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Abstract - A new approach is introduced to determine the 
topology of a feedforward binary neural network (BNN) 
automatically. The approach bases on a construction 
algorithm that constructs one layer of hidden nodes at a time 
until the problem is solved, And in each layer, the algorithm 
determines the necessary number of nodes through a growth 
process by finding the best hidden node that would help to 
partition the input training data set. This is done using a 
Genetic Algorithm. The proposed algorithm can determine 
the necessary number of hidden layers and number of hidden 
nodes at each layer automatically. Tests on a number of 
benchmark problems illustrated the effectiveness of the 
proposed technique, both in terms of network complexity and 
recognition accuracy, compared with a recent approach by 
geometrical learning. 

1. Introduction 

Binary neural network is widely applied to many 
problems like pattern classification, error correcting and 
Boolean hnction mapping. There are many existing 
approaches to determine the weights of a neural network. 
The most popular and traditional approach is called back- 
propagation algorithm [l]. It is based on the error feedback 
and gradient descent method to update the weights of each 
hidden node iteratively. Usually, the topology of the multi- 
layer feedforward neural network has to be determined a 
priori. Therefore many attempted to determine the topology 
of a multi-layer neural network automatically. Growth or 
construction process is a popular approach. Cascade- 
correlation [Z] is perhaps the most well-known and the early 
example of such approach. However, this approach can only 
be applied to certain type of topologies. For example, the 
cascade-correlation approach will determine a network with 
one hidden node at each hidden layer. A rather popular 
approach is to determine the one-hidden layer topology [3] 
because it has been proven that all problems can be solved 
with one-hidden layer architecture [4]. Recently, 
considerable attention has been given to train a multi-layer 
neural network with some global optimization method, such 
as Genetic Algorithm and Evolutionary Programming [SI. 

This approach still suffers from the following common 
drawbacks: 

The network architecture must be fixed a priori. i.e. 
the number of layers and the number of hidden nodes 
for each layer must be pre-determined by the user 
before the training process. Only the optimal weights 
are considered. 
If the topology is allowed to vary, the learning time 
will be, in general, very high. Consequently the 
number of weights can be considered is limited. 

In this paper we address the problem of training a multi- 
layer feedforward network without specifying the topology 
by adopting the construction approach. However, the focus 
is limited to the construction of a feed-forward binary neural 
network with multi-layers structure because the training task 
is relatively easier [6-91. We postulate that the function of 
each hidden layer in a feedforward binary neural network is a 
transformation mapping the training data from one data space 
to another. And we observe that the transformations 
implemented by each layer have the following characteristics: 

If two input data have been transformed to have the 
same output at a certain hidden layer, they cannot be 
distinguished at subsequent hidden layers. 

0 The number of distinguishable data after a 
transformation by the hidden node mapping cannot be 
more than the number of input data of the hidden layer. 

Therefore, based on the above observations, we propose a 
new algorithm to construct a feedforward binary neural 
network. The algorithm aims at finding the transformations 
such that the number of input data can be reduced at each 
hidden layer while the data remains separable. This is done 
by maximizing the number of data with the same output after 
a hidden layer transformation. This has been formulated as 
an optimization problem and we propose to use GA to 
determine the fittest weights of each hidden node, one at a 
time. Then the hidden layers so obtained are connected to 
form a complete network. We evaluated the proposed 
algorithm against a recent approach by geometrical learning 
[6,7] with benchmark problems. 
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The organization of this paper is as follows. Section 2 
introduces and defines the general structure and mechanism 
of BNN. In Section 3, a new algorithm to construct a BNN is 
discussed. Section 4 presents a method to determine the 
weights of a hidden node by a genetic algorithm, while 
Section 5 shows 3 sets of experimental results to illustrate the 
performance of the proposed algorithm. The paper is ended 
with the conclusion in Section 6. 

2. Binary Neural Network (BNN) 

Binary neural network is a special kind of artificial neural 
networks. During the training process, a set of input/output 
pattern pairs are given in order to determine the weights of 
the network, and every input pattern [x,, x2, ..., x,] and output 
pattern C pair is regarded as a training sample 
x’ = [x, ,x, ,..., x, I C] . For the BNN, the possible values of 
xi and C can either be 0 or 1. Figure 1 shows the general 
topology of a BNN. 
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Figure I General topology of a BNN 

For each hidden node with the weights [i, p] , the input 
vector x’ and the output y can be related by y = sgn(z. li + p) 

where 

The corresponding decision hyperplane h is defined as 
h = 2. + p and divides the input data space into partitions. 
Each partition can be classified as one of the following types: 

1. Pure partition - the partition contains the training 
samples with the same output. 

2. Mixed partition - the partition contains both training 
samples with output 0 and output 1. 

3. Empty partition - no training sample can be found in the 
partition. 

Since the training samples inside the same partition will 
be transformed to the same output pattern, hidden nodes with 
mixed partition will eventually introduce error to the network. 
Therefore, no mixed partition should be allowed. 

3. A new construction algorithm 

The objective is to determine a hidden layer such that 
maximum number of training samples with the same output 
are grouped in the minimum number of partitions. In the 
ideal case, all training samples with the same output fall in 
the same partition, and because the output value is restricted 
to either 0 or 1 (2 possible outputs), one decision hyperplane 
is sufficient to classify the training samples. In practice, 
training samples with the same output will distribute on more 
than one partitions. Therefore, more than one hidden layers 
may be necessary. The number of partitions will be reduced 
after each layer and after passing through sufficient number 
of hidden layers, all training samples with the same output 
will fall in the same partition. Therefore, we can determine 
the required number of hidden layers for a given problem 
with this approach. 

Figure 2 illustrates the proposed steps to determine the 
topology with a 3D parity binary pattern. At the first hidden 
layer, the training samples are distributed at the x-domain as 
shown in fig. 2a. 3 decision hyperplanes are used to separate 
the training samples into 4 groups. Then the 8 original 
training samples will be transformed into 4 training samples 
distributed over the h-domain. Similar to the first hidden 
layer, 2 decision hyperplanes are used to separate the training 
samples at the second hidden layer in the h-domain as shown 
in fig. 2b. Finally, only 1 decision hyperplane is necessary to 
separate the training samples at the output layer as shown in 
fig. 2c. Thus the topology of the corresponding binary neural 
network is completely determined as 4-2-1. This example 
merely illustrates the proposed steps in determining the 
topology of a multilayer network. In principle, only one 
decision hyperplane is necessary to separate the training 
samples in fig. 2b so only a two-layer topology is sufficient 
for this problem. 

Therefore the essential step is to determine the decision 
hyperplanes of a hidden layer. We adopt the growth 
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approach by determining one hyperplane at a time until all 
training samples are well partitioned. Figure 3 illustrates the 
growth process. Each hidden node attempts to partition as 
many training samples of the same class as possible. The 
complete algorithm is summarized below. 

(a) I" hidden layer 

h2 t 

I Y  

w' t El 
(h) 2" hidden layer 

(c) 3rd hidden layer 

solve it. 

Step 2: Training sample elimination 
After a decision hyperplane h is determined from step 1, 

the domain is divided into 2 partitions. All the training 
samples inside the pure partition will be eliminated as they 
already have been well partitioned by the . 

Step 3: Layer completeness 
As steps 1 and 2 are repeated t times, t decision 

hyperplanes are determined. And the current layer is 
completed if the partitions formed by those t decision 
hyperplanes are either pure or empty. 

Step 4: Domain Transformation 
When the current hidden layer is completed by a set of 

decision hyperplanes h}, where i = 1, 2, ..., Nh and Nhis the 
number of hyper planes in pi}, the training sample vectors 
Zi = [x ;,,, xi,2 ,..., xi,, I Ci] will be transformed into 
j i ,  = [ Y ~ , ~ ,  yi,z ,..., yi,Nh I Ci] where yi,j = sp(zi . i .  + p,). The 
dimension of the new domain is transformed $om n to Nh. 
Some of the transformed training samples would be 
equivalent since they fall into the same partition. They would 
appear to be the same training pattern for the next hidden 
layer. For example, given the training sample set in Table la ,  
{zi} is transformed into (Ui} in Table Ib through the Jirst 
hidden layer. We can observe that j i l ,  j i2 ,  and J4 appear to 
be the same training data to the next hidden layer because 
they have the same set of input and outputpatterns. Likewise, 
j i , ,  ps, and ji6are similar. Thus p2, p4, p5, J~ can be 
eliminated and the resultant transformed training samples for 
the next hidden layer become those listed in Table IC. 

Figure 2 The 3Dpar iy  example for determining the BIW topology Step 5: Topology completeness 
The topology of a binary neural network is completed if 

the training sample set can be classified by one decision 
hyperplane. ne flow diagram of the proposed is 
shown in figure 4. 

Step 1: Decision hyperplane determination 
We find a decision hyperplane h , which can maximize 

the number of training samples inside the pure partition(s) 
created by the h . We show in Section 4 that this is a non- 
linear optimization problem and we propose to use GA to 

(a) (b) (c) (d) 

Output1 Output0 Hyper plane 

Figure 3 Illustration of the growth process E+' 
xo 
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4. Genetic Algorithm 

Genetic algorithms (GA) are search algorithms based on 
the mechanics of natural selection and natural genetics. A 
possible solution is represented as a chromosome in a string 
structure with each element representing one parameter in the 
solution. A collection of possible solutions (chromosomes) 
then forms a population, which produces another generation 
through a search process. The search process adopts “the 
fittest survives” rule after a structured yet randomized 
information exchange within the existing generation to yield 
a new generation. It has been successfully applied to solve 
many non-linear optimization problems. The success of a 
GA, however, depends on how to formulate the 
chromosomes and the fitness function, which are described in 
the following for determining the decision hyperplane 
required in Step 1 of Section 3 above. 

A .  Formation of genes and chromosome 

Since the genetic algorithm is used to determine a 
decision hyperplane such that it can separate maximum 
number of training samples, the chromosome is used to 
represent the decision hyperplane and each gene of the 
chromosome is the parameter of the decision hyperplane. 
The general formation of an n-dimensional hyperplane is: 

2 X j  x n i  + p 
i=l 

where 6 = [ n l , n  *,..., n , ]  is the normal direction of the 
hyperplane. Since ljjl = 1 ,  we can use n - 1 parameters called 

direction genes (6 = [el ,el , . . . ,en~l])  instead of n parameters 
to represent the direction. The normal direction can be 
determined by the equation: 

i-l 

ni =cos$, x n s i n $ ,  
j = l  

where 6 = [&01 = [4,,4* ,..., $ 1 . 3  

Together with p, the magnitude gene, there are totally n 
genes (n - 1 direction genes and 1 magnitude gene) in a 
chromosome, i.e. 

Chromosome = [e, O2 ... e,,., p] where pi( I n  for i = 1,2, . .., 
n-1 and 0s  p I&. 

Start 

Training Sample (V)  

L 
Single decision hyper plane determination 

[hl 
and pure sample set (P)  from (V)  

1 
1 

{n) = (n)  + n(i) 

Pure training sample 
elimination 

{V) = {V) - (P) 

No 

Layer complete ? 

Yes 
No 

Transform the training samples 
to a new domain 
{V’) = {V) {n) 

Yes 

-.. 
Topology of BNN 

Figure 4 Flow diagrum ofproposed algorithm 

B. Fitness Function 

The fitness function should measure the performance of a 
neural network, which is, in general controlled by: 1) 
accuracy, 2) generalization, and 3) size of the network. In 
this paper, the fitness hnction used in this paper will just 
concem with the accuracy and the size of the network. Since 
our observations show that if the partitions produced a hidden 
layer is of the mixed type, error would be introduced. 
Moreover, if each partition contains more training samples, 
fewer partitions are needed and fewer hidden nodes are 
required. Therefore, we let the fitness function for a hidden 
node measure its partition purity and the GA should find the 
hidden node that generates maximum partition purity. 

To define the partition purity of a hidden node, we 
consider how a hidden node partitions the input data. A 
hidden layer will divide the input space into 2 partitions P+ 
and P. with the following 4 possible combinations (assuming 
no empty partition): 
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- 
- 
- 
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both P+ and P- are mixed 
P+ is pure and P- is mixed 
P+ is mixed and P. is pure 
both P+ and P- are pure. 

Then we let the partition purity of a hidden node be F = f +  + 
f- wheref, defines the purity of the partition P, fors = - or +: 

f , = o  if P, is mixed 
= Size(P,) otherwise. 

For example, if the hyperplane of a hidden node divides the 
training data into two non-overlapping subsets, the fitness is 
0 if both subsets consist of training data with two output 
classes. If one of the subsets consists of training data of the 
same class, then the fitness equals to the size of that subset. 
If both subsets happen to consist training data of the same 
class, the fitness equals to the total number of training data. 

C. Reproduction 

i. Cross-over 
A multi-point cross-over operator has been adopted here. 

Given two chromosomes hi = pi,,, 0i,2, . . .,Oi,n-l, pi J and hj = 

le,,, e , ,  ..., e,,,-, p j J ,  we first randomly select the number of 
genes to be swapped N,,, where 1 I N,,, I n as there are n 
genes in a chromosome. For each swapping, we select N,,, 
genes and then inter-change their values. All genes have the 
equal probability to be selected. Two new chromosomes are 
then generated. 

ii. Mutation 
After cross-over, each gene will then further go through 

the mutation operation. Each real-valued gene in a 
chromosome will be accumulated with a small value. The 
actual value to be accumulated is generated randomly within 
the range [-aGenei, +dGenei]. The range limits, aGenei have 
been set to x14 = 0.7853 and to I / &  for the direction genes, 
8 and the magnitude gene, p respectively. 

D. Selection 

After the reproduction process, the N chromosomes with 
best fitness values will be selected to form the next 
generation. 

capability of NNs. The number of bits in the parity function 
is varied from 2 to 9, which is sufficient to conclude the 
performance of the proposed algorithm. By observing the 
results listed in Table 2, we find that the successful rate is 
higher than 95% even though the problem is a high 
dimensional function. Moreover, the time to determine the 
corresponding topology is just varied from 0.5 to 10 sec. 

Experiment 2: Two spiral function 
The spiral function is another popular benchmark problem. 

Originally, it is a continuous function. However, since the 
BNN restricts the values of input pattern to be either 0 or 1, 
we first quantise the continuous 2D pattern to a 16 x 16 
uniform grid pattern as shown in Fig. Sa. The input pattern 
now can be described by a discrete function class = f(x, y)  
where x and y is an integer between 0 to 15. We convert x 
and y to binary codes and hence, x and y will form a binary 
input string pattern. Therefore the example has 128 training 
samples. Figures 5(b) and 5(c) illustrate the transformed 
patterns at the first and the second hidden layers where the 
pixels with same intensity belong to the same partition. Fig. 
5(d) shows the output pattern of the BNN, which is the same 
as the target pattern. By comparing the transformed patterns 
in each hidden layer shown in fig. 5, we find that the training 
samples of the same class group together through each layer 
to form the target pattern in the output. In order to compare 
the performance between the proposed algorithm and the 
modified geometrical learning reported in [6],  we apply the 
proposed algorithm on the same double spiral h c t i o n  used 
in [6]. The corresponding hidden nodes required are only 15 
comparing to 19 in [6] .  The topology determined using the 
proposed algorithm is 8 - 7 - 1 while only one hidden layer is 
adopted in [6]. Moreover in our formulation, we did not 
generate additional virtual training data as in [6]. The virtual 
training data are additional data generated from the original 
set of training data without altering the function mapping. 
This experiment was done with 10 trails. 8 out of 10 trails 
converged to the same topology while the remaining two 
converged to the solutions with more hidden nodes. 

Experiment 3: A 7-bit function 
We apply the proposed algorithm to determine a 7-bit 

Boolean function in [6]. There are 36 input patterns with 
output 0 and 36 input patterns with output 1 while others are 
don't care. The proposed algorithm requires the same 
number of hidden nodes as [6] without generating the virtual 
training data. The experiment was repeated 10 times and all 
10 trials converged to the optimal topology. 

5. Experimental Results 

Experiment I :  N-bit parity functions 6. Conclusion 
In this experiment, we apply the proposed algorithm 

described in Section 3 to classify n-bit parity problems. The 
parity functions are difficult Boolean functions to learn via 
"S. The difficulty increases nonlinearly with n. Therefore, 
the parity functions are often used as benchmarks to test the 

We have proposed an efficient algorithm to determine the 
topology of a binary neural network automatically by 
maximizing the purity of data distribution at each hidden 
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layer. A GA is proposed for handling the optimization 
process. The experimental results show that the proposed 
algorithm is more effective than the geometrical learning 
approach in constructing a binary neural network without 
adding virtual training data. Extension of the current work 
on multilayer perceptron is under investigation by 
incorporating the generalization in the fitness function. 

N 
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