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Abstract – This paper proposes a new method which offers a
high level of synchronization between a source, which is pri-
marily digital, that generates a test signal and the ADC that
will sample it. By using using a single clock to control the
source, a clock divider may be used to derive a clock that will
trigger an ADC at the appropriate times to produce a coher-
ently sampled data set. Thus the timing of the waveform and
the ADC will be accurately synchronized; moreover, since test
time is a valuable commodity, a predictable number of clock
cycles can be issued in order to generate a sampled data set.
A computer simulation is given which fully characterizes the
theoretical aspects of this paper. In addition, selected labora-
tory measurements are also given for discussion.

Keywords – A/D conversion, CORDIC, coherent

I. INTRODUCTION

The problem of establishing a reliable source for vari-
ous aspects of mixed signal testing has been prevalent for
many years. One particular application in which a well
defined clock source is important to synchronize a signal
under test and it’s accompanying ADC strobe is beat fre-
quency testing [1],[2]. The problem typically stems from
the use of analog methods to generate sinusoidal test sig-
nals. Digital frequency synthesizers offer advantages over
analog methods since they possess lower phase noise, finer
frequency resolution, and the ability to rapidly change the
output frequency [3],[4]. Moreover, more sophisticated al-
gorithms may be implemented digitally which would be
very difficult to achieve with analog circuits [5].

To generate sinusoids, some authors choose to store the
values of a sinusoid in ROM (read only memory), but
the spectral purity depends on the number of stored val-
ues. Increasing the number of stored values, increases
the power consumption and space requirements [6]. This
method also suffers from the fact that addressing the
ROM at high clock rates is troublesome [7]. Other meth-
ods to generate sinusoids digitally have also been devel-
oped. Fliege [8] proposed a digital oscillator, but one of
the main limitations of this approach is the requirement

frequent initialization. In his classic paper, Volder first in-
troduced CORDIC algorithm in 1959 [9]. Since then, the
CORDIC algorithm has proven to be a very reliable com-
putational method in the area of digital computer arith-
metic.

In this paper, a waveform generation technique is pro-
posed that takes advantage of a CORDIC processor. This
strategy is ideally suited for this application since the ac-
curacy of the signal is a function of the number of digi-
tal building blocks, and not a function of analog devices
such as capacitors, op-amps, etc. These items are known
to have electrical properties that vary over time. The
CORDIC processor only relies on delay elements, digital
addition/subtraction circuits, and bit shifters in order to
generate the sinusoidal signals [10][11].

II. CORDIC PROCESSOR DESIGN

To develop a digital system that will serve as a device
that will serve as a tone generator, vector rotations will
be considered first. Leithold [12] has suggested rotating
the coordinates of an axis by α degrees using Equations
(1) and (2), moreover, making use of this axis rotation
has also served as a basis for digital filter design [13].
x′ represents the rotated x-coordinate, y′ represents the
rotated y-coordinate.

x′ = x cos(α) − y sin(α) (1)

y′ = x sin(α) + y cos(α) (2)

Thus the vector, �v, may be rotated by an arbitrary an-
gle, and the new coordinates of �v′ are summarized by the
transformation

[
x′

y′

]
=

[
cos(α) −sin(α)
sin(α) cos(α)

][
x
y

]
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Fig. 1. Rotating a vector, �v, by α degrees in the counter-clockwise
direction to produce �v′

= cos(α)
[

1 −tan(α)
tan(α) 1

][
x
y

]
(3)

By imposing the condition that tan(α) = 2−i, then multi-
plication of x and y by tan(α) reduces to a multiplierless
hardware bit shift and add operation. Thus rotating a
vector by tan−1(2−i) degrees may accomplished in an ef-
ficient manner. Subsequently, α = tan−1(2−i), and the
constant cos(tan−1(2−i)) may be stored in a lookup-table
or hardwired. By allowing the variable i to assume integer
values, α also assumes particular values. Some examples
are as follows: i = 0, α = 45◦; i = 1, α = 26.5651◦; i = 2,
α = 14.0362◦; i = 3, α = 7.1250◦; i = 4, α = 3.5763◦; etc.

Given a vector which is at an arbitrary angle, for instance
θ = 60◦, as depicted in Figure 2, it is desired to compute
sin(θ). The first step is to successively rotate a vector in
decreasingly small steps so that it will lie in the direction
of the vector at angle θ. A vector, which initially approxi-
mates the vector pointing in the direction of the vector at
angle θ, is assigned to lie on the x axis. Since a decreas-
ing series of angles required to ensure convergence [10], the
vector is rotated by −90◦, as indicated by rotation “1” on
the graph. Following this, the vector may be rotated by
increments of ± tan−1(2−i) degrees. Choosing + or − is
governed by whether or not the rotated vector is getting
closer to the vector pointing in the θ direction. Therefore,
the vector is rotated by +45◦, then by −26.5651◦, then
by +14.0362◦, then by −7.1250◦, then by +3.5763◦. After
these five rotations, the approximating vector lies at an
angle of 61.0776◦, which is reasonably close to θ = 60◦ for
only five iterations.

The ability to rotate a vector is the basis of the CORDIC
(COordinate Rotation Digital Computer) algorithm pro-
posed by Volder [9] which can be used to compute trigono-
metric functions. Thus by scaling y′ by cos(tan−1(2−i))
each time a rotation occurs, then an approximation for
sin(θ) occurs.

x

2

y

3

1θ

Fig. 2. Successive rotations of a vector are employed in the
determination of sin(θ). In this example, 3 rotations are depicted,
but several more are needed for greater accuracy in the iterative

process.

From the above discussion, it is possible to iteratively
calculate the sine of an angle. The following equations
describe this procedure, provided that y′

i+1 is scaled by
dividing by cos(tan−1(2−i)), for each iteration i. Follow-
ing an initial rotation of −90◦, the recursive equations for
i = 1,2, ...,N are

x′
i+1 = x′

i − y′
i · di · 2−i (4)

y′
i+1 = y′

i + x′
i · di · 2−i (5)

wi+1 = wi − di · tan−1(2−i) (6)

di = sign(wi) =
{

+1 , wi ≥ 0
−1 , wi < 0 . (7)

A signal flow graph can be used to illustrate the rotation
of each iteration. This particular structure is known as
a pipelined architecture [14],[10] and is illustrated in Fig-
ure 3. Each stage of the unit will produce a particular
amount of rotation, according to tan−1(2−i). Moreover,
the hardware is strictly comprised of digital elements.

Thus in order to generate a sinusoidal signal, θ is repeat-
edly from from 0 to π, so that repeating sinusoid can be
produced. This can be expedited with a register. By
initializing the contents of an M bit register to contain
exclusively zeros and by incrementally adding W to this
register in a step-wise fashion, a periodic pattern can be
created. It is assumed that the carry out bit of the most
significant bit is discarded. As an example, suppose that
an M = 3 bit register which is initialized to 000 is given.
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Fig. 3. Signal Flow Graph of the CORDIC Processor

By repeatedly adding W = 001 to the contents of the reg-
ister, it will cycle through all of its other (23 − 1) combi-
nations and return to 000. Thus by appropriately scaling
the contents of the register, θ will increment from 0 to π,
and repeat continuously. As depicted in Figure 4, upon
every increment of the clock, “clk”, the output of a regis-
ter can be used to provide an updated θ to the CORDIC
processor.

clk

register
adder

sin
Processor
CORDIC

W

Amplitude

θ

Fig. 4. CORDIC Processor Employed to Produce a Sinusoid

III. APPLICATIONS TO MIXED-SIGNAL TEST

The results section of this paper is organized as follows.
Subsection A provides background information on how
the theory of the proposed technique, which is supported
by a simulation. While Subsection B discusses its appli-
cation in the laboratory.

A. Theory and Simulation

As reported in the current liturature, the coherence
property of a sampled data set is of prime importance
[15][16][17]. By definition, coherency is an important
property that eliminates additional unwanted discontinu-
ities in a data set which introduce unwanted artifacts in
the signal’s spectral content. Thus, coherence in a sam-
pled waveform is preferred in order to use the Discrete
Fast Fourier Transform (DFFT) which is commonly used
for data analysis. As noted by Mielke [18], in order to
have a coherently sampled waveform, the frequency of
the incoming sinusoid and the sampling speed must be
accurately set according to

Lc

Ls
=

ft

fadc
(8)

where Lc is the number of cycles of an analog signal un-
der test whose frequency is ft Hertz and Ls is the number
of samples taken at an analog-to-digital frequency of fadc

Hertz. In addition to (8), the variables Lc and Ls must be
integers. This paper proposes to satisfy these constraints
by scaling the master clock speed, fclk, appropriately, as
depicted in Figure 5. Since the frequency of the CORDIC
processor’s output depends on frequency of “clk”, a pre-
dictable ft and fadc can be derived from fclk which will
satisfy (8).
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Fig. 5. By Appropriately Establishing a Network of Clock Signals,
a CORDIC Processor can be Applied to Mixed-Signal A/D

Conversion

The variable β was established to represent a clock divider
that will ensure the sampling speed of the ADC is slightly
less that the speed of the analog signal to be sampled.
(Since undersampling is employed, it is assumed that the
analog signal under test is periodic over Lc cycles). Thus
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β = 1− p2−M . (9)

The integer p lies in the range of 1≤ p ≤ (1+2M−1), the
upper bound is established since more than two samples
are required to reconstruct an analog signal.

To convince the reader that this approach to undersam-
pled A/D conversion works, the following simulation ex-
periment is considered. The variables M , W , and N were
established in an attempt to produce a spectrally pure
sinusoid. Thus, M was assigned to be 8, and it was in-
cremented by W = 00000001. N was set to 9, which pro-
duced a fine resolution of tan−1(2−9) = 0.1119◦ within the
CORDIC processor. The variable p was set to 16, which
would mandate that 16 cycles of the sinusoid to be gener-
ated to complete the sampling process. Figure 6 depicts
the output of the sinusoidal generator, with several sam-
ples. To create Ls = 16 samples for a 16 point DFFT,
precisely NLs2M = 36864 clock cycles were employed to
create a perfectly coherent sample set, as depicted in Fig-
ure 7. It was assumed that each of the N rotations require
one clock cycle. The result also assume that a full A/D
conversion occurs at each strobe of the A/D converter. It
is also assumed that the ADC conversion time is longer
than the DAC settling time. It should be noted that the
LP filter in Figure 5 is typically a source of a delay (linear
distortion), but is reduced to zero in this simulation.

0 1 2 3 4 5 6 7 8

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

Time

Fig. 6. Several Cycles of an Analog Signal with Accompanying
Sample Points.

B. Laboratory Measurements

To illustrate how the conversion strategy works, an exam-
ple has been prepared which employs a 16-bit fixed point
Texas Instruments TMS320C6201 digital signal processor
(DSP). Figure 8 depicts several cycles of the output of
the CORDIC processor in conjunction with a 16 bit DAC
and passive LP filter. The variables M , W , and N were
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Fig. 7. The Full Cycle Set of Samples

established to be the same as they were in the previously
mentioned simulation.

Fig. 8. Sinewave Generation via the CORDIC Processor

Figure 9 depicts a zoom-in view of a section of the
sinewave as pictured in Figure 8. The DSP writes discrete
data to the DAC, while the LP filter smoothly connects
them. It should be noted that the LP filter in Figure 5 is
a source of a delay (linear distortion), as well as any delay
that is produced by the DUT. Therefore, this is accounted
for by slightly delaying the strobe time of the DAC.

Fig. 9. Zoom-in view of the Sinusoidal Output following the LP
Filter
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IV. CONCLUSIONS

An analog-to-digital conversion technique was developed
which employs a CORDIC processor. By doing this, it
has been shown that a coherently sampled signal may be
produced. Moreover, one of the main advantages of the
new technique is that it only requires adders, multipliers,
and registers to generate the sinusoidal signal. The du-
ration of which may be precisely controlled by a digital
clock. Since it is a well known fact that the amount of test
time devoted to a DUT is critical, a predictable number
of clock cycles may be issued to complete the sampling
process. To our knowledge, this is the first time that such
an all digital CORDIC processor has been applied in the
area of mixed-signal testing.
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