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Abstract

A systematic linkage technique and a topology matrix-graph approach are put forward for type synthesis

of unified planar–spatial mechanism. By using the systematic linkage technique, numerous associated link-

ages of unified planar–spatial mechanism are created. The equivalent relations between the actual mecha-

nism and the associated linkage are determined, and the formulas for calculating the number of DOF, the

complexity, and acceptable associated linkage are derived. By using the topology matrix-graph approach,
corresponding topology matrices are constructed, and some topology embryonic graphs and their isomeric

topology embryonic graphs of the unified planar–spatial mechanism are constituted. Finally, the numerous

topology graphs for type synthesis of unified planar–spatial mechanism are derived. The results show that

the two approaches are simple and effective for type synthesis of unified planar–spatial mechanisms.
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1. Introduction

In the type synthesis of mechanism, the technique of the linkage system has been used to ana-
lyze, create, and synthesize various planar mechanisms [1–3]. The topology graph is a simple and
effective tool for type synthesis of various mechanisms [4], and the topology embryonic graph is a
basis for deriving topology graph [5]. Johnson presented the technique of the linkage system for
synthesizing the planar mechanisms by creating diversified acceptable planar mechanisms [1]. Tin-
gli studied type synthesis of planar mechanism by using a topology graph of the linkage and the
close-conjunction matrix [4]. Shubo studied topology graph theory [5]. McCarthy conducted a
synthesis of planar RR and spatial CC chains [6]. Hunt et al. conducted type synthesis of some
3-, 4-, 5-, 6-DOF parallel spatial manipulators [7–11]. Rao studied loop-based detection of iso-
morphism among chains and inversions and the type of freedom in a multiple degree of freedom
chain for a planar mechanism [12]. Linda studied the type synthesis of planar mechanisms by a
graph grammar approach [13]. Dar-Zen conducted a study on the topological synthesis of frac-
tionated geared differential mechanisms [14]. Liu Chuanhe presented a variable evolution method
of planar pin-jointed kinematic chains based on the fractal method of mechanism evolution [15].
Jin-Kui Chu determined isomorphism among kinetic chains [16]. Carlo analyzed kinematotropic
properties and pair connectivities in single-loop spatial mechanisms [17].

However, ways to use the systematic linkage technique for type synthesis of unified planar and
spatial mechanisms have not been developed yet. In the light of acceptable associated linkages
with different DOF, the questions of how to derive the topology embryonic graph and the topol-
ogy graph of an associated linkage for synthesizing unified planar–spatial mechanism have not
been solved.

For this reason, the type synthesis of unified planar–spatial mechanism is studied by using the
systematic linkage technique and topology matrix-graph approach. The following problems are
solved in this paper: (1) Determine the relationships between unified planar–spatial mechanism
and its associated linkage. (2) Derive the acceptable combinations of basic links with different
DOF. (3) Create the topology matrix of acceptable associated linkage. (4) Solve the isomeric
topology embryonic graphs. (5) Constitute the acceptable topology graph of unified planar and
spatial mechanism.
2. Relations between the mechanism and its associated linkage

An associated linkage of the unified planar and spatial mechanism is an effective tool for type
synthesis of mechanism. Johnson had defined two equivalent conditions between the planar mech-
anism and its associated linkage as below [1].

(1) The DOF of planar mechanism must be the same as that of its associated linkage.
(2) In any associated linkage of planar mechanism, it is permissible to replace any two binary

links connected by a one rotational joint with a revolute joint R, a prismatic joint P, because, for
each of R and P, there is one-DOF for relative motion, as shown in Fig. 1a.

A unified planar and spatial mechanism generally includes various types of basic kinematic
pairs (such as cam pair, gear pair, and helical pair, revolute joint R, prismatic joint P, spherical
joint S, universal joint U, cylinder pair C, and plane joint E) and various types of parts (such as
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Fig. 1. Equivalent relations between the kinematic pairs of mechanism and associated linkage.
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link, cam, gear, frame, and so on). However, the associated linkage of the planar and spatial
mechanism include many rotational joints with one-DOF and various types of basic links, such
as binary, ternary, quaternary, pentagonal, and hexagonal links, and so on. Here, a rotational
joint with one-DOF and a binary link in the associated linkage are designated as a dot and a
curve, respectively.

In order to conduct type synthesis of unified planar–spatial mechanisms, based on the two
equivalent conditions for the planar mechanism above and the consideration of the relative
DOF of various types of kinematic pairs, two additional equivalent conditions between the unified
planar–spatial mechanism and its associated linkage are explained as follows.

(3) In any associated linkage of unified planar–spatial mechanism, it is permissible to replace
any three binary links connected in series by two rotational joints with a universal joint U or a
cylinder joint C, because, for each of U, C, there is two-DOF for relative motion, as shown in
Fig. 1b.

(4) In any associated linkage of unified planar–spatial mechanism, it is permissible to replace
any four binary links connected in series by three rotational joints with a spherical joint S or a
plan joint E, because, for each of S, E, there is three-DOF for relative motion, as shown in
Fig. 1c.
3. Derivation of the DOF equation of the associated linkage

The DOF of the mechanism with one link fixed can be calculated by Grubler�s equation [2,3]:
F ¼ kðl� n� 1Þ þ
Xn

i¼1

fi ð1Þ
where F is the number of DOF for the mechanism; k is the degree of freedom of space within
which the mechanism operates for planar motions k = 3, and for spatial motions k = 6; l is the
number of actual links, including the frame, and n is the number of kinematic pairs for connecting
two actual links; fi is the relative DOF of the ith kinematic pair in the mechanism.

Based on the four equivalent conditions above, from Eq. (1), a formula for calculating the DOF
of the associated linkage of unified planar–spatial mechanism is derived below,
F ¼ kðL� N � 1Þ þ N ð2Þ

where F is the number of DOF of the associated linkage, which is the same as that of unified pla-
nar–spatial mechanism; L is the number of basic links including the frame, L is usually larger than
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that of actual mechanism; N is the number of rotational joints in the associated linkage, which is
the sum of relative DOF of all the kinematic pairs in the mechanism. By comparing Eq. (1) with
Eq. (2), it is known that l � n = L � N.
4. The acceptable number of links and complexity of associated linkage

The associated linkage is made up of various types of basic links, which are connected by the
rotational joints with one-DOF. The element number of the basic link determines the type of basic
link designated as binary, ternary, quaternary, pentagonal, or hexagonal links [1]. All the elements
of basic links must be of parallel rotational joints in the associated linkage of the planar mecha-
nism, and must be of non-parallel rotational joints in the associated linkage of the spatial mech-
anism. The number of the basic links in the associated linkage are designated as B, T, Q, P, and H
for the binary, ternary, quaternary, pentagonal, and hexagonal links, respectively. Thus, the num-
ber of basic link L is the sum of the types of basic links for any associated linkage of unified planar
and spatial mechanism. It can be calculated as follows:
L ¼ Bþ T þ Qþ P þ H þ � � � ð3Þ

Since each binary link contributes two elements of two rotational joints, and each ternary link

contributes three elements of three rotational joints, and so on, with two elements required for
each rotational joint, the following equation for calculating the number of rotational joints N
is obtained below.
N ¼ ð2Bþ 3T þ 4Qþ 5P þ 6H þ � � �Þ=2 ð4Þ

Substituting Eqs. (3) and (4) into Eq. (2), the following modified version of Grubler�s equation

for the associated linkage of unified planar–spatial mechanism with one link fixed is obtained.
F ¼ kðBþ T þ Qþ P þ H þ � � �Þ � ðk � 1Þ
2

ð2Bþ 3T þ 4Qþ 5P þ 6H þ � � �Þ � k ð5Þ
The derivation implies that Eq. (5) would contain additional terms if links of greater complexity
than the hexagonal type were included, but this would be getting into a range of impracticality
foreign to the intended simplicity of design.

By subtracting Eq. (5) from Eq. (3), the following equation (6) is obtained.
T þ 2Qþ 3P þ 4H ¼ 2ðL� F � kÞ=ðk � 1Þ ð6Þ

When k = 3 for planar linkages, Eq. (2) gives
N ¼ 3

2
L� F þ 3

2
ð7Þ
Since the value of N and L must be positive integer, and the value of F must be an integer,
positive or negative, from an examination of Eq. (7) the following two conclusions are drawn
as follows:

1. If F is an odd number (�1,+1,+3, etc.), L must be an even number.
2. If F is an even number (0,+2,+4, etc.), L must be an odd number.



In the definitions of the different terms, the number of binary, ternary, quaternary, pentagonal,
and hexagonal links must be positive integers or 0. Thus, the result from the left side expression
(T + 2Q + 3P + 4H) of Eq. (6) must be a positive integer or 0. Hence the result from the right side
expression (L � F � 3) of Eq. (6) must also be a positive integer or 0. Therefore, based on an
examination of Eq. (7) and two conclusions above, the third conclusion is drawn as below:

3. The expression L � F � 3 must be a positive even number or 0.

From the third conclusion and Eq. (7), the following equation can be derived for planar
linkages.
T þ 2Qþ 3P þ 4H ¼ 2J ; J ¼ 0; 1; 2; . . .
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Fig. 2. Decision tree for progressive simultaneous solutions of all acceptable associated linkages from Eqs. (11) and

(12) only in the case of H = 0, P = 0.
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Let H = 0 and P = 0, and a set of Eq. (12) is produced as follows:
T þ 2Q ¼ 2J ; Bþ T þ Q ¼ J ð12Þ

Then, if Q = 0, 1, 2, 3, 4, 5, respectively, the six acceptable associated linkages could be derived

from the set of Eq. (12). The progressive simultaneous solutions of these equations are facilitated
by using a decision tree, as shown in Fig. 2. Since T in these equations of the decision tree must be
a positive integer or 0, the values of J are limited (JP 0,1,2,3,4,5) for the cases of T = 2(J � i)
(i = 1,2,3,4,5), respectively. For this reason, the limited values of J are given for each case of the
acceptable associated linkages in each leaf frame of the decision tree, as shown in Fig. 2.

Similarly, from Eq. (9), all acceptable associated linkages can be derived in the cases of H = 0,
P = 1,2,3;H = 1, P = 0,1; andH = 2, P = 0; respectively. The decision trees for progressive simul-
taneous solutions of these equations are shown in Fig. 3. However, in the cases of H = 0,
P = 4,5, . . .; H = 1, P = 2,3, . . .; and H = 2, P = 1,2, . . ., etc., the acceptable associated linkages
correspond to J > 5, and it is, hence, not necessary to discuss them in detail here.

Each leaf frame in all the decision trees corresponds to each case of all acceptable associated
linkages in Figs. 2 and 3. Based on the unified equations in each leaf frame, for J = 0,1, . . ., 5;
k = 3,6; and different DOF, the number of various types of basic links (b, t,q,p,h) is obtained
for each acceptable associated linkage, as shown in Table 1. The acceptable number of links L
for J 6 5 is shown in Table 1.

From the resulting derivation shown in Table 1 and the equations in the decision trees in Figs. 2
and 3, some important conclusions are obtained.

1. In each type of acceptable associated linkage of unified planar–spatial mechanism, different
DOF can only cause a change in the number of binary link, but does not influence upon the
other types of basic links. The number of binary links for each acceptable associated linkage
increases or decreases along with the increase or decrease of value of DOF.

2. If both a planar associated linkage and a spatial associated linkage with the same complexity
J and DOF include the same group of basic links (such as ternary, quaternary, pentagonal,
or hexagonal links), then the difference between the number of binary links in the planar
associated linkage and that in the spatial associated linkage is 3(1 + J).
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Fig. 3. The decision trees for progressive simultaneous solutions of all acceptable associated linkages from Eqs. (11)

and (12) in the cases of H = 0, P = 1, 2, 3; H = 1, P = 0, 1, 2 and H = 2, P = 0, respectively.
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3. In the case of the lowest complexity of the associated linkage (J = 0), the simplest accept-
able associated linkages for different DOF only include the binary links, and the num-
ber of binary links is B = 3 + F for a planar mechanism, and B = 6 + F for a spatial
mechanism.

4. In the case of J = 1, the acceptable associated linkages include the binary, ternary, and qua-
ternary links for different DOF (F values), and the acceptable number of links is
L = 2k + F � 1. It implies that in the case of J = 1, the pentagonal and hexagonal links
are not needed for type synthesis of the unified planar and spatial mechanisms for different
DOF (F values).
6. Topology matrix

The topology matrix is an effective tool for constituting topology embryonic graph. Before
constituting it, all binary links must be removed from the associated linkage, and the four sym-
bols (h,p,q, t) are used to designate hexagonal, pentagonal, quaternary, ternary basic links in



Table 1

The possible associated linkages with different DOF (F value) for complexity J = 0, 1, 2, 3, 4, 5 and the acceptable

number of links

J B T Q P H No.

k = 3 k = 6

0 3 + F 6 + F 0 0 0 0 0.1

1 3 + F 9 + F 2 0 0 0 1.1

4 + F 10 + F 0 1 0 0 1.2

2 3 + F 12 + F 4 0 0 0 2.1

4 + F 13 + F 2 1 0 0 2.2

5 + F 14 + F 0 2 0 0 2.3

5 + F 14 + F 1 0 1 0 2.4

6 + F 15 + F 0 0 0 1 2.4

3 3 + F 15 + F 6 0 0 0 3.1

4 + F 16 + F 4 1 0 0 3.2

5 + F 17 + F 2 2 0 0 3.3

6 + F 18 + F 0 3 0 0 3.4

5 + F 17 + F 3 0 1 0 3.5

6 + F 18 + F 1 1 1 0 3.6

7 + F 19 + F 0 0 2 0 3.7

6 + F 18 + F 2 0 0 1 3.8

8 + F 20 + F 0 1 0 1 3.9

4 3 + F 18 + F 8 0 0 0 4.1

4 + F 19 + F 6 1 0 0 4.2

5 + F 20 + F 4 2 0 0 4.3

6 + F 21 + F 2 3 0 0 4.4

7 + F 22 + F 0 4 0 0 4.5

6 + F 21 + F 4 0 0 1 4.6

7 + F 22 + F 2 1 0 1 4.7

8 + F 23 + F 0 2 0 1 4.8

8 + F 23 + F 1 0 1 1 4.9

9 + F 24 + F 0 0 0 2 4.10

5 + F 20 + F 5 0 1 0 4.11

6 + F 21 + F 3 1 1 0 4.12

7 + F 22 + F 1 2 1 0 4.13

7 + F 22 + F 2 0 2 0 4.14

9 + F 24 + F 0 1 2 0 4.15

5 3 + F 21 + F 10 0 0 0 5.1

4 + F 22 + F 8 1 0 0 5.2

5 + F 23 + F 6 2 0 0 5.3

6 + F 24 + F 4 3 0 0 5.4

7 + F 25 + F 2 4 0 0 5.5

8 + F 26 + F 0 5 0 0 5.6

5 + F 23 + F 7 0 1 0 5.7

6 + F 24 + F 5 1 1 0 5.8

7 + F 25 + F 3 2 1 0 5.9

8 + F 26 + F 1 3 1 0 5.10

7 + F 25 + F 4 0 2 0 5.11

9 + F 27 + F 2 1 2 0 5.12

11 + F 29 + F 0 2 2 0 5.13
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Table 1 (continued)

J B T Q P H No.

k = 3 k = 6

9 + F 27 + F 1 0 3 0 5.14

7 + F 24 + F 6 0 0 1 5.15

7 + F 25 + F 4 1 0 1 5.16

8 + F 26 + F 2 2 0 1 5.17

9 + F 27 + F 0 3 0 1 5.18

8 + F 26 + F 3 0 1 1 5.19

9 + F 27 + F 1 1 1 1 5.20

9 + F 27 + F 2 0 0 2 5.21

10 + F 28 + F 0 1 0 2 5.22

10 + F 28 + F 0 0 2 1 5.23

Acceptable number of basic links

L = kJ + k�J + F
J k = 3 for

planar

k = 6 for

spatial

0 3 + F 6 + F

1 5 + F 11 + F

2 7 + F 16 + F

3 9 + F 21 + F

4 11 + F 26 + F

5 13 + F 31 + F
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the associated linkage, respectively. These symbols of basic links are lined in a row from left to
right according to the decreasing order of their element number at the tope of topology matrix.
Each symbol in the tope row aligns with each column of the topology matrix. Next, all symbols
in the tope row are rotated about a diagonal of the topology matrix to the left column. Each sym-
bol in this column aligns with each row of the topology matrix. Next, the symbols of the similar
basic links are put together. For instance, the symbols of several similar hexagonal basic links are
put together and represented by ‘‘h. . . ’’ or ‘‘hhh. . .’’. Therefore, a formal topology matrix A is
expressed as Eq. (13), and aij is an item in the ith row and the jth column in A.
ð13Þ
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6.1. The characteristics of the topology matrix

Some important characteristics of the topology matrix A are explained as follows.

1. The value of item aij in A is equal to the number of the path between a basic link aligning
with the jth column and another basic link aligning with the ith row. Each path is constituted
by a group of series connected binary links.

2. The topology matrix A is a symmetry matrix with n rows and n columns. Since any type of
basic link does not allow connecting itself by a path, the value of each item at the diagonal is
0. Therefore, the number of the path between a basic link aligning with the ith row and the
same basic link aligning with the ith column is 0, that is aii = 0, i = 1,2, . . .,n.

3. The sum of the values of all items in A is equal to the sum of the products by the number of
various basic links and their element numbers. Since both ends of each path must be con-
nected to two other basic links, the sum of the values of all items is equal to twice of the
sum of the path number m. Thus, a relevant formula is
Xn

i¼1

Xn

j¼1

aij ¼ 3T þ 4Qþ 5P þ 6H ¼ 2m ð14Þ
4. Both the ith row and the ith column in A correspond to the same symbol of the basic link,
and the sum of the items in the ith row is equal to the sum of the items in the ith column.
When both the ith row and the ith column correspond to the symbol t, q, p or h of a basic
link, respectively, the sums of the items in both the ith row and the ith column are 3, 4, 5, or
6, respectively. A relevant formula is
Xn

j¼1

aij ¼
Xn

j¼1

aji ¼

3 ) T
4 ) Q
5 ) P
6 ) H

8>>><
>>>:

ð15Þ
7. Relation and theory of topology matrix and topology embryonic graph

In fact, a topology graph of the mechanism is the simplification of the associated linkage. A
topology embryonic graph is simplification of the associated linkage without binary link. Thus,
numerous topology graphs can be derived from one topology embryonic graph. In the topology
graph, a dot is used to designate a basic link, and a path (curve) is used to designate a group of
serially binary links connected by rotational joints. In order to simplify the type synthesis of mech-
anism, each serially connected binary links in the associated linkage is replaced by a path, and
other type of basic links (such as hexagonal, pentagonal, quaternary, and ternary basic links)
are replaced by dots that simultaneously connect 6, 5, 4 and 3 paths, respectively. Thus a topology
embryonic graph is formed.
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7.1. Determination of homogenous topology embryonic graph

In the topology embryonic graphs, some homogenous graphs may exist, and they must be
determined to avoid synthesizing similar type mechanisms [4,5]. Consequently, two rules for deter-
mining the homogenous topology embryonic graph of associated linkage are put forward and
explained as below.
Rule 1: If the dot and the path in the two topology embryonic graphs remain in accordance

with one by one, then the two topology embryonic graphs are a homogenous one.
Rule 2: In the topology matrix A, if a basic link aligning with the ith row is similar to the one

aligning with the jth row, when all the items of the ith row are simultaneously exchanged with the
corresponding items of the jth row, and all the items of the ith column are simultaneously ex-
changed with the corresponding items of the jth column, then a new matrix A1 is derived, and
the topology embryonic graph of A1 is identical to that of A.

In fact, the result of the rule 2 is equivalent to that of exchanging the two similar basic links in
the topology embryonic graphs. The essential topology embryonic graph of the mechanism, how-
ever, has not been changed. For example, a planar or spatial mechanism with DOF F can be syn-
thesized by using No. 3.2 associated linkage (Q = 1, T = 4 and B = 4 + F) or (Q = 1, T = 4 and
B = 16 + F) in Table 1, respectively. When all the binary links are removed, only one quaternary
link q and four ternary links (t1, t2, t3, t4) remain in the associated linkage. From Eq. (13), a topol-
ogy matrix A and its relative topology embryonic graph are derived, as shown in Fig. 4a. In the
four ternary links (t1, t2, t3, t4) of A, when all the items of the second row are simultaneously ex-
changed with the corresponding items of the third row, and all the items of the second column
are simultaneously exchanged with the corresponding items of the third column, a new topology
matrix A1 and its relative topology embryonic graph are derived, as shown in Fig. 4b. Obviously,
the new topology embryonic graph of A1 is the same as the original one of A.

Based on the topology matrix shown in Fig. 4a, if one quaternary link q and four ternary links
(t1, t3, t2, t4) are connected by eight paths in a different order, such as (q, t1, t2, t3, t4), (q, t2, t1, t3, t4),
(q, t3, t2, t1, t4), (q, t4, t2, t3, t1), (q, t1, t3, t2, t4), (q, t1, t4, t3, t2) and (q, t1, t2, t4, t3), seven different topo-
logy matrices could be obtained, and the topology embryonic graph corresponding to each topo-
logy matrix is an isomeric embryonic graph. Therefore, from Eqs. (13)–(15), several different
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Fig. 4. The four topology matrixes and their topology embryonic graphs for the five basic links Q = 1, T = 4.
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topology matrices and their topology embryonic graphs could be derived from one associated
linkage. These topology embryonic graphs could also be determined whether they are the isomeric
embryonic graph or not.

Based on the two rules above, the processes of solving many the same topology embryonic
graphs could be avoided by using a topology matrix. On the other hand, from some known planar
and spatial mechanisms, some new topology matrices and their topology embryonic graphs could
be derived by using the reverse synthesis approach [1].
7.2. Determination of three different types of topology embryonic graphs

The topology embryonic graphs can be classified into open, closed, and unreasonable topology
embryonic graphs in the light of their characteristics. If an unreasonable topology embryonic
graph is used for type synthesis of mechanism, then the new mechanism may include some redun-
dant parts, and this mechanism must be avoided. In order to identify different type of topology
embryonic graph, some definitions are given and explained, respectively.

Definition 1. In a topology embryonic graph, if all paths from a dot can only be connected with
another dot, then the first dot is an end dot. For instance, dot t1 is an end dot, as shown in Fig. 4c.
A topology embryonic graph with an end dot is defined as an open topology embryonic graph.

Definition 2. A topology embryonic graph without any end dot is a closed topology embryonic
graph.

Definition 3. If a topology embryonic graph can be divided into two island graphs directly or by
removing a path from it, then this topology embryonic graph is an unreasonable one.

Definition 1 can be explained from the characteristic 4 of topology matrix A. When an
item�s value in A is equal to the element number of a basic link aligning this item�s row, all
the other item�s values in this item�s row must be 0. This implies that all paths drawing from
a basic link in the item�s row (an end dot) are connected with another basic link in the item�s col-
umn (another dot). Therefore, the topology embryonic graph derived from this matrix is an open
one.

Definition 2 can be explained by the characteristic 3 of A. When an item�s value in A is less than
the element number of a basic link aligning this item�s row, some other item�s value in this item�s
row must not be 0. This implies that all paths extending from a basic link in this item�s row (a dot)
are connected with some other basic links in this item�s column (some dots). Therefore, the topo-
logy embryonic graph derived from this matrix is a closed one.

Definition 3 can be explained by the characteristic 4 of topology matrix A. When an item�s
value in A is larger than the element number of a basic link in this item�s row, Eq. (15) of topology
matrix A cannot be satisfied. This implies that the topology embryonic graph derived from this
matrix is an unreasonable one.

In summary, if an item�s value in topology matrix A is equal to, less than or larger than the
element number of a basic link aligning this item�s row (or column), respectively, the topology
embryonic graph derived from A is an open, closed or unreasonable topology embryonic graph,
respectively.
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7.3. The simplest open topology embryonic graph

The simplest open topology embryonic graph only includes two end dots and some paths for
connecting the two end dots. Obviously, the configuration of the simplest open topology embry-
onic graphs must be the simplest one, therefore, they are most useful for type synthesis of various
mechanisms.

From an open topology embryonic graph of No. 1.1 associated linkage (T = 2, B = 3 + F) (see
Fig. 5a), a Watt planar mechanism with one-DOF (see Fig. 5d), a Stephenson planar mechanism
with one-DOF [1,2] (see Fig. 5e), and a planar parallel mechanism with 3-DOF (see Fig. 5f) [10,11]
can be synthesized by using the simplest 2 · 2 topology matrix (see Fig. 5b).

From an open topology embryonic graph of No. 1.1 associated linkage (T = 2, B = 6 + F = 9)
(see Fig. 5a), some types of the spatial 3-RPS, 3-UPU, 3-UUP, 3-RSP, 3-RPRU, and 3-RRPR
parallel mechanisms with 3-DOF [9–12] (see Fig. 5g) can be synthesized by using the simplest
2 · 2 topology matrix (see Fig. 5b).

From an open topology embryonic graph of No. 4.10 associated linkage (P = 2,
B = 24 + F = 30) (see Fig. 5h), some types of the spatial 6-SPU, 6-SUP, 6-URPU, and 3/6-SPS
parallel mechanisms with 6-DOF [10] (see Fig. 5k) can be synthesized by using the simplest
2 · 2 topology matrix (see Fig. 5h).

Similarly, from an open topology embryonic graph of No. 2.3 associated linkage (Q = 2,
B = 14 + F = 18), some novel types of the spatial 2UPU/2UPS, 2UUP/2USP, 2RPS/2UPS parallel
mechanisms with 4-DOF can be synthesized by using the simplest 2 · 2 topology matrix. From an
open topology embryonic graph of No. 3.7 associated linkage (P = 2, B = 19 + F = 24), some
types of spatial parallel mechanisms with 5-DOF can be synthesized by using the simplest 2 · 2
topology matrix.
8. Solving an isomeric topology embryonic graph

In the light of each acceptable associated linkage in Table 1, there may be many types of topo-
logy matrices. Thus, how to derive all topology matrices and their corresponding isomeric topo-
logy embryonic graphs from each acceptable associated linkage is a key problem to solve. The
process of deriving isomeric topology embryonic graphs is:
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1. Remove all the binary links from each acceptable associated linkage.
2. Constitute the basic topology matrix of each associated linkage without any binary link.
3. By using symbol ‘‘/’’, separate different symbols of basic links and their corresponding digital

items in the first row of the topology matrix.
4. Based on Eq. (15), the sum of all digital items in the first row must be equal to the element

number of the basic link in the first row. Rearrange all digital items in the first row, and
avoid using any item repeatedly.

5. List all non-repeated digital groups in the first row.
6. From each non-repeated digital group, derive its topology matrix and topology embryonic

graph.
7. Based on the basic characteristics of the topology matrix, if possible, exchange the items in

another row or column and derive a new isomeric topology embryonic graph.
8. Repeat steps 5–7, till all isomeric topology embryonic graphs are derived.
9. Delete unreasonable isomeric topology embryonic graphs.

For example, from the No. 4.4 associated linkage Q = 3, T = 2, B = 6 + F for planar mecha-
nism or Q = 3, T = 2, B = 21 + F for spatial mechanism with different DOF in Table 1, their
isomeric topology embryonic graphs can be derived as below.

1. Remove all binary links from the No. 4.4 associated linkage, thus the three quaternary links
(q1,q2,q3) and the two ternary links (t1, t2) remain in associated linkage.

2. After division by ‘‘/’’, the order of the symbols of the basic links at tope row of topology
matrix A is qqq / t t. All items in the first row of A are also divided into two parts. Based
on Eq. (15), 14 types of non-repeated digital groups are arranged as follows:
ð000=22Þ ð000=31Þ ð001=30Þ ð001=21Þ ð001=30Þ ð001=21Þ ð011=11Þ
ð011=20Þ ð002=20Þ ð02=10Þ ð022=00Þ ð003=10Þ ð031=00Þ ð004=00Þ
3. Based on rule 2 and the non-repeated digital groups above, analyze and determine possible
repeated digital groups.

For instance, both (000/31) and (000/13) are repeated digital groups, since both 1 and 3 in the
different digital groups locate in the same type of subgroup (ternary links t t). However, (000/31),
(003/10) and (031/00) are non-repeat digital groups, since 3 and 1 in the different digital groups
locate in different types of subgroup (quaternary qqq and ternary link t t), respectively. Although
both (000/22) and (004/00) are non-repeated digital groups, two different analysis matrices could
be derived from them. After an exchange of a suitable row and column in each matrix, the two
same matrices could be obtained, and only one of the two same matrices retain. Similarly, another
two same matrices could be obtained from digital groups (000/22) and (031/00), respectively, as
shown in graph 1 and in graph 18 of Fig. 6. In the other case, from (011/1 ), (01/20), (002/20),
(012/10), and (022/00), other five different analysis matrices and their relative topology embry-
onic graphs could be derived.

Based on these non-repeated digital groups and characteristics of topology matrix-graph, 18 dif-
ferent topology matrices and their relative topology embryonic graphs are derived as follows. Based
on Definition 3, it is known that the graphs 2, 3, 4 are unreasonable topology embryonic graphs.
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Fig. 6. The 18 different topology matrices and their isomeric topology embryonic graphs derived from No. 4.4

associated linkage (Q = 3, T = 2, B = 21 + F) for spatial mechanism in Table 1.
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9. Solving topology graphs from a topology embryonic graph

A topology embryonic graph cannot be employed directly in the type synthesis of the mecha-
nism until all removed binary links are rearranged systematically into every path in the topology
embryonic graph. Consequently, many different topology graphs of the isomeric mechanism need
to be derived from the topology embryonic graph. There are many possible ways to rearrange all
removed binary links into this topology embryonic graph. How to rearrange all the removed bin-
ary links is the second key issue for solving the topology graph. The process of solving a topology
graph is explained below

1. In the light of each topology embryonic graph, a table of digital groups is constituted,
as shown in Table 2. All items in the first row of the table retain the same as those at
tope of the topology matrix in Eq. (13), and every symbol of the basic link has a subscript



Table 2

Digital groups for associated linkage (Q = 3, T = 2, B = 21 + F) of spatial mechanism with F = 1

No. q1 q2 q3 t1 t2 Sum

1 2 2 3 3 3 3 1 2 1 3 3 3 2 3 3 2 2 3 44

2 2 2 3 3 3 3 2 1 2 3 3 3 2 3 3 2 1 3 44

3 2 2 3 4 4 3 1 2 1 2 3 3 2 3 2 2 2 3 44

4 2 2 3 3 3 3 1 3 1 2 3 3 2 3 2 2 3 3 44

5 2 2 3 3 3 3 2 3 2 2 3 2 2 3 2 2 3 2 44

6 3 1 3 4 4 3 1 1 1 3 3 3 1 3 3 3 1 3 44

7 3 1 3 2 2 3 1 3 1 3 3 3 1 3 3 3 3 3 44

8 3 1 3 3 3 3 1 2 1 3 3 3 1 3 3 3 2 3 44

9 4 1 3 3 3 3 1 1 1 3 3 3 1 3 3 4 1 3 44

10 4 1 3 3 3 3 1 2 1 2 3 3 1 3 2 4 2 3 44

11 2 1 3 3 3 3 1 3 1 3 3 3 1 3 3 2 3 3 44

12 2 1 3 3 3 3 2 2 2 3 3 3 1 3 3 2 2 3 44

13 2 1 3 3 3 3 2 3 2 3 3 2 1 3 3 2 3 2 44

14 2 1 3 3 3 3 2 2 2 3 4 2 1 4 3 2 2 2 44

15 2 1 3 3 3 3 1 2 1 3 4 3 1 4 3 2 2 3 44

16 1 1 3 4 4 3 1 2 1 3 4 3 1 4 3 1 2 3 44

17 1 1 3 4 4 3 2 2 2 3 4 2 1 4 3 1 2 2 44

18 1 1 4 4 4 4 1 2 1 3 4 2 1 4 3 1 2 2 44

19 1 1 4 3 3 4 1 2 1 3 5 2 1 5 3 1 2 2 44

20 1 1 3 3 3 3 1 2 1 3 5 3 1 5 3 1 2 3 44

21 4 0 3 3 3 3 1 2 1 3 3 3 0 3 3 4 2 3 44

22 4 0 3 3 3 3 2 2 2 3 3 2 0 3 3 4 2 2 44

23 3 0 3 3 3 3 2 2 2 3 3 3 0 3 3 3 2 3 44

24 3 0 3 3 3 3 1 2 1 3 4 3 0 4 3 3 2 3 44

25 3 0 3 3 3 3 1 3 1 2 4 3 0 4 2 3 3 3 44
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to distinguish it from other similar basic links. From the second row to the last row of the
table, each basic link corresponds to a column, and each element of the basic link corre-
sponds to a sub-column of its column. The number of columns indicates the number of basic
links without binary link. The number of sub-columns indicates twice of the number of paths
in the topology embryonic graph. For example, there are five columns for five basic links
(q1,q2,q3, t1, t2), and 18 sub-columns for four elements of (q1,q2,q3) and three elements of
(t1, t2) in Table 2.

2. An item�s value in each sub-column of the column equals to the number of series con-
nected binary between the element of a basic link in the same column and the element of
a basic link in another column. Since each binary provides two elements for constituting
the isomeric topology graph, the sum of item value of each row must be twice of the num-
ber of the binary. A digital group in each row corresponds to a type of isomeric topology
graph.

3. Divide each topology embryonic graph into several non-repeated closed loops. Based on the
third and fourth conclusions in Section 5, the number of links in each closed loop of the
topology graph must be larger than or equal to 3 + F for the planar mechanism with
DOF F and 6 + F for the spatial mechanism with DOF F, respectively.
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Next, an example is illustrated to derive the topology graphs from No. 4.4 associated linkage
(Q = 3, T = 2, B = 21 + F) in Table 1. From its topology embryonic graph 5 (see Fig. 6), numerous
isomeric topology graphs of the spatial mechanism with F = 1 can be constituted. Here, only 25
non-repeated digital groups are listed in Table 2, and their isomeric topology graphs correspond-
ing to those digital groups are constituted, as shown in Fig. 7.

If F = 1 + k (k = 1,2,3, . . .), based on the conclusion 1 in Section 5, only rearrange k binary
links into each topology graph above, then the topology graph for the spatial mechanism with
associated linkage (Q = 3, T = 2, B = 21 + F, and F = 1 + k) can be constituted.

1 3 4 5
10. Conclusions

By using the systematic linkage technique, numerous acceptable associated linkages of unified
planar–spatial mechanism can be derived for type synthesis of unified planar–spatial mechanism.
From the acceptable associated linkage and by using the approach of topology matrix-graph,
numerous isomeric topology embryonic graphs of a mechanism can be derived. After that, by
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using digital group approach, many isomeric topology graphs can be derived from the topology
embryonic graph. Some important conclusions are obtained as below.

1. In each type of acceptable associated linkage of unified planar–spatial mechanism, different
DOF can only cause a change in the number of binary link, but does not influence upon the
other types of basic links. The number of binary links for each acceptable associated linkage
increases or decreases along with the increase or decrease of value of DOF.

2. If both a planar associated linkage and a spatial associated linkage with the same complexity
J and DOF include the same group of basic links (such as ternary, quaternary, pentagonal,
or hexagonal links), then the difference between the number of binary links in the planar
associated linkage and that in the spatial associated linkage retain 3(1 + J).

3. The simplest associated linkage for different DOF only include the binary links, and the
number of binary links is B = 3 + F for planar mechanism, and B = 6 + F for spatial
mechanism.

4. In the case of J = 1, the pentagonal and hexagonal links are not needed for type synthesis of
the unified planar and spatial mechanisms for different F values.

5. In the topology matrix A, if a basic link aligning with the ith row is similar to the one align-
ing with the jth row, when all the items of the ith row are simultaneously exchanged with the
corresponding items of the jth row, and all the items of the ith column are simultaneously
exchanged with the corresponding items of the j th column, then a new matrix A1 is derived,
and the topology embryonic graph of A1 is identical to that of A.

6. If an item�s value in topology matrix A is equal to, less than or larger than the element num-
ber of a basic link in the item�s row (or column), respectively, then the topology embryonic
graph derived from topology matrix is an open, closed or unreasonable topology embryonic
graph, respectively.
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