
tiate it from other visible areas in the camera’s FOV. Based on
this safety margin, we develop sensor-planning algorithms that
balance the tradeoff between the overall coverage and adequate
overlap. Fig. 1 depicts a graphical illustration of the advantage
of introducing a handoff safety margin to sensor planning. For
clear presentation, we purposefully consider a simpler case,
where the floor plan of the environment that will be surveilled
is a rectangle, and the camera’s FOV resembles a disc. We
examine two scenarios: 1) undercoverage and 2) overcoverage.
In the case of undercoverage, the number of cameras is not
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Fig. 1. Graphical comparison of the camera placement between coverage
maximization and our method. Scenario of undercoverage: (a) method for
coverage maximization (the coverage is 63.9%, whereas the overlapped FOV
percentage is 6.8%) and (b) our method (the coverage is 60.8%, whereas the
overlapped FOV percentage is 21.5%). Scenario of overcoverage: (c) method
for coverage maximization and (d) our method.

sufficient to generate a full coverage of the environment. The
conventional sensor-planning methods try to maximize the
coverage, which leads to insufficient overlapped FOVs for
carrying out successful camera handoffs, as shown in Fig. 1(a).
Our method can improve the overlapped FOV percentage from
6.8% to 21.5% and, hence, the success rate of camera handoff
but at the cost of slightly decreased coverage from 63.9%
to 60.8%.

The advantage of our algorithm becomes more significant
for the case of overcoverage. Fig. 1(c) illustrates one possible
camera placement from coverage maximization. Due to the lack
of constraints on the amount of overlapped areas between adja-
cent cameras, the overlapped FOVs are nonuniform. Handoff
failures may still occur in areas with insufficient overlapped
FOVs. In comparison, the camera placement from our algo-
rithm can achieve uniform sufficient overlapped FOVs to ensure
an approximately 100% handoff success rate while maintaining
the same coverage.

In [45], we presented sensor-planning algorithms that
achieve the optimal balance between coverage and overlapped
FOVs for static-perspective cameras. Here, different types of
cameras are discussed, e.g., omnidirectional and PTZ cameras.
The main challenge constitutes in unifying the definition of
observation measure so that various types of cameras can be
incorporated into the same framework for camera placement.
This paper tackles the aforementioned difficulty and extends
the work from static-perspective cameras to different types of
cameras. In addition to the proposed basic algorithm, variations,
including direct constraint and adaptive weight approaches, are
introduced for special considerations of resolution and frontal-
view requirements. We compare the efficiency of our algorithm
with the scheme proposed by Erdem and Sclaroff [15] under
three criteria by using floor plans of various scales: 1) coverage;
2) handoff success rate; and 3) frontal-view percentage. At
the cost of a slightly decreased coverage, a significantly im-

proved handoff success rate and a frontal-view percentage are
accomplished.

The major contributions of this paper are listed as follows.
First, an observation measure is designed for both perspec-
tive and omnidirectional cameras to describe the suitability of
tracking and to define the handoff safety margin. Second, a
generic sensor positioning algorithm for automated and persis-
tent tracking is developed to secure sufficient handoff margins.
Last, special considerations such as resolution and frontal view
are addressed by two types of solutions: 1) the direct constraint
and 2) the adaptive weights.

The remainder of this paper is organized as follows. A brief
review of related work is given in Section II. Sections III
and IV define the observation measure and handoff safety
margin, respectively. Our objective functions for the search
of the optimal camera placement are described in Section V.
Section VI presents the proposed sensor-planning algorithm.
Section VII demonstrates our experimental results and com-
parisons with the reference algorithm. Section VIII concludes
this paper.

II. RELATED WORK

In the literature, most placement algorithms for visual
sensors are proposed for such applications as 3-D object inspec-
tion and reconstruction. Roy et al. reviewed existing sensor-
planning algorithms for 3-D object reconstruction [36] and
proposed an online scheme that uses a probabilistic reasoning
framework for next-view planning and object recognition [37].
A more recent and thorough discussion regarding sensor-
planning algorithms for 3-D object reconstruction and recogni-
tion can be found in [8]. The authors also pointed out promising
directions for future research, such as the combinational op-
timization of the placement of both cameras and illumination
sources. Wong et al. defined a metric that evaluates the un-
known information in each group of potential viewpoints and
used it in the search of the next best view for 3-D modeling [42].
Yous et al. designed an active scheme for multiple PTZ camera
assignment so that each camera observes a specific part of
a moving object, mainly pedestrians, and achieves the best
visibility of the whole object [47]. The selection of sets of
omnidirectional views for the representation of a 3-D scene
is discussed in [40]. In [38], fuzzy logic inference is em-
ployed for camera placement, considering the uncertainty in the
analysis of visibility, accessibility, and camera-object distance.
Chen and Li [9] addressed the placement of active sensors
in the context of robot vision. With the increased scale of
multi-camera systems, sensor planning is also conducted in a
larger scale and at a higher level similar to sensor networks.
Guo et al. modeled observability as a decreasing exponential
function of the observation distance and used this model in
the camera placement for the monitoring and tracking of mass
objects [17]. Dunn et al. employed the Parisian evolutionary
algorithm to search for the optimal camera placement for 3-D
object reconstruction that aims at a reduced computational
complexity [14].

Sensor planning for surveillance systems has also received
increasing attention in recent years [6], [7], [22], [25], [34].
There exist two major directions in sensor planning for sur-
veillance systems: 1) offline camera positioning and 2) online
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camera selection. Offline camera positioning answers the ques-
tion of how multiple cameras can be placed in the environment
to fulfill specified tasks. Erdem and Sclaroff defined differ-
ent types of coverage problems and developed corresponding
solutions using perspective cameras [15]. Their methods have
been implemented in a simulator with genetic algorithm as the
optimization engine [12]. Several placement algorithms are de-
veloped based on Erdem and Sclaroff’s method. Angella et al.
presented solutions for the more generalized M-coverage prob-
lem, where it is desired that the object of interest can be
observed by at least M cameras [3]. Horster and Lienhart
also addressed the M-coverage problem and transformed their
nonlinear objective function to a linear one so that linear binary
programming can be used in the search of the optimal camera
placement [20].

The literature also mentions sensor placement algorithms
that focus on additional considerations such as path ob-
servability, dynamic occlusion, and frontal-view availability.
Bodor et al. presented a camera placement algorithm for max-
imizing the observability of a path [5]. Similarly, Fiore et al.
used the distance and foreshortening constraints to describe
the observability of a path and defined the corresponding cost
function [16]. Successful camera placement and online repo-
sitioning are demonstrated for tracking pedestrians that move
along a regular path using two fixed cameras that were mounted
on remotely controllable mobile platforms. A probabilistic
camera planning framework with dynamic visibility analysis
was proposed by Mittal and Davis [30]. Another metric that
describes the likelihood of dynamic occlusion is also discussed
in [10] for the optimization of camera configurations. Ram et al.
introduced frontal-view probability to coverage analysis and
demonstrated real-time camera selection for better observation
of a pedestrian [35].

Online camera selection, which is also referred to as the focus
of attention problem by Isler et al. [23], is introduced as a result
of the improved mobility of cameras. The object of interest
can be observed by multiple cameras; thus, an online resource
management mechanism is necessary to guide the coordination
among multiple cameras for an optimal system performance.
The optimal performance is twofold: 1) the optimal observa-
tion of every object of interest and 2) the optimal compu-
tational load for every camera deployed in the environment.
Gupta et al. discussed a unified approach, referred to as con-
fusion and occlusion analysis for selections based on tasks
(COST), that selects a set of cameras that will be used for the
inferences for each person in a group of pedestrians, consider-
ing occlusions and visual confusion [18]. Isler et al. proposed a
selection framework to assign cameras to track the object of
interest for a minimized expected error in the estimation of
the object’s location [23]. In [13], an activity map is estab-
lished on the fly and used to direct and coordinate multiple
PTZ cameras.

In the aforementioned review, we concentrate on the place-
ment of cameras, i.e., one type of visual sensors. In the fol-
lowing discussion, we look into sensor-planning algorithms
in a broader scope, where different types of sensors, in addi-
tion to visual ones, are used. Yang et al. discussed a sensor
placement method based on the Hungarian algorithm and scan
operation [44]. To resolve the problematic assumption that
sensors have a fixed sensing region, nonparametric probabilistic

models and Gaussian processes are established to optimize
sensor placement in two aspects: 1) informative and 2) of
low communication cost [26], [27]. The geometrical approach
utilizes geometrical methods such as Voronoi diagram [2], [41],
Delaunay triangulation [43], disc packing [48], [49], and tessel-
lation [50], [51]. For instance, Wang et al. designed algorithms
to iteratively adjust the positions of sensors for the optimal
coverage [41]. Ma and Yang described an adaptive deployment
algorithm for unattended mobile sensors [29].

In this paper, we concentrate on offline camera positioning.
When mathematically formulated as an optimization problem,
two types of approaches in camera positioning [15], [28] exist:
1) the search for the maximum coverage, given a fixed total cost
or the number of cameras, and 2) the search for the minimum
cost or the number of cameras for a full or required coverage. In
this paper, we refer to Approaches 1 and 2 as the Max-Coverage
and Min-Cost problems.

Assuming that a polygonal floor plan is represented as an oc-
cupancy grid, a binary vector b can be obtained by letting bi =1
if the ith grid is covered by at least one camera; otherwise, it is
bi = 0. We construct a binary coefficient matrix A with aij = 1
if the ith grid is covered by the jth camera configuration.
Each camera configuration specifies one combination of the
camera’s intrinsic and extrinsic parameters, including the focal
length f , pan/tilt angle θP /θT , and position TC . The following
relation holds: bi = 1 if b′i > 0 and bi = 0 otherwise, with
b′ = Ax. The solution vector x specifies a set of chosen camera
configurations with the corresponding element, i.e., xj = 1, if
the configuration is chosen; otherwise, it is xj = 0. Let the
cost associated with the jth camera configuration be ωj . Given
the maximum cost Ωmax, the Max-Coverage problem can be
described by

max
∑

i

bi, subject to
∑

j

ωjxj ≤ Ωmax. (1)

Given a required coverage vector bC,o or a minimum overall
coverage Cmin, the Min-Cost problem can be modeled as

min
∑

j

ωjxj , subject to Ax≥bC,o or
∑

i

bi≥Cmin. (2)

III. OBSERVATION MEASURE

In addition to visibility, we introduce the following criteria to
describe the observation of the tracked target: 1) its resolution
MR and 2) its distance to the edges of the camera’s FOV
MD. From a viewer’s perspective, visibility is a fundamental
requirement. Herewith, the viewer includes not only human
operators but also automatic processes such as consistent label-
ing, object tracking, and face/object recognition. Observations
with different detail levels affect the performance of these al-
gorithms. For example, a frontal face image with an interocular
distance that is not smaller than 60 pixels is recommended by
a well-known face recognition engine FaceIt so that a face will
automatically be recognized [33]. For persistent object tracking
and smooth camera handoff, the tracked target should be at a
reasonable distance from the edges of the camera’s FOV. The
MD component considers the margin for executing handoff
before the object falls out of the camera’s FOV.
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Fig. 2. Illustration of the camera and world coordinates for perspective
cameras.

A. Static-Perspective Cameras

To begin with, the camera and world coordinates are defined
and illustrated in Fig. 2. A point P = [X Y Z]T in the
world coordinates is projected onto a point [x′ y′ z′]T in the
camera coordinates by⎡
⎣ x′

y′

z′

⎤
⎦ =

⎡
⎣ cos θT 0 − sin θT

0 1 0
sin θT 0 cos θT

⎤
⎦

⎡
⎣ 1 0 0

0 cos θP sin θP

0 − sin θP cos θP

⎤
⎦

×

⎡
⎣ Z − TZ

X − TX

Y − TY

⎤
⎦ (3)

with TC = [TX TY TZ ]T . Assuming zero skew, unit aspect
ratio, and image center on the principal point, the projected

point on the image plane is given by

{
x = fx′/z′

y = fy′/z′
. Letting

Z = 0 (points on the ground plane), we have{
x = f −TZ cos θT −Z′ sin θT

−TZ sin θT +Z′ cos θT

y = f Y ′

−TZ sin θT +Z′ cos θT

(4)

where [
Y ′

Z ′

]
=

[
cos θP sin θP

− sin θP cos θP

] [
X − TX

Y − TY

]
. (5)

The estimation of the target depth ẑ′ can be obtained by

ẑ′ = −TZ sin θT + Z ′ cos θT =
−TZ

x/f cos θT + sin θT
. (6)

For static cameras with a constant focal length, the estimated
target depth is sufficient to describe the resolution, i.e.,

MR = αR/ẑ′ (7)

where αR is a normalization coefficient. However, when the
target is at a close distance, this relation is not entirely valid, in
particular when part of the target falls out of the camera’s FOV.
Therefore, the aforementioned definition is modified as

MR =
{

αR/ẑ′ ẑ′> |TZ/ tan θT |
αR

(ẑ′+TZ/ tan θT )2−TZ/ tan θT
ẑ′ ≤|TZ/ tan θT |. (8)

In practice, for a better observation and to reserve enough
computation time for camera handoff, the target should remain

Fig. 3. Illustration of the geometry for omnidirectional cameras.

at a safe distance from the edges of the camera’s FOV. More-
over, this margin distance is affected by the target depth. When
the target is at a closer distance, its projected image undergoes
larger displacements in the image plane. Therefore, a larger
margin should be reserved. In our definition, different polyno-
mial powers are used to achieve varying decreasing/increasing
rates of MD as the object of interest moves from the image
center in the direction orthogonal to the optical axis of the
camera. The MD is then given by

MD =
{
αD

[
(1−2|x|/Nrow)2+(1−2|y|/Ncol)

2
]}β1ẑ′+β0

(9)

where Ncol and Nrow denote the image’s width and height, αD

is a normalization weight, and coefficients β1 and β0 are used
to adjust the polynomial power.

The observation measure for a static-perspective camera is
then given by

Q =
{

wRMR + wDMD [x y]T ∈ Π
−∞ otherwise

(10)

where wR and wD are importance weights, and Π denotes the
image plane.

B. PTZ Cameras

For PTZ cameras with varying zooms, the resolution compo-
nent MR is given by

MR = αRf/ẑ′. (11)

Compared to (8), the additional term for the special case when
part of the target falls out of the camera’s FOV is not nec-
essary because of the additional flexibility from the camera’s
adjustable pan and tilt angles. We assume that the target is
always maintained at the image center by panning and tilting
the camera. Therefore, the MD component can be eliminated
from the computation of the observation measure.

C. Omnidirectional Cameras

The geometry of an omnidirectional camera is depicted in
Fig. 3. The imaging process of an omnidirectional camera does
not comply with the traditional perspective projection. Two
types of omnidirectional cameras exist: 1) dioptric (fisheye-
lens) and 2) catadioptric (reflected-mirror) cameras. We first
give the definition of the resolution and distance components
for dioptric cameras. Let r denote the distance between the
projected point [x y]T and the principal point. Let θ denote
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the angle between the incoming ray and the optical axis. The
perspective projection is characterized by r=f tan θ. To realize
a wider opening angle, this relation is changed in omnidirec-
tional cameras. Various projection models exist in the literature
[24], e.g., the equidistance projection, i.e., r=fθ, and the
general polynomial model, i.e., r=f

∑
k=1,odd λθ,kθk, where

λθ,k denote the approximation coefficients. Image resolution
can be computed as the partial derivative of r with respect to
R. We have

MR = αR
∂r

∂R
=

αRfZ

Z2 + R2

∑
k=1,odd

λθ,kkθk−1 (12)

with R =
√

X2 + Y 2. The MD component is given by

MD = αD(1 − r/ro)2 (13)

where ro represents the image radius of the omnidirectional
camera. The observation measure is a weighted sum of the MR

and MD components.
A catadioptric camera consists of a regular lens and a re-

flected mirror. The shape of the reflected mirror determines the
resulting projection model. It is shown that a unified framework
can be used to describe both types of cameras [46]. The general
polynomial model is a good candidate. The only difference lies
in the fact that, unlike dioptric cameras, catadioptric cameras
suffer from a disc-like blind region at the center of the image.
The blind region results from the occluded FOV caused by the
special-shaped mirror in front of the camera’s lens. The radius
of the blind region in the image plane rb can be computed
from the characteristics of the mirror, camera’s lens, and their
relative position. The definition of the resolution and distance
components for catadioptric cameras are given by

MR =

{
αRfZ
Z2+R2

∑
k=1,odd

λθ,kkθk−1 rb < r

−∞ 0 ≤ r ≤ rb

(14)

MD =

⎧⎪⎨
⎪⎩

αD

(
1 − r−1.5rb

ro

)2

1.5rb < r

αD

(
1 − 1.5rb−r

ro

)2

0 ≤ r ≤ 1.5rb

(15)

respectively.

IV. HANDOFF SAFETY MARGIN

In addition to the conventional requirements in sensor plan-
ning, e.g., coverage and cost, extra criteria need to be consid-
ered to ensure persistent tracking and monitoring in a real-time
automatic surveillance system. One of the criteria that will be
included is a sufficient uniform amount of overlapped FOVs be-
tween adjacent cameras so that enough time is reserved to per-
form consistent target labeling and successful camera handoff.
This criterion, to which this paper is devoted, is, however, not
addressed in existing camera placement algorithms. In coverage
analysis, two types of areas—visible and invisible—are used.
To incorporate handoff rate analysis, a third type of area, i.e.,
handoff safety margin, is introduced, which defines the visible
areas that require camera handoff to be triggered.

A failure threshold QF and a trigger threshold QT are
derived to define three disjoint regions: 1) an invisible area
with Qij < QF ¸ where Qij represents the observation measure
value of the ith grid that was observed by the jth camera

Fig. 4. Schematic of the contours of the observation measure with Qij = QF

and Qij = QT to show the effect of the MR and MD components. (a) Q =
MR = αR/ẑ′. (b) Q = MR, as defined in (8). (c) Q = wRMR + wDMD ,
with wR = 0.5 and wD = 0.5.

configuration; 2) a visible area with Qij ≥ QT ; and 3) a hand-
off safety margin with QF ≤ Qij < QT . The failure threshold
QF segments the invisible areas and is used for coverage
analysis. The trigger threshold QT separates the visible areas
and handoff safety margins. It is introduced for handoff rate
analysis, where necessary overlapped FOVs between adjacent
cameras are optimized. The trigger threshold QT is given
by QT = QF + κuobjtH , where uobj represents the average
moving speed of the object of interest, tH denotes the average
duration for a successful handoff, and κ is a conversion scalar.

The individual and combined effects of the MR and MD

components become evident when we study the contours of the
observation measure defined by QF and QT . In Fig. 4, the black
solid lines and red dashed lines depict the contours, with Qij =
QF and Qij = QT , respectively. The resolution component
MR provides limits along the direction of the optical axis of
the camera, whereas the MD component generates constraints
mainly in the direction orthogonal to the optical axis of the
camera. If (7) is used, as shown in Fig. 4(a), the handoff safety
margin is given by αR/ẑ′ < QT . That is, αR/QT < ẑ′. As a
result, the handoff safety margin is only defined at the far end
of the camera’s FOV along the optical axis. The scenario where
the target is very close to the camera such that part of it falls
out of the camera’s FOV is ignored. The modification in (8)
imposes a proper constraint at the near end of the camera’s FOV
along the optical axis, as shown in Fig. 4(b). Therefore, the re-
sulting observation is complete and with the desired resolution.

V. OBJECTIVE FUNCTION

To incorporate the ability of occlusion handling, we em-
ploy the occlusion analysis method in [15] to predict possible
occlusions in the ground plane caused by obstacles. Denote
the occluded region in the ground plane that was observed
by the jth camera caused by the kth obstacle as Oj,k. The
union of all the occluded regions that were observed by the jth
camera is given by Oj =

⋃
k Oj,k. Let AO represent the oc-

clusion coefficient matrix, with aO,ij = 1 if [Xi Yi]T ∈ Oj ;
otherwise, it is aO,ij = 0.

Let AC represent the grid coverage, with aC,ij = 1 if Qij ≥
QF and aO,ij = 0. Otherwise, aC,ij = 0. Matrix AC resembles
matrix A in the conventional coverage analysis discussed in
the previous section. Two additional coefficient matrices are
constructed: 1) AH and 2) AV . The matrix AH has aH,ij = 1
if QF ≤ Qij < QT and aO,ij = 0. Otherwise, aH,ij = 0. The
matrix AV has aV,ij = 1 if Qij ≥ QT and aO,ij = 0. Other-
wise, aV,ij = 0. Matrices AH and AV represent the handoff
safety margin and visible area, respectively. Recall that the so-
lution vector x specifies a set of chosen camera configurations
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with the corresponding element xj = 1 if the configuration is
chosen; otherwise, it is xj = 0. Let c′C = ACx, c′H = AHx,
and c′V = AV x. The objective function is formulated as

ci = wC

(
c′C,i > 0

)
+ wH

(
c′H,i = 2

)
− wV

(
c′V,i > 1

)
(16)

where wC , wH , and wV are predefined importance weights.
The operation (c′C,i > 0) means that

(c′C,i > 0) =
{

1, c′C,i > 0
0, otherwize.

The first term in the objective function considers coverage,
the second term produces sufficient overlapped handoff safety
margins, and the third term penalizes excessive overlapped
visible areas. Our objective function achieves a balance be-
tween coverage and sufficient margins for camera handoff. The
optimal sensor placement for the Max-Coverage and Min-Cost
problems can then be obtained by

max
∑

i

ci, subject to
∑

j

ωjxj ≤ Ωmax (17)

min
∑

j

ωjxj then max
∑

i

ci,

subject to ACx ≥ bC,o or
∑

i

bi ≥ Cmin. (18)

Solving the Min-Cost problem is a sequential optimization
process. First, the number of cameras and their types are op-
timized to achieve a minimized cost and maintain the required
coverage. The objective function

∑
j ωjxj is linear with respect

to the solution vector x; thus, linear programming can be used
in this step. Second, the camera parameters are optimized by
maximizing the second objective function

∑
i ci. Note that the

second step employs the same objective function as that of the
Max-Coverage problem but with different constraints. ci is a
nonlinear function of the solution vector x; thus, a more evolved
optimization method than linear programming is required.
The selection of the appropriate optimization methods for
solving the Max-Coverage problem and the second step of the
Min-Cost problem will be discussed in detail in Section VI.

Special performance requirements are frequently encoun-
tered in surveillance applications. To meet these requirements,
additional constraints need to be added. The coverage and
resolution considerations correspond to priority areas that need
complete coverage and/or specified resolution. The frontal-
view requirement results from path constraints where there
exist predefined paths within which the objects’ movements are
restricted.

Two approaches for imposing these requirements exist:
1) direct constraints and 2) adaptive weights. Considering
the coverage requirement for example, the direct constraint
approach finds the solution by imposing an extra constraint
ACx ≥ bC,o, where bC,o represents the required coverage,
with bC,o,i = 1, if the corresponding grid will be covered; oth-
erwise, it is bC,o,i = 0. The adaptive weight approach assigns
different weights wC,i to the grid points according to the cover-
age requirements. Larger weights are used if the corresponding
grids need to be covered. The objective function of (16) then
becomes

ci = wC,i

(
c′C,i >0

)
+ wH

(
c′H,i = 2

)
− wV

(
c′V,i >1

)
. (19)

Fig. 5. Illustration of how the frontal view component can be computed with
path constraints.

To incorporate the resolution requirements, we construct
a matrix AR with aR,ij = 1 if MR,ij ≥ MR,o,i; otherwise,
it is aR,ij = 0. Here, MR,o,i is the corresponding resolution
requirement at the ith grid point. The direct constraint approach
is carried out by introducing an extra constraint ARx ≥ bR,o,
where bR,o represents the required resolution, with bR,o,i = 1
if the corresponding grid needs the minimum resolution;
otherwise, it is bR,o,i = 0. In the adaptive weight approach, the
objective function becomes

ci = wC

(
c′C,i > 0

)
+ wH

(
c′H,i = 2

)
− wV

(
c′V,i > 1

)
+ wR,i

(
c′R,i > 0

)
(20)

where c′R = ARx and wR,i are different weights that were
allocated according to the resolution requirement.

In surveillance systems, a predefined path is commonly
encountered. It is also preferred that a frontal view can be
achieved some time while pedestrians are moving along this
path. One example is entrance areas where a frontal view of the
pedestrian is desired when he/she enters the gate. We use the
tangential direction of the middle line of the path as the average
direction of the pedestrian’s motion, as shown in Fig. 5. Let the
kth point on the middle line be P0,k and its tangential direction
be uP,k. The frontal-view measure that was observed by the
jth camera at point Pi′,k along the line perpendicular to uP,k is
given by

FVi′j =
(TC,j − Pi′,k)T uP,k

‖TC,j − Pi′,k‖‖uP,k‖
. (21)

Based on FVi′j , we define a matrix AFV , with aFV,i′j = 1
if FVi′j ≥ 0; otherwise, it is aFV,i′j = 0. Let aFV,ij = 0 for
grid points outside the path. Finally, the path constraint is
incorporated into sensor planning by

ci = wC

(
c′C,i > 0

)
+ wH

(
c′H,i = 2

)
−wV

(
c′V,i > 1

)
+ wFV,i

(
c′FV,i > 0

)
(22)

where c′FV = AFV x and wFV,i are different weights that were
allocated according to the frontal-view requirement.

Note that, although the coverage, resolution, and path con-
straints are separately addressed, it is straightforward to com-
bine any two terms or all three. The only modification is to
add the corresponding terms. The adaptive weight approach
is particularly attractive because of its concise expression and
speed of convergence.
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Fig. 6. Block diagram of the proposed sensor-planning algorithm.

VI. SENSOR PLANNING

Fig. 6 shows the flow chart of the proposed sensor-planning
algorithm, with the highlighted boxes indicating our contribu-
tions. Our algorithm can be divided into two stages: 1) prepa-
ration and 2) optimization. The preparation stage includes three
blocks in serial: 1) camera modeling; 2) environment modeling;
and 3) observation measure computation. The input of the
camera-modeling block indicates the possible choices of the
cameras’ types and the extrinsic and intrinsic parameters.
The cameras’ extrinsic and intrinsic parameters are sampled
within their feasible ranges to form different combinations.
We refer to each combination as one camera configuration.
Afterward, the solution vector x is formulated with its jth
element that corresponds to the jth camera configuration. The
camera-modeling block performs as a sampler and an encoder.
It emulates possible camera configurations and produces a map-
ping between the solution vector and camera configurations.
This mapping is used in the last step of optimization when
the optimal solution x∗ has been found to decode the solution
vector into the actual optimal camera configuration.

The environment-modeling block includes three subblocks:
1) floor plan modeling; 2) obstacle modeling; and 3) path
modeling. As the names suggest, the floor plan modeling deals
with the overall 3-D model of the environment, whereas the
obstacle- and path-modeling blocks handle obstacles and paths,
respectively. The environment-modeling block represents the
floor plan as a mesh of 2-D grid points and produces a mapping
between grid points and the elements of the coefficient matrices
AC , AH , and AV . In Fig. 6, we use aj to denote the jth column
from any coefficient matrices. Note that the mapping in the
environment-modeling block only defines the structure of the
coefficient matrices, i.e., the correspondences between the ith
grid point and the ith element in aj . The actual values of these
matrices are computed in the observation measure block.

Based on the mapping from camera parameters to the so-
lution vector and the structure of the coefficient matrices, the
observation measures of each grid point, given each camera
configuration, are calculated to form the coefficient matrices
AC , AH , and AV . These coefficient matrices are, in turn, used
to construct the objective function in the optimization stage.

In the optimization stage, the optimal solution x is searched
under the guidance of the objective function F =

∑
i ci. There

exist multiple local maxima because of the complex interaction
among multiple cameras; thus, a global optimizer is recom-
mended. Gradient-based optimization approaches, including
the Newton and Quasi-Newton methods, are not employed due
to the difficulties in computing or estimating the gradient of
the objective functions in (17) and (18). In comparison with
gradient-based approaches, Monte-Carlo optimization methods
are more suitable for our problems. Monte-Carlo methods
can find the optimal solution without explicit computations of
the gradient of the objective function. In addition, Monte-Carlo
methods are powerful when dealing with large-dimensional
vectors and local maxima. Simulated annealing and generic
algorithm are two popular Monte-Carlo methods. David et al.
exploited the genetic algorithm to implement Erdem and
Scalorff’s algorithm [12]. Simulated annealing also finds ap-
plications in the optimization of sensor placement [11]. In
the following discussion, the genetic algorithm is employed.
Another reason that we have selected the genetic algorithm lies
in the fact that the solution vector is readily binary.

The search for the optimal solution starts with initialization.
Following the conventions of the generic algorithm, the initial
pool of chromosomes {x(o)

k } is generated, where k denotes the
kth chromosome in the population. Reproduction is carried out,
including operations such as selection, crossover, mutation, and
elitism, to form the next generation. The newly constructed
objective function is employed to evaluate the fitness of each
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TABLE I
LIST OF VARIABLES USED IN THE PROPOSED ALGORITHM

chromosome in the population. The reproduction and evalu-
ation process iterates until the stopping criteria are satisfied.
In Fig. 6, {x(Iter)

k } represents the population at the (Iter)th
iteration. In the end, the optimal parameters are obtained based
on the mapping between the optimal solution x∗ and camera
configurations.

Optimization accounts for the majority of the computational
complexity, which heavily depends on camera-related quanti-
ties (e.g., the number of cameras, the feasible range of the cam-
era parameters, and the sampling rate of the camera parameters)
and environment-related quantities (e.g., the scale of the en-
vironment and the sampling rate of the grid points). Path
constraints and occlusions are established in the preparation
stage; thus, the additionally induced computations are not as
significant as the aforementioned quantities.

Preparation and optimization are automatically implemented,
given the necessary information of the environments. Fig. 6
emulates the necessary inputs for each modeling block. In
our implementation, some of the camera parameters can au-
tomatically be derived from environment modeling if they
are not specified otherwise. To clearly illustrate the additional
computation or information needed as the necessary input to
our algorithm, Table I lists the variables used in the proposed
algorithm. In our implementation, the only necessary input is a
2-D floor plan with information about the obstacles/paths that
need to be considered. A 3-D CAD model of the environment
is a promising input format. The floor plan is modeled as a
polygon; thus, one alternative approach is to list the coordinates
of the vertices of the floor plan and the obstacles/paths in a text
file. Our implementation adopts the second approach. Other
variables can either be computed from given information or
use default values. Table I also lists the dependency between
variables. For example, the cameras’ extrinsic parameters can
be derived from the 3-D model of the floor plan.

VII. EXPERIMENTAL RESULTS

We begin this section with the discussion regarding the
selection of parameters in the definition of the observation

measure and the construction of the objective function. We then
introduce our experimental methodology and validate the newly
developed observation measure for different types of cameras.
Our experimental results, using two floor plans, are presented
and compared with a reference algorithm that was proposed by
Erdem and Sclaroff [15]. Three criteria are used to evaluate and
compare the performances of various algorithms: 1) coverage;
2) handoff success rate; and 3) frontal-view percentage. The
handoff success rate denotes the ratio between the number of
successful handoffs and the total number of handoff requests.
The frontal-view percentage is given by the ratio between the
number of frames with required orientations of the object of
interest and the total number of frames with the object of in-
terest being tracked. Comparing Erdem and Sclaroff’s method
with our proposed method, an improved handoff success rate
is expected. When the path constraint is imposed, an improved
frontal-view percentage is also expected.

A. Parameter Selection

There are two sets of parameters: 1) normalization coeffi-
cients (αR and αD) and 2) importance weights (wR, wD, wC ,
wH , wV , wR, and wFV ). The goal of choosing the appropriate
normalization coefficients is to provide a uniform comparison
basis for different types of cameras and cameras with various
intrinsic and extrinsic parameters. In so doing, sensor planning
and camera handoff can be conducted independent of the actual
types of cameras that were selected. In general, we normalize
the MR and MD components in the range of [0, 1].

For static-perspective cameras, the maximum of MR is
achieved at ẑ′ = −TZ/ tan θT . We have MR,max = αR/
ẑ′|ẑ′=−TZ/ tan θT

= 1 and thus, αR = −TZ/ tan θT . To nor-
malize the MD component, we need αD = 0.5. For omnidirec-
tional cameras, the maximum of the MR component is obtained
by letting θ = 0 : MR,max = αRfλθ,1/Z. In consequence, we
arrive at αR = Z/fλθ,1. In a similar fashion, we set αD = 1 to
normalize the MD component for omnidirectional cameras.

Unlike the selection of the normalization coefficients, which
depends on the characteristics of the cameras used, the
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Fig. 7. Tested floor plans: (a) an office floor plan with path constraints and
(b) a floor plan with mixed indoor and outdoor environments. These two floor
plans are referred to as plan A and B, respectively.

selection of the importance weights is application dependent.
We purposefully reserve the freedom for users to choose differ-
ent importance weights according to their special requirements
to increase our algorithm’s flexibility. Meanwhile, default val-
ues can be used if the corresponding variables are not specified
by users. The default values of wR and wD are simply 0.5.
We could compute wC , wH , and wV such that the turning
point of the objective function is placed at the middle point
between the contours defined by QT and QF . The weights
wR(wFV ) can be calculated as the ratio between the area
of the floor plan and the area of the grid points that require
special resolution (orientation). In the following experiments,
the importance weights are set to default values.

B. Experimental Methodology

The floor plans used in this section are shown in Fig. 7.
Fig. 7(a) illustrates an environment with a predefined path
where workers proceed in a predefined sequence. One floor plan
with mixed indoor and outdoor environments is used to examine
the flexibility of the proposed algorithms. In the following
experiments, we refer to these plans as plans A and B. These
floor plans are deliberately selected to cover a large variety of
environments that are encountered in practical surveillance.

The selected floor plans are used to test various aspects of
the proposed algorithm according to their characteristics. The
scale of indoor environments, e.g., floor plan A, is relatively
small. Those test beds are only used to verify the performance
of the proposed camera-placement algorithm based on cameras
with smaller FOVs, e.g., static-perspective and omnidirectional
cameras. PTZ cameras that are equipped with significantly
larger FOVs appear to be more appropriate for large-scale
surveillance. Therefore, floor plan B is tested using PTZ cam-
eras. In addition, a predefined path is given in floor plan A,
and preferred observation directions are specified for entrance
areas in floor plan B. Path constraints are imposed to test
whether an improved frontal-view percentage can be achieved.
Static-perspective cameras are placed along the walls of the
environment, whereas omnidirectional and PTZ cameras can be
mounted either on the ceiling or along the walls at sampled grid
points, with an interval of 1 m.

To obtain a statistically valid estimation of the handoff
success rate, simulations are carried out to enable a large
amount of tests under various conditions [19]. A pedestrian
behavior simulator [4], [32] is implemented so that we can
achieve a close resemblance to experiments in real environ-
ments and, in turn, an accurate estimation of the handoff
success rate. Interested readers can refer to the original papers
for details. In our experiments, the arrival of the pedestrian
follows a Poisson distribution, with an average arrival rate of
0.01 person/s. The average walking speed is 0.5 m/s. Several
points of interest are randomly generated to form a pedestrian
trace. Fig. 7 also depicts some randomly generated pedestrian
traces. The handoff success rate and the frontal-view percentage
are obtained from simulation results of 300 randomly generated
traces.

C. Experiment on Observation Measures

In the following experiment, a static-perspective camera is
placed at TC = [0 0 3 m]T , which looks down toward the
ground plane at a tilt angle of −30◦. Its pan angle is set to
zero. The image size is 640 × 480. The focal length of the
camera is 21.0 mm. Points are uniformly sampled on the ground
plane (Z = 0), with X being in the range of −8 m to 8 m and
Y in the range of 2 m to 10 m. Based on these parameters,
the normalization coefficient of the MR component is αR =
−3/ tan(−30◦) = 5.2. As we have previously mentioned, a
smaller decreasing/increasing rate of the MD component is
desired when the target is at a long distance. In our implemen-
tation, we choose

{
β1|TZ/ tan θT | + βo = 1
2β1|TZ/ tan θT | + βo = 0.5

and obtain β1 = −0.1 and β0 = 1.5. In summary, the param-
eters used are listed as follows: αR = 5.2, αD = 0.5, β1 =
−0.1, β0 = 1.5, wR = 0.25, and wD = 0.75.

Fig. 8 shows the observation measure for the perspective
camera. As expected, in Fig. 8(a)–(c), MR increases as the
target moves toward the camera along the optical axis, and
MD increases as the target moves toward the image center.
Based on Fig. 8(d), the best observation area with the maximum
observation measure is in the proximity of [0 5 m 0]T .
As the object moves from this area, the observation measure
decreases. A higher penalty is given to the motion along the
x-axis, i.e., the direction orthogonal to the optical axis of the
camera. The proposed observation measure gives a quantified
evaluation of the tracking and observation suitability, which
also agrees with our intuition and visual inspection.

In the second simulation, an omnidirectional camera that
follows the equidistance projection model is placed at TC =
[0 0 3 m]T , which overlooks an area with (X,Y ) in the
range of −6 m to 6 m. The image size is 640 × 640. The nor-
malization coefficient for the resolution component is given by
αR = 6/640 = 9.4 × 10−3. Other parameters that were used
are listed as follows: αD = 1, wR = 0.25, and wD = 0.75. The
resulting observation measure is shown in Fig. 9. A radially
symmetric shape is obtained, which agrees with the character-
istics of an omnidirectional camera.
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Fig. 8. (a)–(c) Sample frames from a perspective camera with the target at
different positions. The blue rectangle and the red circle highlight the bounding
box and the centroid of the detected target, respectively. The estimated resolu-
tion components MR are given as follows: (a) 0.16; (b) 0.57; and (c) 0.76. The
estimated distance components MD are given as follows: (a) 0.11; (b) 0.40;
and (c) 0.77. (d) Graphical illustration of the observation measure and handoff
safety margin for a perspective camera. The positions of the sample frames are
specified.

Fig. 9. (a)–(c) Sample frames from an omnidirectional camera with the target
at different radial distances. The blue ellipse and the red circle highlight
the area and the centroid of the detected target, respectively. The estimated
resolution components MR are given as follows: (a) 0.57; (b) 0.70; and
(c) 0.91. The estimated distance components MD are given as follows: (a) 0.26;
(b) 0.41; and (c) 0.71. (d) Graphical illustration of the observation measure
and handoff safety margin for an omnidirectional camera. The positions of the
sample frames are specified.

D. Experiment on Sensor Planning

In the following experiments, wC , wH , and wV are set to
1, 2, and 5, respectively. The failure and trigger thresholds are
0 and 0.6, respectively. For floor plan A, the required visible

Fig. 10. Optimal camera positioning of floor plan A for the Max-Coverage
problem using perspective cameras. (a) Erdem and Sclaroff’s method (the
coverage is 84.8%, the handoff success rate is 6.0%, and the frontal view
percentage is 67.7%). (b) Our method (the coverage is 74.7%, the handoff
success rate is 56.9%, and the frontal view percentage is 28.7%). (c) Our
method with path constraint (the coverage is 72.1%, the handoff success rate
is 58.0%, and frontal view percentage is 93.5%).

Fig. 11. Optimal camera positioning of floor plan A for the Min-Cost problem
using perspective cameras (coverage ≥ 80%). (a) Our method (the coverage
is 81.3%, the handoff success rate is 43.7%, and the frontal view percentage
is 41.0%). (b) Our method with path constraint (the coverage is 81.6%, the
handoff success rate is 47.1%, and the frontal view percentage is 69.0%).

distance is about 10 m, and the height is 3 m; thus, the same pair
of tilt angle and focal length can be used for static-perspective
cameras, with f = 21.0 mm and θT = −30◦.

Fig. 10 illustrates the experimental results for floor plan A
by using static-perspective cameras to solve the Max-Coverage
problem. Our approach chooses a camera-positioning scheme
with a slightly decreased coverage from 84.8% to 74.7% com-
pared to Erdem and Sclaroff’s method. However, the handoff
success rate is substantially improved from 6.0% to 56.9%.
In addition, we add the frontal-view criterion with wFV = 5.
The frontal-view percentage is elevated from 28.7% to 93.5%.
Based on Fig. 10(b) and (c), we could see that the cameras
are oriented toward the direction of the predefined path after
introducing the path constraint.

The Min-Cost problem imposes additional requirements on
the overall coverage, which leaves less freedom in optimization
to achieve the maximum handoff success rate. As Fig. 11
demonstrates, the overall coverage is constrained to be above
80%. With similar coverage (Erdem and Sclaroff’s method has
84.8%, whereas our method has 81.3%), our algorithm can
achieve a much higher handoff success rate (i.e., 43.7%) than
the conventional approach (i.e., 6.0%).

Fig. 12 demonstrates the experimental results for PTZ cam-
eras. The handoff success rate is elevated from 48.7% to
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Fig. 12. Optimal camera positioning of floor plan A for the Max-Coverage
problem using PTZ cameras. (a) Erdem and Sclaroff’s method (the coverage
is 100.0%, the handoff success rate is 48.7%, and the frontal view percentage
is 52.5%). (b) Our method (the coverage is 99.5%, the handoff success rate is
100.0%, and the frontal view percentage is 53.4%). (c) Our method with path
constraint (the coverage is 99.0%, the handoff success rate is 100.0%, and the
frontal view percentage is 71.1%).

Fig. 13. Optimal camera positioning of floor plan B for the Max-Coverage
problem using PTZ cameras. (a) Erdem and Sclaroff’s method (the coverage
is 100.0%, the handoff success rate is 71.6%, and the frontal view percentage is
56.2%). (b) Our method (the coverage is 100.0%, the handoff success rate is
92.8%, and the frontal view percentage is 42.4%). (c) Our method with path
constraint (the coverage is 100.0%, the handoff success rate is 91.5%, and the
frontal view percentage is 94.2%).

100% but at the cost of a marginal decrease in coverage
from 100.0% to 99.5% when comparing the performance of
the reference method [15] and the proposed method for floor
plan A. A similar performance improvement is achieved for
floor plan B, which is an example with mixed indoor and
outdoor environments, as shown in Fig. 13. Our algorithm
enhances the handoff success rate from 71.6% to 92.8% while
maintaining the same coverage of 100.0% in comparison with
the reference algorithm. To obtain frontal-view observations at
entrance areas, path constraints are imposed, which results in
an improvement in frontal-view percentage from 56.2% of the
reference algorithm to 94.2%.

In parallel, experiments are conducted using omnidirectional
cameras. To cover a radius of 6 m at a height of 3 m, the chosen
focal length is 15.4 mm. Fig. 14 shows the optimal camera
placement. At the cost of a 10.6% decrease in coverage, the
handoff success rate increases from 50.0% to 92.6% for floor
plan A. Unlike perspective cameras that can look into a partic-
ular direction for a frontal view of the target, omnidirectional
cameras have a 360◦ × 90◦ view. Therefore, the improvement
in frontal-view percentage from imposing the path constraint

Fig. 14. Optimal camera positioning of floor plan A using omnidirectional
cameras. The Max-Coverage problem: (a) Erdem and Sclaroff’s method (the
coverage is 92.1%, the handoff success rate is 50.0%, and the frontal view
percentage is 49.9%), (b) our method (the coverage is 81.5%, the handoff
success rate is 92.6%, and the frontal view percentage is 53.4%), and (c) our
method with path constraint (the coverage is 80.0%, the handoff success rate
is 100.0%, and the frontal view percentage is 57.6%). The Min-Cost problem
(coverage ≥ 90%): (d) our method (the coverage is 91.2%, the handoff success
rate is 52.2%, and the frontal view percentage is 45.7%) and (e) our method with
path constraint (the coverage is 90.7%, the handoff success rate is 100.0%, and
the frontal view percentage is 53.4%).

Fig. 15. Optimal camera positioning of floor plan A for the Max-Coverage
problem using perspective and PTZ cameras. (a) Erdem and Sclaroff’s method
(the coverage is 99.7%, the handoff success rate is 44.7%, and the frontal view
percentage is 40.4%). (b) Our method (the coverage is 95.1%, the handoff
success rate is 100.0%, and the frontal view percentage is 63.1%). (c) Our
method with path constraint (the coverage is 91.6%, the handoff success rate
is 100.0%, and the frontal view percentage is 90.9%).

is not substantial, which was indicated by a slight increase
of 4.2%.

As we have mentioned in Section VII-A, appropriate nor-
malization coefficients are selected to provide a uniform com-
parison basis for different types of cameras and cameras with
various intrinsic and extrinsic parameters so that the proposed
sensor-planning algorithm is applicable to systems with hetero-
geneous cameras. Fig. 15 demonstrates the experimental results
based on floor plan A, where two types of cameras—static
perspective and PTZ—are deployed into the environment. In
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TABLE II
SYSTEM PERFORMANCE COMPARISON

TABLE III
PROCESSING TIME COMPARISON

comparison with Erdem and Sclaroff’s method, our algorithm
achieves a significant improvement in the handoff success
rate (i.e., 100.0% versus 44.7%) and a considerably increased
frontal-view percentage (i.e., 90.9% versus 40.4%) once the
path constraint is imposed. Compared to the experimental re-
sults using static-perspective cameras in Fig. 10, the camera
placement with heterogeneous cameras produces higher cover-
age and handoff success rate, at the cost of decrease in frontal-
view percentage. On the contrary, compared to the experimental
results using PTZ cameras in Fig. 12, systems with hetero-
geneous cameras feature a higher frontal-view percentage, at
the cost of degradation in coverage and handoff success rate.
The aforementioned observation agrees with the characteristics
of static-perspective and PTZ cameras. In comparison with
PTZ cameras, static-perspective cameras, with a smaller FOV,
look into a specific direction, which facilitates the defini-
tion of frontal-view directions. Therefore, with similar system
complexity, the use of heterogeneous cameras can explore the
advantages of different types of cameras and achieve a better

balance between coverage/handoff success rate and frontal-
view percentage.

E. Performance Comparisons

Table II summarizes the performance comparison between
the proposed algorithm and the reference algorithm described
by Erdem and Sclaroff [15]. Consistent observations are ob-
tained from experiments using two floor plans and three types
of cameras. Compared to the reference algorithm, our algo-
rithms produce considerably improved handoff success rate and
frontal-view percentage but at the cost of slightly decreased
coverage. This amount of decrease in coverage is inevitable to
maintain overlapped FOVs between adjacent cameras required
by continuous and automated tracking, given a fixed number
of cameras. The ratio between the increase in handoff success
rate and the decrease in coverage ΔHSR/|ΔC| describes the
advantage of our algorithms. For the Max-Coverage problem,
every 1% decrease in coverage results in a 4%–10% increase
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in the handoff success rate. An even higher improvement rate
can be achieved for the Min-Cost problem. The efficiency
of the proposed algorithms in balancing the overall coverage
and sufficient overlapped FOVs becomes evident. Furthermore,
our algorithms can also handle additional constraints, e.g., the
frontal-view requirement. The resulting algorithms are able to
maintain a similar improvement rate in the handoff success rate
with further improved frontal-view percentage.

The conventional sensor-planning methods achieve a camera
placement with a maximized coverage. In such a system, al-
though the target is visible, it cannot consistently be labeled
or recognized as the same identity across different cameras
because of handoff failures that result from insufficient over-
lapped FOVs. The corresponding camera placement cannot
support automated persistent surveillance, because the tracked
or identified target trajectories are disjoint at the junction areas
of adjacent cameras. In contrast, our sensor placement ensures
a continuous consistently labeled trajectory. The slightly de-
creased coverage can easily be compensated for by adding an
additional camera. The cost of an extra camera is acceptable in
comparison with a system with inherent weakness in persistent
and continuous tracking.

Finally, we compare the computational complexity between
the proposed and reference algorithms. The objective function
of the proposed algorithm is nonlinear for both Max-Coverage
and Min-Cost problems. As for the reference algorithm, the
Min-Cost problem can be solved via linear programming.
Nevertheless, the objective function for the Max-Coverage
problem is also nonlinear. Therefore, our algorithm has similar
computational complexity as the reference algorithm in solving
the Max-Coverage problem. As we have previously mentioned,
our algorithm for the Min-Cost problem is a sequential process.
The computational complexity of the first step is similar to
that of the reference algorithm. Additional computations come
from the second step, which has a nonlinear objective function.
Table III summarizes the dimensions of the floor plan, the
number of cameras deployed, and the processing time for the
preparation and optimization stages. Algorithms are imple-
mented in Matlab and run on a personal computer with dual
1.6-GHz CPUs and 1-GB RAM. According to our experiments,
we observe that, for environments with small scales, our algo-
rithms require similar processing time as the reference methods
for solving both Max-Coverage and Min-Cost problems. As
the environment scale increases, our algorithms start to require
noticeably increased computations for solving the Min-Cost
problem. Compared to the advantage of continuously and
consistently maintaining a target’s trajectory in real-time sur-
veillance, the increased computational complexity in offline
processing is acceptable.

VIII. CONCLUSION

In this paper, we have proposed a sensor positioning algo-
rithm for various types of cameras in the context of persistent
and automated tracking and improved existing algorithms by
incorporating handoff rate analysis with coverage and visibility
analysis. Direct constraint and adaptive weight approaches
were derived from the general method to solve the resolution
and frontal-view constraints. Significantly improved handoff
success rate and frontal-view percentage were reported via

experiments and comparisons with a reference algorithm based
on typical indoor and outdoor floor plans of various scales.
These experimental results indicate the efficiency of the pro-
posed algorithm in balancing the overall coverage and sufficient
overlapped FOVs. With considerably improved handoff success
rate and frontal-view percentage, the proposed algorithm pro-
duces robust and enhanced performance compared to the ref-
erence algorithm presented in the work of Erdem and Sclaroff
when applied to automated tracking systems.
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