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A proactive mechanism to learn an efficient strategy for adaptive resource clusters is proposed. In
contrast to reactive techniques, that rescale the cluster to fit the past load, a predictive strategy is
adopted. The cluster incoming workload is forecasted and an optimization problem is defined whose
solution is the optimal action according to a utility function. Genetic-based machine learning techniques
are used, including multi-objective evolutionary algorithms under the distal supervised learning setup.
Experimental evaluations show that the proactive system presented in this work improves either the
energetic efficiency or the number of reconfigurations of previous approaches without a loss in the
quality of service. Depending on the predictability of the workload, in real world cluster scenarios
additional energy savings of up to approximately 40% were measured over the best previous approach,
with a 2� factor increment in the number of reconfigurations.
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1. Introduction

According to Delforge and Whitney (2014), U.S. data centres
consumed 91 billion kilowatt-hours of electricity in 2013. This
consumption is projected to increase to roughly 140 billion
kilowatt-hours by 2020, costing $13 billion annually. The carbon
footprint is also very significant and accounts for nearly 100 mil-
lion metric tons of carbon pollution per year, a figure equivalent to
aviation (Gartner, 2007). In particular, energy efficient operation in
High Performance Computing (HPC) Clusters is a challenging issue.
HPC Clusters are the main architecture for supercomputers1 due to
the high performance of commodity microprocessors and net-
works, to the standard tools for high performance distributed
computing, and to the lower price/performance ratio (Yeo et al.,
2006). Because of the ubiquity of HPC clusters, there are powerful
economical and environmental incentives for developing new
techniques to reduce their electrical consumption. Furthermore,
improvements in consumption result in lower heat dissipation. As
a side effect, the reliability of the cluster is improved and the
consumption of auxiliary devices, such as power supply units,
power distribution, cooling, lighting and building switchgear, is
lessened as well (Emerson Network Power, 2009).
caña-Fernández),
anilla).
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Static approaches to the problem are focused on the develop-
ment of new hardware with a lower consumption, for instance
low-power CPUs such as the IBM PowerPC A2 of IBM Blue Gene/Q
(Haring et al., 2012; IBM Systems and Technology Group, 2011),
GPUs or Intel Xeon Phi coprocessors. Dynamic approaches, on the
other hand, reshape clusters to match the existing load, down-
speeding or shutting down unneeded resources (Valentini et al.,
2011). For example, the Dynamic Voltage and Frequency Scaling
(DVFS) technique reduces CPU voltage and frequency when the
CPU is idle or under-used, as shown in Hsu and Kremer (2003),
Hsu and Feng (2005), Freeh et al. (2007), Lim et al. (2006), Cheng
and Zeng (2011), Ge et al. (2007), Huang and Feng (2009), and
Chetsa et al. (2012). In this respect, there are software frameworks
that can take advantage of different cluster energy-saving features
when developing energy-efficient applications, such as Alonso
et al. (2012), Schubert et al. (2012), Freeh and Lowenthal (2005), Li
et al. (2010), and Xian et al. (2007). Lastly, at an intermediate level
between low-power hardware and energy-conscious software,
there are job schedulers (Zong et al., 2007, 2010) and thermal-
aware methods (Bash et al., 2007; Tang et al., 2008) that can be
used in combination with software that was not designed with
energy savings in mind. This intermediate-level software can scale
down and up the cluster in response to changing conditions. In
particular in the so-called adaptive resource clusters, the compute
nodes are switched on and off on the basis of requested, idle and
available resources. The ultimate purpose of this technique is to
switch off all idle nodes, however the decision algorithm is not
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trivial and has competing restrictions. For instance, a high number
of reconfigurations are not wanted as it might hamper the relia-
bility of the cluster, thus a node should not be shut down if it is
going to be needed shortly after.

Many different variants of the adaptive resource cluster tech-
nique exist. It was introduced in Pinheiro et al. (2001) for Load-
Balancing clusters, and it was also used in Das et al. (2008),
Elnozahy et al. (2002), Berral et al. (2010), Lang et al. (2010), Garcia
et al. (2010), and Llamas et al. (2012) and in VMware vSphere2 and
Citrix XenServer hypervisors.3 It has also been applied to HPC
clusters in Alvarruiz et al. (2012), Dolz et al. (2011) and Xue et al.
(2007). In these last works, a Knowledge based System (KBS) is
used to determine the resources (e.g. the number of compute node
slots) that are needed at every moment.

In all cases, the KBSs depend on certain heuristic configuration
parameters such as the time of inactivity to shutdown nodes. The
heuristic component of these systems is of a high importance as it
governs the balance between energy savings and the number of
reconfigurations. However, these parameters cannot be preset: the
KBS and the parameters on which it depends must be hand tuned
for the expected workload. In previous works (Cocaña Fernández
et al., 2014a) we proposed to learn the heuristic parameters
defined in Dolz et al. (2011) by means of a multiobjective evolu-
tionary algorithm in a machine learning approach. The resulting
system works with both OGE/SGE and PBS/TORQUE Resource
Management Systems (RMS), has a good compliance with
administrator preferences in all QoS, and yields reasonable energy
savings and node reconfigurations.

After this, we further worked on improving the results of the
KBS as the decision making mechanism of the cluster management
system. In particular, we presented in Cocaña Fernández et al.
(2014b) a Hybrid Genetic Fuzzy System (HGFS) that seeks the
optimal rule base for the KBS by eliciting the linguistic definition
of part of the aforementioned knowledge base from data, making
it depend on the cluster behaviour, and having it combined with
expert rules to produce a new systemwhose results proofed better
in both linguistic interpretability and efficiency than those
achieved previously in Cocaña Fernández et al. (2014a).

However, one might still wonder whether a purely reactive
strategy such as the one used in both of our previous works is the
best for all scenarios or, on the contrary, a significant improvement
could be obtained from a predictive management approach prof-
iting from a higher degree of adaptability to changing workload
conditions. To answer this question, we present a new decision-
making mechanism for the cluster management system which
consists in a predictive controller based on the framework pro-
posed in Abdelwahed et al. (2004, 2009) whose utility function is a
fuzzy model learned by means of a genetic-based machine leaning
(GBML) multiobjective evolutionary algorithm (MOEA) in a distal
supervised learning approach (Jordan and Rumelhart, 1992). This
newmechanism, along with the KBS parameter learning algorithm
proposed in Cocaña Fernández et al. (2014a) and the HGFS in
Cocaña Fernández et al. (2014b), is then tested in different sce-
narios to give a sound answer on which strategy proofs better in
each case.

The remainder of the paper is as follows. Section 2 explains
succinctly the architecture of the cluster management system.
Section 3 summarizes the aforementioned reactive strategy. Sec-
tion 4 explains the predictive controller. Section 5 shows the
experimental results. Section 6 concludes the paper and discusses
the future work.
2 VMware Distributed Power Management Concepts and Use, http://www.
vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf

3 Citrix XenServer – Efficient Server Virtualization Software, http://www.citrix.
com/products/xenserver/overview.html
2. Architecture

As mentioned in Cocaña Fernández et al. (2014a,b, 2015), the
solution proposed consists in a service and an administration
dashboard, coupled with a Database Management System, and
deployed over an HPC cluster running a Resource Management
System such as OGE/SGE or PBS/TORQUE.

An overview of the system is depicted in Fig. 1. The system
status is monitored by the EEClusterd service, which uses a
knowledge-based Decision System to perform node reconfigura-
tions through the Power Management module. This last module
switches on/off the nodes appointed by the KBS with Ethernet
cards or IPMI cards (Intelligent Platform Management Interface).
The EEClusterd service collects and keeps records of the RMS and
of every compute node. RMS data comprises the cluster parallel
environments (OGE/SGE), queues, hosts, users, and completed,
queued and running jobs. Further information on the EECluster
tool architecture, deployment and use can be found in Cocaña
Fernández et al. (2015).

As can be seen, the decision-making mechanism is the key
component of the system, since it is the one responsible for
rescaling the compute nodes to match the cluster workload. Find
the optimal amount of nodes that must be on at every moment
given a set of preferences is no trivial problem. Because of this,
both reactive and predictive strategies have been experimented
with in order to achieve the best results in each scenario.

The reactive strategy consists in the reconfiguration of nodes to
match the cluster status whenever the decision-making mechan-
ism is triggered, having this status measured in terms of queued
jobs, average waiting times and node idle times. Following this
strategy are the KBS and HGFS explained in Section 3.

The predictive strategy consists in forecasting the cluster
incoming workload and then solve an optimization problem to
choose the optimal action among the permissible ones given the
cluster current status and according to a machine-learned utility
function. The mechanism implementing this strategy is explained
in Section 4.

Observe that all of the decision-making algorithms referenced
up to this point control how many slots are powered or switched
off, but none of them identify the precise nodes that must be
reconfigured. These nodes are selected according to its past effi-
ciency and how long has passed since its state was changed. The
rationale is to keep the most efficient nodes running for an
extended time. In addition to this, nodes that failed to comply with
the last order are marked, and those with earlier timestamps are
preferred. The system iterates over the potentially malfunctioning
nodes thus the probability of finding a repaired node is increased.
Server

EECluster 
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Decision 
System

Power 
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Fig. 1. System components overview.
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3. Reactive decision-making through parametric KBS and
hybrid genetic fuzzy systems

3.1. KBS parameter learning

The first implementation of the reactive strategy is a KBS
comprised exclusively of a set of expert hand-written rules that
were proposed in Dolz et al. (2011), which rely on a set of con-
figuration parameters whose values rule the KBS operation.

These rules are as follows:
�

�
�

if s

if t

for
if i
if i
if srunningþsstartingosmin then power on ðsmin�ðsrunningþ
sstartingÞÞ slots

if tavg4tmax or nqueued4nmax then power on 1 slot

If tavgotmin or nqueuedonmin then power off 1 slot

for each h in hosts do
�
if idleh4 idlemax then power off host h
Þ:
The number of slots running and starting at a given time is
respectively named srunning and sstarting. The minimum number of slots
required to run each of the queued jobs is smin. The number of total
slots (running and powered off) in the cluster is stotal. The average
waiting time for the queued jobs is tavg. The maximum and minimum
average waiting time for the queued jobs are tmax and tmin respectively.
The number of queued jobs is nqueued. The maximum and minimum
number of queued jobs before an action is performed are nmax and nmin

respectively. Finally, the time that the host h has been at idle state is
called idleh and themaximum time a host can be at idle state is idlemax.

If the linguistic structure of the Knowledge-based System
mentioned before is not altered, each decision system can be
described by the following five parameters:

ðtmin; tmax;nmin;nmax; idlemaxÞ ð1Þ
This Knowledge-based System can potentially adapt to any

desired working mode for the cluster. However, this ability to
adapt comes with the problem of actually finding the right set of
values to match the desired working mode. Because of this, in
Cocaña Fernández et al. (2014a), multiobjective evolutionary
algorithms (MOEAs) were used to find the parameters defining the
KBS, by optimizing a fitness function consisting in three conflicting
criteria: the quality of service, the energy saved and the number of
node reconfigurations.

3.2. Hybrid GFS

To further improve the results achieved using the previous KBS,
in Cocaña Fernández et al. (2014b), was introduced a Hybrid
Genetic Fuzzy System (HGFS) that is learned from data and
replaces the expert-defined knowledge base with a hybrid
knowledge base combining some of the expert non-fuzzy rules
taken from Dolz et al. (2011) and the fuzzy rules in the form of a
zero-order Takagi–Sugeno–Kang (TSK) fuzzy model (Ishibuchi
et al., 2004; Takagi and Sugeno, 1985) that were learnt.

The structure of this hybrid system and can be expressed as
follows:
runningþsstartingosmin then power on ðsmin�ðsrunningþsstartingÞÞ
slots
avg4tmax or nqueued4nmax then power on 1 slot

avgotmin or nqueuedonmin then power off 1 slot
if t
each h in hosts do
dleh is ~T 1 then off ¼w1

dleh is ~T 2 then off ¼w2
then ⋯
dleh is ~TN then off ¼wN
if i

All the variables defined in Section 3.1 are needed plus a few
additional ones specific to the definition of the fuzzy linguistic
terms. These are:

� N triangular fuzzy subsets ~T 1;…; ~TN of the domain of the vari-
ables idleh. Each triangular fuzzy number ~T r for r¼ 1…;N
depends on three parameters

ðleftr ; centerr ; rightrÞ:
In this particular case the fuzzy sets are arranged to form a fuzzy
partition (Ishibuchi et al., 2004), thus each fuzzy membership
shares two parameters with the preceding element: leftr ¼
centerr�1 and centerr ¼ rightr�1. Therefore, the whole fuzzy
partition depends on Nþ2 parameters:

ðleft1; center1; right1; right2;…; rightNÞ:
Recall that idleh is the time that the h-th host has been at
idle state.

� The terms wr, with wrA ½0;1�, for r¼ 1…;N that can be thought
of as the degrees of truth of the asserts “if the idle time of the h-
th node is ~T r then the node must be switched off”.

The total number of nodes that are powered off is given by the
following expression:

Powered off nodes¼
Xc
h ¼ 1

TSKoutputðidlehÞ
$ %

ð2Þ

where the intermediate function TSKoutputðtÞ is the output of the
zero-order TSK fuzzy model formed by the N fuzzy rules included
in the KBS, and is defined as follows:

TSKoutputðtÞ ¼
PN

r ¼ 1
~T rðtÞ �wrPN

r ¼ 1
~T rðtÞ

: ð3Þ

Observe that a particular instance of the hybrid GFS can,
therefore, be expressed as a tuple

ðtmin; tmax;nmin;nmax; left1; center1; right1; right2;…; rightN ;w1;…;wN

Apart from the extra 2Nþ2 parameters in the definition of an
individual, the same evolutionary algorithm used in Cocaña
Fernández et al. (2014a) is valid for solving the hybrid problem.
4. Proactive model

The Knowledge-based Systems introduced before both share
the inner limitation of the reactive strategy: decisions of node
reconfigurations are just based upon a series of values such as the
number of queued jobs or the average waiting time. These values
only reflect a static snapshot of the cluster status, thus disallowing
these mechanisms from assessing the future consequences of each
decision that make, what limits their capabilities of adaptation to
volatile, although potentially stationary, scenarios with notably
changing patterns of cluster activity, something rather expectable
in many HPC clusters. In other words, these KBS have their
operation based entirely on a set of parameters whose values were
learnt upon a given cluster workload, and are not based on the
actual situation of the cluster and the incoming workloads
whenever the decision is made.

To improve the system results in volatile cluster scenarios, a
proactive model based on the application of predictive techniques
for computing systems introduced in Abdelwahed et al. (2004,
2009) is used as an alternative decision-making mechanism. It is
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noteworthy that, although examples of the application of these
predictive techniques can be found (see for instance Roy et al.,
2011 and Bhat et al., 2006), these works have not yet been applied
to the High Performance Computing (HPC) clusters addressed in
this paper, which are fundamentally different from Load Balancing
clusters or Grid environments in their architectures, number of
concurrent requests, nature and number of resources requested
and request running times.

This model transforms the cluster reconfiguration into an
optimization problem of the cluster behaviour over a future tem-
poral horizon, having this forecast by a model of both the cluster
and the environment. To do so, time is split at regular intervals of
tinterval units of time, and at the beginning of each interval the
control algorithm is executed resolving the optimization problem.

Fig. 2 represents the components of the controller, and the
predictive control algorithm is showed in Algorithm 1.

Algorithm 1. Predictive control for an interval beginning at time
k.
inp
1:
2:
3:
4:
5:
ut: xðkÞ;ωðk�1; rÞ

ω̂ðkÞ’ϕkþ1ðωðk�1Þ; rÞ

for each uAUðxÞ do

x̂ðkþ1Þ’f ðxðkÞ;u; ω̂ðkÞÞ

Compute utility of u based on Jðx̂ðkþ1Þ;uÞ
end for each

tput: argmax

u
fJðx̂ðkþ1Þ;uÞg
ou

Let k be the beginning of the current control interval, let kþ1
be the end of the current interval and the beginning of the next
one, let x(k) be the cluster state and time k, let uAUðxÞ be a control
action within the permissible actions at state x, let w(k) be the
actual environment and ω̂ðkÞ the forecast environment at time k,
let ϕk be the environment forecasting model built at time k, let J be
the utility function. Lastly, let f be the cluster model that runs a
simulation to measure the expected outcome of taking an action u
in a state x(k) and with an incoming workload ω̂ðkÞ over the
temporal horizon. Then, the chosen control action u at time k is
the one of the allowed ones U(x) for the current state x(k) that gets
the highest value in the utility function Jðx̂ðkþ1Þ;uÞ, having the
expected outcome x̂ðkþ1Þ of control action u computed by means
of a simulation in the cluster model f (line 3 in Algorithm 1).
A given control action u represents the number of compute
node slots that will be running after the cluster reconfiguration is
done at time k. Due to obvious operating constraints, a control
action cannot power on more nodes than the ones physically
existing and available in the cluster. Also, since a running job
cannot be halted, nodes that are currently executing jobs must
never be shutdown. Because of these constraints, the set of control
actions for a given state x, denoted by U(x), represents the num-
bers of nodes that can be powered on as a result of a control
action.

The rest of the section describes the environment forecasting,
the utility function and the controller learning algorithm.

4.1. Environment forecasting

The cluster environment represents every external input to the
system from the users in the form of jobs, and that cannot be
controlled. This environment is estimated by generating synthetic
workloads through the Monte Carlo simulation method using a
forecasting model composed of a set of adjusted probability
distributions.

Let ω̂ðkÞ be the estimated incoming workload during the con-
trol interval beginning at time k, let ωðk�1; rÞ be the
recorded workload of the r previous control intervals
fωðk�1Þ;…;ωðk�r�1Þg, and let ϕk be the forecasting model
adjusted at time k. Then, the forecast incoming workload at time k
is

ω̂ðkÞ ¼ϕkðωðk�1; rÞÞ ð4Þ
If the actual environment ωðkÞ of the time interval that begins

at time k represents the workload submitted by the cluster users
in the form of n jobs, where the j-th job (j¼ 1…n) arrives tarrj
seconds after the previous job, requests sj slots and has a runtime
of rj seconds, then, the estimated environment ω̂ðkÞ represents n̂
jobs where the j-th job (j¼ 1…n̂) arrives ^tarr j seconds after the
previous job, requests ŝj slots and has a runtime of r̂ j seconds. The
forecasting model ϕ for this environment is formed by three
models ϕtarr, ϕs and ϕr, which generate the estimated values for
the arrival times, requested slots and run times of the n̂ jobs,
having this number of jobs depending on the size of the temporal
horizon and the arrival time of the last job.

The values of each of these forecasting models are generated
following an adjusted probability distribution. For example, if the
run times of the jobs are supposed to be exponentially distributed
with a rate parameter λ, then the model ϕr adjusted at time k
generates the values:

ϕrðkÞ ¼ � 1
λk
log ðU1Þ; �

1
λk
log ðU2Þ⋯� 1

λk
log ðUn̂ Þ

� �
ð5Þ

where U1…Un̂ are nonzero uniform deviates.

4.2. Fuzzy utility function

As mentioned before, the control action chosen every time that
the optimization problem is solved is ultimately determined by a
utility function that establishes how good or bad each control
action is. In other words, the utility function returns a real value
which measures the expected degree of “utility” that a given
control action u has for the overall cluster system. The higher the
value, the more useful the action u is.

Before describing the way the utility function works, a few
metrics must be defined. Since the input to this function is the
expected future xðkþ1Þ resulting in executing a given action u at
time k and with an expected workload ω̂ðkÞ, which is done by
running a simulation with the cluster model, the way the expected
future state is assessed numerically so it can be used as an input to
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the utility function must be established first. To do so, three values
are used: the number of nodes powered on at time kþ1 as a result
of the control action, the average relation between the waiting
time of the jobs and their running time uwdr, and the number of
reconfigured nodes urn. These last two values are computed as
follows.

The average waiting time/running time is used as a quality
service metric, computed as

uwdr ¼ ln 1þ
X̂n
i ¼ 1

tonj�tschj

toff j�tonj

 !
ð6Þ

where the n̂ jobs are the forecast workload, with the j-th job
(j¼ 1…n̂) arriving at time tschj, but starting its execution at time
tonj and stopping at time toffj. Note that the logarithm is used as
“squashing” function. As for the reconfigured nodes urn, it mea-
sures the degradation caused by the control action due to node
thrashing by adding the number of nodes that are powered on and
the number of nodes that are powered off:

urn ¼ j x̂ðkþ1Þnodes�xðkÞnodes j ð7Þ
The utility function as such is implemented using a zero-order

Takagi–Sugeno–Kang (TSK) fuzzy model (Ishibuchi et al., 2004;
Takagi and Sugeno, 1985), which uses uwdr, x̂nodes and urn as input
values, is composed of Q rules, and whose structure can be
expressed as follows:
if u
if u
if ⋯
if u

if u
if ⋯
If u

if u

if ⋯
wdr is ~W 1 and x̂nodes is ~N1 and urn is ~R1 then value ¼w1

wdr is ~W 1 and x̂nodes is ~N1 and urn is ~R2 then value ¼w2

then ⋯

wdr is ~W 1 and x̂nodes is ~N1 and urn is ~RN3 then value ¼wN3

wdr is ~W 1 and x̂nodes is ~N2 and urn is ~R1 then value ¼wN3 þ1

then ⋯

wdr is ~W 1 and x̂nodes is ~NN2 and urn is ~RN3 then value
¼wN2�N3

wdr is ~W 2 and x̂nodes is ~N1 and urn is ~R1 then value
¼wN2�N3 þ1

then ⋯

wdr is ~WN1 and x̂nodes is ~NN2 and urn is ~RN3then value ¼wQ
NSGA-II Cluster Simulator(tinterval, r,  
w1, ... ,wQ)

(QoS, energy saved, reconfigured nodes)

(c nodes, s slots, n jobs)

Fig. 3. Distal supervised learning of the predictive controller.
If u

where ~W 1;…; ~WN1 , ~N1;…; ~NN2 and ~R1;…; ~RN3 are triangular fuzzy
sets forming a fuzzy partition (Ishibuchi et al., 2004) of the domain
of the variables uwdr, x̂nodes and urn respectively. The partition ~W
has N1 linguistic terms, ~N has N2 and ~R has N3. For instance, with
N1 ¼ 5, ~T 1 may be “VERY LOW, “LOW”, “MEDIUM”, “HIGH”, “VERY
HIGH”. The values w1;…;wQ are between 0.0 and 1.0, and
represent the utility of the control action where 1.0 is the highest
utility and 0.0 is the lowest. The intermediate output function is
defined as follows:

TSKOutputðuwdr ; x̂nodes;urnÞ ¼
P

Rq AS
~WqðuwdrÞ � ~Nqðx̂nodesÞ � ~RqðurnÞ �wqP

Rq AS
~WqðuwdrÞ � ~Nqðx̂nodesÞ � ~RqðurnÞ

ð8Þ
Lastly, the output of the utility function can be expressed as:

Jðx̂;uÞ ¼ TSKoutputðuwdr ; x̂nodes;urnÞ ð9Þ

4.3. Learning algorithm

As shown in the preceding sections, the predictive controller
relies in a set of configuration parameters to determine its beha-
viour:

ðtinterval; r; ~W 1;…; ~WN1 ;
~N1;…; ~NN2 ;

~R1;…; ~RN3 ;w1;…;wQ Þ ð10Þ
However, finding the right set of values to match the desired
working mode for the cluster is not trivial. Leaving aside the fact
that an exhaustive search is infeasible due to the large number of
combinations, there is not either an optimal solution, since there
are multiple conflicting objectives: the quality of service, the
energy saved and the number of node reconfigurations. It is pro-
posed that multiobjective evolutionary algorithms (MOEAs) are
used to find the parameters of the predictive controller by opti-
mizing a fitness function consisting in the three conflicting criteria.
Specifically, the chosen MOEA is the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) (Deb et al., 2002). For a given set of
n jobs, where the j-th job (j¼ 1…n) is scheduled to start at time
tschj, but effectively starts at time tonj and stops at time toffj, the
quality of service in a HPC cluster reflects the amount of time that
each job has to wait before is assigned its requested resources.
Once the job starts its execution, it will not be halted, thus we
focus only on its waiting time. Because jobs do not last the same
amount of time, their waiting in the queue is better expressed as a
ratio considering their runtime. Finally, due to the potential exis-
tence of outlier values, the 90 percentile is used instead of average:

QoS¼min p : J jA1…n :
tonj�tschj

toff j�tonj
rp

� �
J40:9 n

� �
ð11Þ

where JAJ is the cardinality of the set A.
The energy saved is measured as the sum of the amount of

seconds that each node has been powered off. Let c be the number
of nodes, let state(i, t) be 1 if the i-th node (i¼ 1…c) is powered at
time t and 0 otherwise. Lastly, let the time scale be the lapse
between tini¼minjfschjg and tend ¼maxjftoff jg. Then,

Energy saved¼ c � ðtend�tiniÞ�
Xc
i ¼ 1

Z tend

tini
stateði; tÞ dt: ð12Þ

The node reconfigurations are the number of times that a node
has been powered on or off. Let nd(i) the number of discontinuities
of the function stateði; tÞ in the time interval tA ðtini; tendÞ:

Reconfigured nodes¼
Xc
i ¼ 1

ndðiÞ ð13Þ

Although MOEAs can address the problem of finding Pareto-
optimal solutions, the learning problem has an additional com-
plication: each solution found by the NSGA-II algorithm must be
tested in a cluster environment to measure the results. This is
known as the distal supervised learning problem (Jordan and
Rumelhart, 1992), where the learning algorithm must control
indirectly the cluster outcome (distal variables) through the
instances of the predictive controller (proximal variables) having
the outcome fitness as a feedback to guide the learning process.
This can be seen in Fig. 3, where the NSGA-II learning algorithm
produces predictive controller instances, which are then tested in
a cluster simulator with a given workload to compute their fitness
value. It is also remarked that in the provided results the mem-
bership functions ~W 1;…; ~WN1 ;

~N1;…; ~NN2 ;
~R1;…; ~RN3 will not be
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adjusted but a uniform partition is defined instead. This is not a
fundamental limitation, since any change in the membership
function of these sets could be compensated by the corresponding
modification in the weights wq.
5. Experimental results

Since HPC clusters may exhibit very different patterns of
activity depending on their applications, a sound answer about
which of the described decision-making mechanism works better
involves thorough testing of different scenarios building together a
significant representation of HPC clusters. To do so, four cluster
scenarios have been defined in terms of synthetic cluster work-
loads characterized by the probability distributions of both job
arrival rates and run times. The run times are distributed expo-
nentially with rate λ¼ 10�5 s in all scenarios, and the arrivals
follow a Poisson process with the rate values shown in Table 1.

Essentially, scenario 1 depicts a cluster environment where
jobs are submitted following an extremely regular arrival pattern
where each hour of the year shares the same arrival rate. Scenario
2 also maintains regularity on a weekly basis, but distinguishes
clearly between working hours, non-working hours and week-
ends, adjusting the arrival rate accordingly to each hour range.
Scenario 3 adds a significant variation in arrival rates between
consecutive weeks, and scenario 4 increases the degree of varia-
tion between weeks.

In addition, experiments with actual workloads from the Sci-
entific Modelling Cluster of the University of Oviedo (CMS) span-
ning 22 months, with a total of 2907 jobs, were performed. This
real world cluster, consisting of three independent computing
clusters and five transversal queues using PBS as Resource Man-
agement System (RMS), can accurately show a very common
activity pattern in most HPC clusters.

Similar to the experimentation in our previous work, a cluster
simulator has been developed for both training and testing, so that
every model can be evaluated in the three criteria of the fitness
function.

The three decision-making mechanisms described in Section
3 and 4, along with mechanisms proposed by other authors, have
Table 1
Poisson process of job arrivals in each scenario.

Scenario Day of week Hour range Week of year λ value (s)

1 All All All 2� 10�4

Mon–Fri 8:00–20:00 All 2� 10�4

2 Sat–Sun 8:00–20:00 All 2� 10�5

Mon–Sun 20:00–8:00 All 10�5

3 Mon– Fri 8:00–20:00 w %5¼ 0 10�4

w % 5¼ 1 2� 10�4

w % 5¼ 2 5� 10�4

w % 5¼ 3 5� 10�4

w % 5¼ 4 2� 10�4

Mon–Sun 20:00–8:00 All 2� 10�5

Mon–Fri 8:00–20:00 All 10�5

4 Mon– Fri 8:00–20:00 w % 5¼ 0 10�4

w % 5¼ 1 10�4

w % 5¼ 2 5� 10�4

w % 5¼ 3 5� 10�4

w % 5¼ 4 10�4

Mon–Sun 20:00–8:00 All 2� 10�5

Mon–Fri 8:00–20:00 All 10�5
been tested using this simulator in combination with the five
workloads described before:

1. A basic model (labelled “Single rule”) consisting in the alloca-
tion of as many compute node slots as are required to run all
queued jobs, shutting down every idle node whenever the
decision mechanism is triggered.

2. The rule model proposed in Dolz et al. (2011) (labelled as
“EnergySaving ðtmin; tmax;nmin;nmax; idlemaxÞ”) with multiple con-
figurations and its parameters hand tuned by the administrator.

3. The rule model proposed in Alvarruiz et al. (2012), labelled as
“CLUES (extraslots; idlemax)”, where extraslots represents the num-
ber of extra slots that are powered on whenever additional slots
are required to serve the current workload. Similar to the
previous mechanism, multiple configurations were tested with
their parameters hand tuned by the administrator.

4. The rule model proposed in Dolz et al. (2011) (labelled as
“EnergySaving KBS NSGA-II”) with the learning mechanism
proposed in Cocaña Fernández et al. (2014a)

5. The hybrid GFS proposed in Cocaña Fernández et al., 2014b
(labelled as “Hybrid GFS NSGA-II”)

6. The predictive controller proposed in this paper, labelled as
“Predictive controller ðN1;N2;N3Þ”, with a different number of
linguistic terms in each partition.

The holdout method was used for validation, with a 50–25–25%
split in training, validation and test.

The administrator preferences for the experiment are based
upon a lexicographic ordering of the three criteria: the adminis-
trator always seeks the best QoS and the amount of energy saved is
used only to break ties in QoS. In turn, the number of reconfi-
gurations also serves to break ties in QoS and energy saving.

The experiment results are shown in the following tables in
terms of QoS, energy saved and node reconfigurations, and in the
following charts in terms of the cluster simulation traces, which
reveal the evolution over time of the aggregated requested slots by
the jobs and the slots powered on by each mechanism. In parti-
cular, results for the scenario 1 are displayed in Table 2 and in
Fig. 4, scenario 2 in Table 3 and in Fig. 5, scenario 3 in Table 4 and
in Fig. 6, and scenario 4 in Table 5 and in Fig. 7. Lastly, results
obtained for the CMS cluster recorded workloads are displayed in
Table 6 and in Fig. 8.

It is remarked that the “QoS” column displays the 90 percentile
(see Eq. (11)) thus a value of zero means that more than 90% of
tasks were not delayed.

These results show that excessively simple mechanisms, such
as the one labelled as “Single rule” do not perform well, negatively
impacting cluster service quality, and neither can be tuned to suit
administrator preferences due to the lack of configuration para-
meters. Similarly, mechanisms that despite relying on parameters
to rule their function require these to be configured manually
often perform poorly, impacting QoS and causing node thrashing.
This is ultimately due to the complex task of finding the right set
of values to comply with administrator preferences because of the
large number of combinations.

Results also show that when the cluster workload exhibits a
pattern of high arrival regularity, such as in scenario 1 and rela-
tively in scenario 2, the decision-making mechanisms following a
reactive strategy tend to achieve significantly better results in
energy saving than the one following a predictive strategy. In this
type of scenarios the distance between local workload peaks is
very short, and so is the distance between peaks and valleys. The
best approach is possibly to do minor cluster adjustments over
short periods of time to save energy during these short-duration
valleys. The reactive strategy is well suited to this situation. This
also explains why the predictive controller barely reconfigures the



Table 2
Experiment results for the test set of the scenario 1.

Decision-making mechanism Scenario 1 test set

QoS Energy saved(s) Reconfigurations

Single rule 4.49E�02 2.09Eþ08 5931

EnergySaving (0, 60, 0, 5, 3600) 2.74E�02 2.02Eþ08 3639
EnergySaving (0, 300, 0, 10, 3600) 4.24E�02 2.02Eþ08 3523
EnergySaving (0, 60, 0, 5, 7200) 2.14E�02 1.96Eþ08 2757
EnergySaving (0, 60, 0, 0, 14 400) 1.31E�02 1.88Eþ08 1968

CLUES (0, 3600) 2.72E�02 2.02Eþ08 3721
CLUES (0, 7200) 1.99E�02 1.96Eþ08 2801
CLUES (0, 14 400) 1.31E�02 1.88Eþ08 1962
CLUES (2, 3600) 1.77E�02 1.93Eþ08 7157
CLUES (2, 7200) 1.05E�02 1.87Eþ08 4609
CLUES (2, 14 400) 5.81E�03 1.79Eþ08 2827

EnergySaving KBS NSGA-II 0.00Eþ00 1.34Eþ08 473

Hybrid GFS NSGA-II 0.00Eþ00 1.49Eþ08 487

Predictive controller (3, 2, 2) 0.00Eþ00 9.32Eþ07 6
Predictive controller (3, 3, 3) 0.00Eþ00 9.31Eþ07 6
Predictive controller (4, 3, 3) 0.00Eþ00 9.32Eþ07 6
Predictive controller (5, 3, 3) 0.00Eþ00 9.24Eþ07 6
Predictive controller (5, 4, 4) 0.00Eþ00 9.24Eþ07 6
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Fig. 4. Cluster simulation trace for the test set of the scenario 1.

Table 3
Experiment results for the test set of the scenario 2.

Decision-making mechanism Scenario 2 test set

QoS Energy saved(s) Reconfigurations

Single rule 4.18E�02 4.03Eþ08 2390

EnergySaving (0, 60, 0, 5, 3600) 3.61E�02 3.99Eþ08 1962
EnergySaving (0, 300, 0, 10, 3600) 5.32E�02 3.99Eþ08 1944
EnergySaving (0, 60, 0, 5, 7200) 3.26E�02 3.96Eþ08 1754
EnergySaving (0, 60, 0, 0, 14 400) 2.48E�02 3.91Eþ08 1502

CLUES (0, 3600) 3.15E�02 3.99Eþ08 1972
CLUES (0, 7200) 2.93E�02 3.96Eþ08 1758
CLUES (0, 14 400) 2.51E�02 3.91Eþ08 1504
CLUES (2, 3600) 2.36E�02 3.95Eþ08 3900
CLUES (2, 7200) 1.60E�02 3.91Eþ08 2876
CLUES (2, 14 400) 1.20E�02 3.84Eþ08 2164

EnergySaving KBS NSGA-II 0.00Eþ00 2.92Eþ08 236

Hybrid GFS NSGA-II 0.00Eþ00 3.14Eþ08 218

Predictive controller (3, 2, 2) 0.00Eþ00 2.78Eþ08 18
Predictive controller (3, 3, 3) 0.00Eþ00 2.94Eþ08 20
Predictive controller (4, 3, 3) 0.00Eþ00 2.83Eþ08 18
Predictive controller (5, 3, 3) 0.00Eþ00 2.83Eþ08 18
Predictive controller (5, 4, 4) 0.00Eþ00 2.85Eþ08 27
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Fig. 5. Cluster simulation trace for the test set of the scenario 2.

Table 4
Experiment results for the test set of the scenario 3.

Decision-making mechanism Scenario 3 test set

QoS Energy saved(s) Reconfigurations

Single rule 4.53E�02 3.49Eþ08 3394

EnergySaving (0, 60, 0, 5, 3600) 3.89E�02 3.44Eþ08 2586
EnergySaving (0, 300, 0, 10, 3600) 5.95E�02 3.44Eþ08 2552
EnergySaving (0, 60, 0, 5, 7200) 3.51E�02 3.40Eþ08 2325
EnergySaving (0, 60, 0, 0, 14 400) 2.88E�02 3.34Eþ08 2077

CLUES (0, 3600) 3.99E�02 3.44Eþ08 2626
CLUES (0, 7200) 3.51E�02 3.40Eþ08 2343
CLUES (0, 14 400) 3.16E�02 3.33Eþ08 2081
CLUES (2, 3600) 2.52E�02 3.39Eþ08 4442
CLUES (2, 7200) 1.91E�02 3.35Eþ08 3327
CLUES (2, 14 400) 1.47E�02 3.27Eþ08 2595

EnergySaving KBS NSGA-II 0.00Eþ00 1.19Eþ08 202

Hybrid GFS NSGA-II 0.00Eþ00 1.46Eþ08 194

Predictive controller (3, 2, 2) 0.00Eþ00 1.29Eþ08 175
Predictive controller (3, 3, 3) 0.00Eþ00 1.47Eþ08 337
Predictive controller (4, 3, 3) 0.00Eþ00 1.76Eþ08 338
Predictive controller (5, 3, 3) 0.00Eþ00 1.20Eþ08 479
Predictive controller (5, 4, 4) 0.00Eþ00 1.14Eþ08 155
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Fig. 6. Cluster simulation trace for the test set of the scenario 3.
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cluster: the short duration of the valleys makes it very difficult for
the controller to reconfigure the cluster over the rather long
temporal horizons and save energy with no impact on QoS.

On the other hand, in cluster scenarios that exhibit a high
degree of variation in the job arrival rates, such as scenarios 3 and
4, the predictive controller achieves better results that the reactive
ones. Similar to the previous case, the key is both the duration of
the workload valleys and the size of the local peaks, and how these
values in scenarios 3 and 4 fit well the longer temporal horizons of
the predictive controller. In particular, a comparison between
results in scenarios 3 and 4 shows that the longer the valleys and
the bigger the distance between peaks and valleys are, the better
results are obtained by the predictive controller compared to the
reactive ones. The reason for the bad performance of the reactive
controllers in these scenarios, specially the expert-defined KBS, is
that these mechanisms rely heavily on the time that the hosts have
been at idle state to save energy. This is a problem here because, in
order to assure good service quality whenever the load swiftly
increases, the idle values are set too high to allow good energy
saving or, otherwise, a very negative impact on QoS would occur as
the workload grows. Regarding the results obtained in a real world
cluster such as the CMS, these are very similar to the ones in
scenarios 3 and 4, as could be expected due to the resemblance of
the CMS activity pattern to these scenarios (see Fig. 8).

Lastly, it should also be noted that the Hybrid GFS always
obtains better energy savings that the expert-defined KBS, what is
achieved thanks to the higher flexibility of the fuzzy rule base
regarding the host idle times.
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Fig. 7. Cluster simulation trace for the test set of the scenario 4.

Table 6
Experiment results for the test set of the CMS cluster workload records.

Decision-making mechanism CMS cluster test set

QoS Energy saved
(s)

Reconfigurations

Single rule 8.02Eþ01 4.22Eþ08 2504

EnergySaving (0, 60, 0, 5,
3600)

4.86Eþ01 4.25Eþ08 1538

EnergySaving (0, 300, 0, 10,
3600)

7.74Eþ01 4.26Eþ08 1512

EnergySaving (0, 60, 0, 5,
7200)

2.23Eþ01 4.23Eþ08 1386

EnergySaving (0, 60, 0, 0,
14 400)

2.92Eþ00 4.19Eþ08 1216

CLUES (0, 3600) 3.43Eþ01 4.20Eþ08 2724
CLUES (0, 7200) 1.28Eþ01 4.16Eþ08 2308
CLUES (0, 14 400) 4.24Eþ00 4.11Eþ08 1828
CLUES (2, 3600) 2.60Eþ01 4.18Eþ08 3810
CLUES (2, 7200) 5.95Eþ00 4.14Eþ08 2942
CLUES (2, 14 400) 2.66Eþ00 4.07Eþ08 2366

EnergySaving KBS NSGA-II 0.00Eþ00 1.88Eþ08 47

Hybrid GFS NSGA-II 0.00Eþ00 2.41Eþ08 42

Predictive controller (3, 2, 2) 0.00Eþ00 2.01Eþ08 77
Predictive controller (3, 3, 3) 0.00Eþ00 3.00Eþ08 96
Predictive controller (4, 3, 3) 0.00Eþ00 2.78Eþ08 89
Predictive controller (5, 3, 3) 0.00Eþ00 2.72Eþ08 70
Predictive controller (5, 4, 4) 0.00Eþ00 2.03Eþ08 95

Table 5
Experiment results for the test set of the scenario 4.

Decision-making mechanism Scenario 4 test set

QoS Energy saved(s) Reconfigurations

Single rule 4.24E�02 3.66Eþ08 3031

EnergySaving (0, 60, 0, 5, 3600) 3.42E�02 3.62Eþ08 2275
EnergySaving (0, 300, 0, 10, 3600) 5.19E�02 3.62Eþ08 2255
EnergySaving (0, 60, 0, 5, 7200) 3.12E�02 3.58Eþ08 2022
EnergySaving (0, 60, 0, 0, 14 400) 2.61E�02 3.52Eþ08 1820

CLUES (0, 3600) 3.29E�02 3.61Eþ08 2289
CLUES (0, 7200) 2.92E�02 3.58Eþ08 2028
CLUES (0, 14 400) 2.81E�02 3.52Eþ08 1818
CLUES (2, 3600) 2.19E�02 3.57Eþ08 3923
CLUES (2, 7200) 1.65E�02 3.53Eþ08 3048
CLUES (2, 14 400) 1.24E�02 3.45Eþ08 2395

EnergySaving KBS NSGA-II 0.00Eþ00 3.61Eþ07 8

Hybrid GFS NSGA-II 0.00Eþ00 1.31Eþ08 173

Predictive controller (3, 2, 2) 0.00Eþ00 1.69Eþ08 414
Predictive controller (3, 3, 3) 0.00Eþ00 1.78Eþ08 393
Predictive controller (4, 3, 3) 0.00Eþ00 1.62Eþ08 252
Predictive controller (5, 3, 3) 0.00Eþ00 1.33Eþ08 273
Predictive controller (5, 4, 4) 0.00Eþ00 1.01Eþ08 52
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Fig. 8. Cluster simulation trace for the test set of the CMS cluster workload records.

A. Cocaña-Fernández et al. / Engineering Applications of Artificial Intelligence 48 (2016) 95–105104
6. Concluding remarks

Adaptive resource clusters are an efficient method for reducing
electrical consumption, however this technique depends on a
decision algorithm that has conflicting restrictions. Since a high
number of reconfigurations are not desired, a node should not be
shut down if it is going to be needed shortly after. Reactive tech-
niques fulfill this objective by means of heuristics such as impos-
ing delays before a node is stopped after a valley in the workload,
or enforcing a minimum uptime for each functioning node.
However, the best balance between consumption and reconfi-
gurations is achieved with the proactive model described in this
paper. The proposed strategy consists in forecasting the cluster
incoming workload and then solving an optimization problem to
choose the optimal action according to a fuzzy utility function.
Specific genetic-based machine learning techniques were
deployed that consist of mutiobjective evolutionary algorithms
under the distal supervised learning setup. Empirical results prove
that reactive systems tend to consume less energy in scenarios
with a constant job arrival rate; nonetheless, the proactive system
presented in this work achieves the highest energetic efficiency
when the workload is not quite regular, as happens in most of
practical scenarios.
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