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a b s t r a c t

In 1997, Kohno et al. [Toshiyuki Kohno, Hisashi Kotakemori, Hiroshi Niki, Improving
the modified Gauss–Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997)
113–123] proved that the convergence rate of the preconditioned Gauss–Seidel method
for irreducibly diagonally dominant Z-matrices with a preconditioner I + Sα is superior to
that of the basic iterative method. In this paper, we present a new preconditioner I + Kβ

which is different from the preconditioner given by Kohno et al. [Toshiyuki Kohno, Hisashi
Kotakemori, Hiroshi Niki, Improving the modified Gauss–Seidel method for Z-matrices,
Linear Algebra Appl. 267 (1997) 113–123] and prove the convergence theory about two
preconditioned iterative methods when the coefficient matrix is an H-matrix. Meanwhile,
two novel sufficient conditions for guaranteeing the convergence of the preconditioned
iterative methods are given.

Crown Copyright© 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following linear system

Ax = b, (1)

where A is a complex n × n matrix, x and b are n-dimensional vectors. For any splitting, A = M − N with the nonsingular
matrixM , the basic iterative method for solving the linear system (1) is as follows:

xi+1
= M−1Nxi + M−1b i = 0, 1, 2, . . . .

Some techniques of preconditioningwhich improve the rate of convergence of these iterativemethods have been developed.
Let us consider a preconditioned system of (1)

PAx = Pb, (2)

where P is a nonsingular matrix. The corresponding basic iterative method is given in general by

xi+1
= M−1

P NPxi + M−1
P Pb i = 0, 1, 2, . . . ,

where PA = MP − NP is a splitting of PA.
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In 1997, Kohno et al. [1] proposed a general method for improving the preconditioned Gauss–Seidel method with the
preconditioned matrix P = I + Sα , if A is a nonsingular diagonally dominant Z-matrix with some conditions, where

Sα =


0 −α1a1,2 0 · · · 0
0 0 −α2a2,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −αn−1an−1,n
0 0 0 · · · 0

 .

They showed numerically that the preconditioned Gauss–Seidel method is superior to the original iterative method if the
parameters αi ≥ 0 (i = 1, 2, . . . , n − 1) are chosen appropriately.

Many other researchers have considered left preconditioners applied to linear system (1) thatmade the associated Jacobi
and Gauss–Seidel methods converge faster than the original ones. Suchmodifications or improvements based on prechosen
preconditioners were considered by Milaszewicz [2] who based his ideas on previous ones (see, e.g., [3]), by Gunawardena
et al. [4], and very recently by Li and Sun [5] who extended the class of matrices considered in [1] and by other researchers
(see, e.g., [6–12]), and many results for more general preconditioned iterative methods were obtained.

In this paper, besides the above preconditioned method, we will consider the following preconditioned linear system

Aβx = bβ , (3)

where Aβ = (I + Kβ)A and bβ = (I + Kβ)bwith

Kβ =


0 0 · · · 0 0

−β1a2,1 0 · · · 0 0
0 −β2a3,2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −βn−1an,n−1 0

 ,

where βi ≥ 0 (i = 1, 2, . . . , n−1). Our work gives the convergence analysis of the above two preconditioned Gauss–Seidel
methods for the case when a coefficient matrix A is an H-matrix and obtains two sufficient conditions for guaranteeing the
convergence of two preconditioned iterative methods.

2. Preliminaries

Without loss of generality, let the matrix A of the linear system (1) be A = I − L− U , where I is an identity matrix, L and
U are strictly lower and upper triangular matrices obtained from A, respectively.

We assume ai,i+1 6= 0, considering the preconditioner P = I + Sα , then we have

Aα = (I + Sα)A = I − L − SαL − (U − Sα + SαU)

bα = (I + Sα)b,

whenever

αiai,i+1ai+1,i 6= 1 for i = 1, 2, . . . , n − 1,

then (I − L − SαL)−1 exists. Hence it is possible to define the Gauss–Seidel iteration matrix for Aα , namely

Tα = (I − L − SαL)−1(U − Sα + SαU). (4)

Similarly, if ai,i−1 6= 0, considering the preconditioner P = I + Kβ , then we have

Aβ = (I + Kβ)A = I − L + Kβ − KβL − (U + KβU)

bβ = (I + Kβ)b,

and define the Gauss–Seidel iteration matrix for Aβ , namely

Tβ = (I − L + Kβ − KβL)−1(U + KβU). (5)

We first recall the following: A real vector x = (x1, x2, . . . , xn)T is called nonnegative(positive) and denoted by x ≥

0 (x > 0), if xi ≥ 0 (xi > 0) for all i. Similarly, a real matrix A = (ai,j) is called nonnegative and denoted by A ≥ 0 (A > 0) if
ai,j ≥ 0 (ai,j > 0) for all i, j, the absolute value of A is denoted by |A| = (|ai,j|).

Definition 2.1 ([13]). A real matrix A is called an M-matrix if A = sI − B, B ≥ 0 and s > ρ(B), where ρ(B) denotes the
spectral radius of B.



2050 Q. Liu et al. / Computers and Mathematics with Applications 56 (2008) 2048–2053

Definition 2.2 ([13]). A complexmatrix A = (ai,j) is anH-matrix, if its comparisonmatrix 〈A〉 = (āi,j) is anM-matrix, where
āi,j is

āi,i = |ai,i|, āi,j = −|ai,j|, i 6= j.

Definition 2.3 ([14]). The splitting A = M − N is called an H-splitting if 〈M〉 − |N| is anM-matrix.

Lemma 2.1 ([14]). Let A = M − N be a splitting. If it is an H-splitting, then A and M are H-matrices and ρ(M−1N) ≤

ρ(〈M〉
−1

|N|) < 1.

Lemma 2.2 ([15]). Let A have nonpositive off-diagonal entries. Then a real matrix A is anM-matrix if and only if there exists some
positive vector u = (u1, . . . , un)

T > 0 such that Au > 0.

3. Convergence results

Theorem 3.1. Let A be an H-matrix with unit diagonal elements, Aα = (I + Sα)A = Mα − Nα , Mα = I − L − SαL and
Nα = U−Sα+SαU. Let u = (u1, . . . , un)

T be a positive vector such that 〈A〉u > 0. Assume that ai,i+1 6= 0 for i = 1, 2, . . . , n−1,
and

α′

i =

ui −
i−1∑
j=1

|ai,j|uj −
n∑

j=i+2
|ai,j|uj + |ai,i+1|ui+1

|ai,i+1|
n∑

j=1
|ai+1,j|uj

,

then α′

i > 1 for i = 1, 2, . . . , n − 1 and for 0 ≤ αi < α′

i , the splitting Aα = Mα − Nα is an H-splitting and ρ(M−1
α Nα) < 1 so

that the iteration (2) converges to the solution of (1).

Proof. By assumption, let a positive vector u > 0 satisfy 〈A〉u > 0, from the definition of 〈A〉, we have

ui −

n∑
j=1
j6=i

|ai,j|uj > 0 for i = 1, 2, . . . , n − 1.

Therefore, we have

ui −

i−1∑
j=1

|ai,j|uj −

n∑
j=i+2

|ai,j|uj + |ai,i+1|ui+1 − |ai,i+1|

n∑
j=1

|ai+1,j|uj

= ui −

n∑
j=1
j6=i

|ai,j|uj + |ai,i+1|

ui+1 −

n∑
j=1

j6=i+1

|ai+1,j|uj

 for i = 1, 2, . . . , n − 1.

Observe that ui −
∑n

j=1
j6=i

|ai,j|uj > 0 and ui+1 −
∑n

j=1
j6=i+1

|ai+1,j|uj > 0, then we have

ui −

i−1∑
j=1

|ai,j|uj −

n∑
j=i+2

|ai,j|uj + |ai,i+1|ui+1 − |ai,i+1|

n∑
j=1

|ai+1,j|uj > 0,

and

ui −

i−1∑
j=1

|ai,j|uj −

n∑
j=i+2

|ai,j|uj + |ai,i+1|ui+1 > |ai,i+1|

n∑
j=1

|ai+1,j|uj > 0 for i = 1, 2, . . . , n − 1.

This implies

α′

i =

ui −
i−1∑
j=1

|ai,j|uj −
n∑

j=i+2
|ai,j|uj + |ai,i+1|ui+1

|ai,i+1|
n∑

j=1
|ai+1,j|uj

> 1 for i = 1, 2, . . . , n − 1.

Hence, α′

i > 1 for i = 1, 2, . . . , n − 1. �
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In order to prove that ρ(M−1
α Nα) < 1, we first show that 〈Mα〉 − |Nα| is an M-matrix. Let [(〈Mα〉 − |Nα|)u]i be the ith

element in the vector (〈Mα〉 − |Nα|)u for i = 1, 2, . . . , n − 1. Then we have

[(〈Mα〉 − |Nα|)u]i = |1 − αiai,i+1ai+1,i|ui −

i−1∑
j=1

|ai,j − αiai,i+1ai+1,j|uj −

n∑
j=i+1

|ai,j − αiai,i+1ai+1,j|uj

≥ ui − αi|ai,i+1ai+1,i|ui −

i−1∑
j=1

|ai,j|uj − αi

i−1∑
j=1

|ai,i+1ai+1,j|uj

−

n∑
j=i+2

|ai,j|uj − αi

n∑
j=i+2

|ai,i+1ai+1,j|uj − |1 − αi||ai,i+1|ui+1, (6)

and

[(〈Mα〉 − |Nα|)u]n = un −

n∑
j=1
j6=n

|an,j|uj > 0. (7)

If 0 ≤ αi ≤ 1 for i = 1, 2, . . . , n − 1, then we have

[(〈Mα〉 − |Nα|)u]i ≥ ui − αi|ai,i+1ai+1,i|ui −

i−1∑
j=1

|ai,j|uj − αi

i−1∑
j=1

|ai,i+1ai+1,j|uj

−

n∑
j=i+2

|ai,j|uj − αi

n∑
j=i+2

|ai,i+1ai+1,j|uj − (1 − αi)|ai,i+1|ui+1

= ui −

n∑
j=1
j6=i

|ai,j|uj + αi|ai,i+1|ui+1 − αi|ai,i+1|

n∑
j=1

j6=i+1

|ai+1,j|uj

=

ui −

n∑
j=1
j6=i

|ai,j|uj

 + αi|ai,i+1|

ui+1 −

n∑
j=1

j6=i+1

|ai+1,j|uj

 . (8)

Since ui −
∑n

j=1
j6=i

|ai,j|uj > 0 and ui+1 −
∑n

j=1
j6=i+1

|ai+1,j|uj > 0, we have

[(〈Mα〉 − |Nα|)u]i > 0 for i = 1, 2, . . . , n − 1. (9)
If 1 < αi < α′

i for i = 1, 2, . . . , n − 1, from (6) and the definition of α′

i , then we have

[(〈Mα〉 − |Nα|)u]i ≥ ui − αi|ai,i+1ai+1,i|ui −

i−1∑
j=1

|ai,j|uj − αi

i−1∑
j=1

|ai,i+1ai+1,j|uj

−

n∑
j=i+2

|ai,j|uj − αi

n∑
j=i+2

|ai,i+1ai+1,j|uj − (αi − 1)|ai,i+1|ui+1

= ui −

i−1∑
j=1

|ai,j|uj −

n∑
j=i+2

|ai,j|uj + |ai,i+1|ui+1 − αi|ai,i+1|

n∑
j=1

|ai+1,j|uj

> 0. (10)
Therefore, from (7) to (10), we have

(〈Mα〉 − |Nα|)u > 0 for 0 ≤ αi < α′

i .

By Lemma 2.2, 〈Mα〉 − |Nα| is an M-matrix for 0 ≤ αi < α′

i (i = 1, 2, . . . , n − 1). From Definition 2.3, Aα = Mα − Nα is an
H-splitting for 0 ≤ αi < α′

i (i = 1, 2, . . . , n − 1). Hence, according to Lemma 2.1, we have that Aα and Mα are H-matrices
and ρ(M−1

α Nα) ≤ ρ(〈Mα〉
−1

|Nα|) < 1 for 0 ≤ αi < α′

i (i = 1, 2, . . . , n − 1).

Theorem 3.2. Let A be an H-matrix with unit diagonal elements, Aβ = (I + Kβ)A = Mβ − Nβ , Mβ = I − L + Kβ − KβL and
Nβ = U + KβU. Let v = (v1, . . . , vn)

T be a positive vector such that 〈A〉v > 0. Assume that ai,i−1 6= 0 for i = 2, . . . , n, and

β ′

i =

vi −
i−2∑
j=1

|ai,j|vj −
n∑

j=i+1
|ai,j|vj + |ai,i−1|vi−1

|ai,i−1|
n∑

j=1
|ai−1,j|vj

,
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then β ′

i > 1 for i = 2, . . . , n and for 0 ≤ βi < β ′

i , the splitting Aβ = Mβ − Nβ is an H-splitting and ρ(M−1
β Nβ) < 1 so that the

iteration (2) converges to the solution of (1).

Proof. From the conditions of the theorem, we know there exists a positive vector v > 0 satisfying 〈A〉u > 0, then we have

vi −

n∑
j=1
j6=i

|ai,j|vj > 0 for i = 2, . . . , n.

Therefore, we have

vi −

i−2∑
j=1

|ai,j|vj −

n∑
j=i+1

|ai,j|vj + |ai,i−1|vi−1 − |ai,i−1|

n∑
j=1

|ai−1,j|vj

= vi −

n∑
j=1
j6=i

|ai,j|vj + |ai,i−1|

vi−1 −

n∑
j=1

j6=i−1

|ai−1,j|vj

 for i = 2, . . . , n.

Since vi −
∑n

j=1
j6=i

|ai,j|vj > 0 and vi−1 −
∑n

j=1
j6=i−1

|ai−1,j|vj > 0, we have

vi −

i−2∑
j=1

|ai,j|vj −

n∑
j=i+1

|ai,j|vj + |ai,i−1|vi−1 − |ai,i−1|

n∑
j=1

|ai−1,j|vj > 0.

So it is obvious to obtain

vi −

i−2∑
j=1

|ai,j|vj −

n∑
j=i+1

|ai,j|vj + |ai,i−1|vi−1 > |ai,i−1|

n∑
j=1

|ai−1,j|vj > 0 for i = 2, . . . , n.

This implies

β ′

i =

vi −
i−2∑
j=1

|ai,j|vj −
n∑

j=i+1
|ai,j|vj + |ai,i−1|vi−1

|ai,i−1|
n∑

j=1
|ai−1,j|vj

> 1 for i = 2, . . . , n.

Namely, β ′

i > 1 for i = 2, . . . , n. �

In order to prove that ρ(M−1
β Nβ) < 1, we first show that 〈Mβ〉 − |Nβ | is an M-matrix, let [(〈Mβ〉 − |Nβ |)v]i be the ith

element in the vector (〈Mβ〉 − |Nβ |)v for i = 2, . . . , n. Then we have

[(〈Mβ〉 − |Nβ |)v]i = vi − βi−1|ai,i−1ai−1,i|vi −

i−1∑
j=1

|ai,j − βi−1ai,i−1ai−1,j|vj −

n∑
j=i+1

|ai,j − βi−1ai,i−1ai−1,j|vj

≥ vi − βi−1|ai,i−1ai−1,i|vi −

i−2∑
j=1

|ai,j|vj − βi−1

i−2∑
j=1

|ai,i−1ai−1,j|vj

−

n∑
j=i+1

|ai,j|vj − βi−1

n∑
j=i+1

|ai,i−1ai−1,j|vj − |1 − βi−1||ai,i−1|vi−1, (11)

and

[(〈Mβ〉 − |Nβ |)v]1 = v1 −

n∑
j=2

|a1,j|vj > 0. (12)

If 0 ≤ βi−1 ≤ 1 for i = 2, . . . , n, then we have

[(〈Mβ〉 − |Nβ |)v]i ≥ vi − βi−1|ai,i−1ai−1,i|vi −

i−2∑
j=1

|ai,j|vj − βi−1

i−2∑
j=1

|ai,i−1ai−1,j|vj

−

n∑
j=i+1

|ai,j|vj − βi−1

n∑
j=i+1

|ai,i−1ai−1,j|vj − (1 − βi−1)|ai,i−1|vi−1
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= vi −

n∑
j=1
j6=i

|ai,j|vj + βi−1|ai,i−1|vi−1 − βi−1|ai,i−1|

n∑
j=1

j6=i−1

|ai−1,j|vj

=

vi −

n∑
j=1
j6=i

|ai,j|vj

 + βi−1|ai,i−1|

vi−1 −

n∑
j=1

j6=i−1

|ai−1,j|vj

 . (13)

Observe that vi −
∑n

j=1
j6=i

|ai,j|vj > 0 and vi−1 −
∑n

j=1
j6=i−1

|ai−1,j|vj > 0, then we have

[(〈Mβ〉 − |Nβ |)v]i > 0 for i = 2, 3, . . . , n. (14)

If 1 < βi−1 < β ′

i−1 for i = 2, . . . , n, from (11) and the definition of β ′

i−1, then we have

[(〈Mβ〉 − |Nβ |)v]i ≥ vi − βi−1|ai,i−1ai−1,i|vi −

i−2∑
j=1

|ai,j|vj − βi−1

i−2∑
j=1

|ai,i−1ai−1,j|vj

−

n∑
j=i+1

|ai,j|vj − βi−1

n∑
j=i+1

|ai,i−1ai−1,j|vj − (βi−1 − 1)|ai,i−1|vi−1

= vi −

i−2∑
j=1

|ai,j|vj −

n∑
j=i+1

|ai,j|vj + |ai,i−1|vi−1 − βi−1|ai,i−1|

n∑
j=1

|ai−1,j|vj

> 0. (15)

Therefore, from (12) to (15), we have

(〈Mβ〉 − |Nβ |)v > 0 for 0 ≤ βi−1 < β ′

i−1.

By Lemma 2.2, 〈Mβ〉 − |Nβ | is an M- matrix for 0 ≤ βi−1 < β ′

i−1 (i = 2, . . . , n). From Definition 2.3, Aβ = Mβ − Nβ is
an H-splitting for 0 ≤ βi−1 < β ′

i−1 (i = 2, . . . , n). Hence, from Lemma 2.1, we have that Aβ and Mβ are H-matrices and
ρ(M−1

β Nβ) ≤ ρ(〈Mβ〉
−1

|Nβ |) < 1 for 0 ≤ βi−1 < β ′

i−1 (i = 2, . . . , n).

Remark 3.1. FromTheorems 3.1 and 3.2,we observe that the twopreconditioned iterativemethods converge to the solution
of the linear system (1) if the coefficient matrix A which is an H-matrix satisfies the conditions of the corresponding
theorems. Hence the two theorems provide sufficient conditions for guaranteeing the convergence of the preconditioned
iterative methods.
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