
Construction of Multi-layer Feedforward
Binary Neural Network by a Genetic Algorithm

Chi Kin Chow and Tong Lee
Computer Vision and Image Processing Laboratory

Department of Electronic Engineering
The Chinese University of Hong Kong

{ ckchowl , tlee}@ee.cuhk.edu.hk

Abstract - A new approach is introduced to determine the
topology of a feedforward binary neural network (BNN)
automatically. The approach bases on a construction
algorithm that constructs one layer of hidden nodes at a time
until the problem is solved, And in each layer, the algorithm
determines the necessary number of nodes through a growth
process by finding the best hidden node that would help to
partition the input training data set. This is done using a
Genetic Algorithm. The proposed algorithm can determine
the necessary number of hidden layers and number of hidden
nodes at each layer automatically. Tests on a number of
benchmark problems illustrated the effectiveness of the
proposed technique, both in terms of network complexity and
recognition accuracy, compared with a recent approach by
geometrical learning.

1. Introduction

Binary neural network is widely applied to many
problems like pattern classification, error correcting and
Boolean hnction mapping. There are many existing
approaches to determine the weights of a neural network.
The most popular and traditional approach is called back-
propagation algorithm [l]. It is based on the error feedback
and gradient descent method to update the weights of each
hidden node iteratively. Usually, the topology of the multi-
layer feedforward neural network has to be determined a
priori. Therefore many attempted to determine the topology
of a multi-layer neural network automatically. Growth or
construction process is a popular approach. Cascade-
correlation [Z] is perhaps the most well-known and the early
example of such approach. However, this approach can only
be applied to certain type of topologies. For example, the
cascade-correlation approach will determine a network with
one hidden node at each hidden layer. A rather popular
approach is to determine the one-hidden layer topology [3]
because it has been proven that all problems can be solved
with one-hidden layer architecture [4]. Recently,
considerable attention has been given to train a multi-layer
neural network with some global optimization method, such
as Genetic Algorithm and Evolutionary Programming [SI.

This approach still suffers from the following common
drawbacks:

The network architecture must be fixed a priori. i.e.
the number of layers and the number of hidden nodes
for each layer must be pre-determined by the user
before the training process. Only the optimal weights
are considered.
If the topology is allowed to vary, the learning time
will be, in general, very high. Consequently the
number of weights can be considered is limited.

In this paper we address the problem of training a multi-
layer feedforward network without specifying the topology
by adopting the construction approach. However, the focus
is limited to the construction of a feed-forward binary neural
network with multi-layers structure because the training task
is relatively easier [6-91. We postulate that the function of
each hidden layer in a feedforward binary neural network is a
transformation mapping the training data from one data space
to another. And we observe that the transformations
implemented by each layer have the following characteristics:

If two input data have been transformed to have the
same output at a certain hidden layer, they cannot be
distinguished at subsequent hidden layers.

0 The number of distinguishable data after a
transformation by the hidden node mapping cannot be
more than the number of input data of the hidden layer.

Therefore, based on the above observations, we propose a
new algorithm to construct a feedforward binary neural
network. The algorithm aims at finding the transformations
such that the number of input data can be reduced at each
hidden layer while the data remains separable. This is done
by maximizing the number of data with the same output after
a hidden layer transformation. This has been formulated as
an optimization problem and we propose to use GA to
determine the fittest weights of each hidden node, one at a
time. Then the hidden layers so obtained are connected to
form a complete network. We evaluated the proposed
algorithm against a recent approach by geometrical learning
[6,7] with benchmark problems.

2562

The organization of this paper is as follows. Section 2
introduces and defines the general structure and mechanism
of BNN. In Section 3, a new algorithm to construct a BNN is
discussed. Section 4 presents a method to determine the
weights of a hidden node by a genetic algorithm, while
Section 5 shows 3 sets of experimental results to illustrate the
performance of the proposed algorithm. The paper is ended
with the conclusion in Section 6.

2. Binary Neural Network (BNN)

Binary neural network is a special kind of artificial neural
networks. During the training process, a set of input/output
pattern pairs are given in order to determine the weights of
the network, and every input pattern [x,, x2, ..., x,] and output
pattern C pair is regarded as a training sample
x’ = [x, ,x, ,..., x, I C] . For the BNN, the possible values of
xi and C can either be 0 or 1. Figure 1 shows the general
topology of a BNN.

I I I
I I I
I I I

I I :

1st Hidden Layer

Input Layer

xl x2 Xn

Figure I General topology of a BNN

For each hidden node with the weights [i, p] , the input
vector x’ and the output y can be related by y = sgn(z. li + p)

where

The corresponding decision hyperplane h is defined as
h = 2. + p and divides the input data space into partitions.
Each partition can be classified as one of the following types:

1. Pure partition - the partition contains the training
samples with the same output.

2. Mixed partition - the partition contains both training
samples with output 0 and output 1.

3. Empty partition - no training sample can be found in the
partition.

Since the training samples inside the same partition will
be transformed to the same output pattern, hidden nodes with
mixed partition will eventually introduce error to the network.
Therefore, no mixed partition should be allowed.

3. A new construction algorithm

The objective is to determine a hidden layer such that
maximum number of training samples with the same output
are grouped in the minimum number of partitions. In the
ideal case, all training samples with the same output fall in
the same partition, and because the output value is restricted
to either 0 or 1 (2 possible outputs), one decision hyperplane
is sufficient to classify the training samples. In practice,
training samples with the same output will distribute on more
than one partitions. Therefore, more than one hidden layers
may be necessary. The number of partitions will be reduced
after each layer and after passing through sufficient number
of hidden layers, all training samples with the same output
will fall in the same partition. Therefore, we can determine
the required number of hidden layers for a given problem
with this approach.

Figure 2 illustrates the proposed steps to determine the
topology with a 3D parity binary pattern. At the first hidden
layer, the training samples are distributed at the x-domain as
shown in fig. 2a. 3 decision hyperplanes are used to separate
the training samples into 4 groups. Then the 8 original
training samples will be transformed into 4 training samples
distributed over the h-domain. Similar to the first hidden
layer, 2 decision hyperplanes are used to separate the training
samples at the second hidden layer in the h-domain as shown
in fig. 2b. Finally, only 1 decision hyperplane is necessary to
separate the training samples at the output layer as shown in
fig. 2c. Thus the topology of the corresponding binary neural
network is completely determined as 4-2-1. This example
merely illustrates the proposed steps in determining the
topology of a multilayer network. In principle, only one
decision hyperplane is necessary to separate the training
samples in fig. 2b so only a two-layer topology is sufficient
for this problem.

Therefore the essential step is to determine the decision
hyperplanes of a hidden layer. We adopt the growth

0-7803-7278-W02/$10.00 02002 JEEE 2563

approach by determining one hyperplane at a time until all
training samples are well partitioned. Figure 3 illustrates the
growth process. Each hidden node attempts to partition as
many training samples of the same class as possible. The
complete algorithm is summarized below.

(a) I" hidden layer

h2 t

I Y

w' t El
(h) 2" hidden layer

(c) 3rd hidden layer

solve it.

Step 2: Training sample elimination
After a decision hyperplane h is determined from step 1,

the domain is divided into 2 partitions. All the training
samples inside the pure partition will be eliminated as they
already have been well partitioned by the .

Step 3: Layer completeness
As steps 1 and 2 are repeated t times, t decision

hyperplanes are determined. And the current layer is
completed if the partitions formed by those t decision
hyperplanes are either pure or empty.

Step 4: Domain Transformation
When the current hidden layer is completed by a set of

decision hyperplanes h}, where i = 1, 2, ..., Nh and Nhis the
number of hyper planes in pi}, the training sample vectors
Zi = [x ;,,, xi,2 ,..., xi,, I Ci] will be transformed into
j i , = [Y ~ , ~ , yi,z ,..., yi,Nh I Ci] where yi,j = sp(zi . i . + p,). The
dimension of the new domain is transformed $om n to Nh.
Some of the transformed training samples would be
equivalent since they fall into the same partition. They would
appear to be the same training pattern for the next hidden
layer. For example, given the training sample set in Table la ,
{zi} is transformed into (Ui} in Table Ib through the Jirst
hidden layer. We can observe that j i l , j i2 , and J4 appear to
be the same training data to the next hidden layer because
they have the same set of input and outputpatterns. Likewise,
j i , , ps, and ji6are similar. Thus p2, p4, p5, J~ can be
eliminated and the resultant transformed training samples for
the next hidden layer become those listed in Table IC.

Figure 2 The 3Dpar iy example for determining the BIW topology Step 5: Topology completeness
The topology of a binary neural network is completed if

the training sample set can be classified by one decision
hyperplane. ne flow diagram of the proposed is
shown in figure 4.

Step 1: Decision hyperplane determination
We find a decision hyperplane h , which can maximize

the number of training samples inside the pure partition(s)
created by the h . We show in Section 4 that this is a non-
linear optimization problem and we propose to use GA to

(a) (b) (c) (d)

Output1 Output0 Hyper plane

Figure 3 Illustration of the growth process E+'
xo

0-7803-7278-6/0U$l0.00 010.00 IEEE 2564

010
011

100

Table la Table Ib

010

111 1

Table IC

4. Genetic Algorithm

Genetic algorithms (GA) are search algorithms based on
the mechanics of natural selection and natural genetics. A
possible solution is represented as a chromosome in a string
structure with each element representing one parameter in the
solution. A collection of possible solutions (chromosomes)
then forms a population, which produces another generation
through a search process. The search process adopts “the
fittest survives” rule after a structured yet randomized
information exchange within the existing generation to yield
a new generation. It has been successfully applied to solve
many non-linear optimization problems. The success of a
GA, however, depends on how to formulate the
chromosomes and the fitness function, which are described in
the following for determining the decision hyperplane
required in Step 1 of Section 3 above.

A . Formation of genes and chromosome

Since the genetic algorithm is used to determine a
decision hyperplane such that it can separate maximum
number of training samples, the chromosome is used to
represent the decision hyperplane and each gene of the
chromosome is the parameter of the decision hyperplane.
The general formation of an n-dimensional hyperplane is:

2 X j x n i + p
i=l

where 6 = [n l , n *,..., n ,] is the normal direction of the
hyperplane. Since ljjl = 1 , we can use n - 1 parameters called

direction genes (6 = [el ,el , . . . ,en~l]) instead of n parameters
to represent the direction. The normal direction can be
determined by the equation:

i-l

ni =cos$, x n s i n $,
j = l

where 6 = [&01 = [4,,4* ,..., $ 1 . 3

Together with p, the magnitude gene, there are totally n
genes (n - 1 direction genes and 1 magnitude gene) in a
chromosome, i.e.

Chromosome = [e, O2 ... e,,., p] where pi(I n for i = 1,2, . ..,
n-1 and 0s p I&.

Start

Training Sample (V)

L
Single decision hyper plane determination

[hl
and pure sample set (P) from (V)

1
1

{n) = (n) + n(i)

Pure training sample
elimination

{V) = {V) - (P)

No

Layer complete ?

Yes
No

Transform the training samples
to a new domain
{V’) = {V) {n)

Yes

-..
Topology of BNN

Figure 4 Flow diagrum ofproposed algorithm

B. Fitness Function

The fitness function should measure the performance of a
neural network, which is, in general controlled by: 1)
accuracy, 2) generalization, and 3) size of the network. In
this paper, the fitness hnction used in this paper will just
concem with the accuracy and the size of the network. Since
our observations show that if the partitions produced a hidden
layer is of the mixed type, error would be introduced.
Moreover, if each partition contains more training samples,
fewer partitions are needed and fewer hidden nodes are
required. Therefore, we let the fitness function for a hidden
node measure its partition purity and the GA should find the
hidden node that generates maximum partition purity.

To define the partition purity of a hidden node, we
consider how a hidden node partitions the input data. A
hidden layer will divide the input space into 2 partitions P+
and P. with the following 4 possible combinations (assuming
no empty partition):

0-7803-7278-6/02/$10.00 02002 IEEE 2565

-
-
-
-

both P+ and P- are mixed
P+ is pure and P- is mixed
P+ is mixed and P. is pure
both P+ and P- are pure.

Then we let the partition purity of a hidden node be F = f + +
f- wheref, defines the purity of the partition P, fors = - or +:

f , = o if P, is mixed
= Size(P,) otherwise.

For example, if the hyperplane of a hidden node divides the
training data into two non-overlapping subsets, the fitness is
0 if both subsets consist of training data with two output
classes. If one of the subsets consists of training data of the
same class, then the fitness equals to the size of that subset.
If both subsets happen to consist training data of the same
class, the fitness equals to the total number of training data.

C. Reproduction

i. Cross-over
A multi-point cross-over operator has been adopted here.

Given two chromosomes hi = pi,,, 0i,2, . . .,Oi,n-l, pi J and hj =

le,,, e , , ..., e,,,-, p j J , we first randomly select the number of
genes to be swapped N,,, where 1 I N,,, I n as there are n
genes in a chromosome. For each swapping, we select N,,,
genes and then inter-change their values. All genes have the
equal probability to be selected. Two new chromosomes are
then generated.

ii. Mutation
After cross-over, each gene will then further go through

the mutation operation. Each real-valued gene in a
chromosome will be accumulated with a small value. The
actual value to be accumulated is generated randomly within
the range [-aGenei, +dGenei]. The range limits, aGenei have
been set to x14 = 0.7853 and to I / & for the direction genes,
8 and the magnitude gene, p respectively.

D. Selection

After the reproduction process, the N chromosomes with
best fitness values will be selected to form the next
generation.

capability of NNs. The number of bits in the parity function
is varied from 2 to 9, which is sufficient to conclude the
performance of the proposed algorithm. By observing the
results listed in Table 2, we find that the successful rate is
higher than 95% even though the problem is a high
dimensional function. Moreover, the time to determine the
corresponding topology is just varied from 0.5 to 10 sec.

Experiment 2: Two spiral function
The spiral function is another popular benchmark problem.

Originally, it is a continuous function. However, since the
BNN restricts the values of input pattern to be either 0 or 1,
we first quantise the continuous 2D pattern to a 16 x 16
uniform grid pattern as shown in Fig. Sa. The input pattern
now can be described by a discrete function class = f(x, y)
where x and y is an integer between 0 to 15. We convert x
and y to binary codes and hence, x and y will form a binary
input string pattern. Therefore the example has 128 training
samples. Figures 5(b) and 5(c) illustrate the transformed
patterns at the first and the second hidden layers where the
pixels with same intensity belong to the same partition. Fig.
5(d) shows the output pattern of the BNN, which is the same
as the target pattern. By comparing the transformed patterns
in each hidden layer shown in fig. 5, we find that the training
samples of the same class group together through each layer
to form the target pattern in the output. In order to compare
the performance between the proposed algorithm and the
modified geometrical learning reported in [6], we apply the
proposed algorithm on the same double spiral h c t i o n used
in [6]. The corresponding hidden nodes required are only 15
comparing to 19 in [6] . The topology determined using the
proposed algorithm is 8 - 7 - 1 while only one hidden layer is
adopted in [6]. Moreover in our formulation, we did not
generate additional virtual training data as in [6]. The virtual
training data are additional data generated from the original
set of training data without altering the function mapping.
This experiment was done with 10 trails. 8 out of 10 trails
converged to the same topology while the remaining two
converged to the solutions with more hidden nodes.

Experiment 3: A 7-bit function
We apply the proposed algorithm to determine a 7-bit

Boolean function in [6]. There are 36 input patterns with
output 0 and 36 input patterns with output 1 while others are
don't care. The proposed algorithm requires the same
number of hidden nodes as [6] without generating the virtual
training data. The experiment was repeated 10 times and all
10 trials converged to the optimal topology.

5. Experimental Results

Experiment I : N-bit parity functions 6. Conclusion
In this experiment, we apply the proposed algorithm

described in Section 3 to classify n-bit parity problems. The
parity functions are difficult Boolean functions to learn via
"S. The difficulty increases nonlinearly with n. Therefore,
the parity functions are often used as benchmarks to test the

We have proposed an efficient algorithm to determine the
topology of a binary neural network automatically by
maximizing the purity of data distribution at each hidden

0-7803-7278-6/02/$10.00 02002 IEEE 2566

layer. A GA is proposed for handling the optimization
process. The experimental results show that the proposed
algorithm is more effective than the geometrical learning
approach in constructing a binary neural network without
adding virtual training data. Extension of the current work
on multilayer perceptron is under investigation by
incorporating the generalization in the fitness function.

N

7. References

of successful trials out of
30 trials

Expected Topologv Determined Topology Processing time (sec.)

[I] D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing -
Explorations in the Microstructure of Cognition, Vol. 1 and 2,
Cambridge: MIT Press, 1986.

[2] S.E. Fahlman and C. Lebiere, “The cascade-correlation learning
architecture,” in Advances in Neural Information Processing Systems 11,
D.S. Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann, 1990, pp.

[3] F. L. Chung and T. Lee, “A network growth approach to the design of
feedforward neural networks“, IEE Proceedings on Control Theory and

524-532.

7
8
9

[4] K. Hornik, .“Multilayer feedforward networks are univerisal
approximator,” Neural Networks, vol. 2, no. 5, 1989, pp. 359-366.

[SI Mu-Song Chen and Fong Hang Liao, “Neural networks training using
genetic algorithms“, in Proc. IEEE International Conference on Systems,
Man, and Cybernetics, 1998, vol. 3 , pp. 2436-2441.

[6] M. Shimada and T. Saito, “A simple leaming of binary neural networks
with virtual teacher signals,” in Proc. International Joint Conference on

Neural Networks, 2001, Vol. 3 , pp. 2042-2047.
[7] J.H.Kin and S.K.Park, “the geometrical learning of binary neural

networks”, IEEE Transactions Neural Networks, vol. 6, no. 1, Jan. 1995,
pp. 237-247.

[SI D.L. Gray and A.N. Michel, “A training algorithm for binary
feedforward neural networks”, IEEE Transactions on Neural Networks,
vol. 3, no. 2, March 1992, pp. 176-194.

[9] M. Muselli, “On sequential construction of binary neural networks “,
IEEE Transactions on Neural Networks, vol. 6, no. 3, May 1995, pp.
678-690.

[7,2, 11 [7,2, 11 29 6.8
[8,2, 11 [8, 2, 11 29 8.5
[9,2,11 [9,2, 11 28 9.7

Applications, vol. 142, no. 5, Sept. 1995, pp.486-492.
1

Tesi pattern Pattern of Pattern of
I” hidden layer 2“ hidden layer

Pattem of
output layer

(b) (4
Figure 5 Result of the two-spiral experiment

2567

