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a b s t r a c t

Spatial pyramids have been successfully applied to incorporating spatial information into bag-of-words

based image representation. However, a major drawback is that it leads to high dimensional image

representations. In this paper, we present a novel framework for obtaining compact pyramid

representation. First, we investigate the usage of the divisive information theoretic feature clustering

(DITC) algorithm in creating a compact pyramid representation. In many cases this method allows us to

reduce the size of a high dimensional pyramid representation up to an order of magnitude with little

or no loss in accuracy. Furthermore, comparison to clustering based on agglomerative information

bottleneck (AIB) shows that our method obtains superior results at significantly lower computational

costs. Moreover, we investigate the optimal combination of multiple features in the context of our

compact pyramid representation. Finally, experiments show that the method can obtain state-of-the-

art results on several challenging data sets.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Bag-of-words based image representation is one of the most
successful approaches for object and scene recognition [1–10].
The first stage in the method involves selecting key points or
regions followed by a suitable representation of these key points
using robust local descriptors, like SIFT [11]. The descriptors are
then vector quantized into a visual vocabulary, after which an
image is represented as a histogram over visual words. The final
representation lacks any spatial information since the location of the
local features is ignored. This is generally considered as the foremost
shortcoming of the standard bag-of-words representation.

Including spatial information into bag-of-words has therefore
received considerable attention. The spatial pyramid scheme
proposed by [12] is a simple and computationally efficient exten-
sion of an order-less bag-of-words image representation, as it
captures the spatial information in such a way that traditional
histogram-based image representations do not. This technique
works by representing an image using multi-resolution histograms,
which are obtained by repeatedly sub-dividing an image into
increasingly finer sub-regions. The final representation is a con-
catenation of the histograms of all the regions. Many applications,
such as classification and detection, [13–17] benefit from the
spatial pyramid representation.
ll rights reserved.
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However, spatial pyramids have a major drawback due to the
high dimensionality of the generated histograms while going
towards the finest level of representation. This drawback is
especially apparent for challenging data sets such as Pascal VOC
where it is found that large size visual vocabularies generally
improve the overall results. The combination of large vocabularies
with spatial pyramids can easily lead to image representations as
big as 4194K words (e.g. [18]). If these large pyramid representa-
tions could be optimized for discrimination between different
categories, a more compact representation would be sufficient.
This will lead to compact yet efficient pyramid representations
that have the advantages of the original pyramid representation
[12] while avoiding their computational burden. This is precisely
what we aim at, keeping in mind the constraint of reducing the
size of the spatial pyramids while maintaining or even improving
the performance.

Many recent works addressed the problem of compact voca-
bulary construction [19–21]. One popular strategy starts with a
large vocabulary (e.g. generated by hierarchical k-means) and
subsequently clusters these words together while intending to
maintain the discriminative power of the original vocabulary
[22,23]. Slonim and Tishby [22] proposed a compression techni-
que, denoted as Agglomerative Information Bottleneck (AIB), that
constructs small and informative dictionaries by compressing
larger vocabularies following the information bottleneck princi-
ple. Interestingly, Fulkerson et al. [20] proposed a fast implemen-
tation of the AIB algorithm and showed good performance for the
construction of visual vocabularies. Following these trends, we
will apply the theory and algorithms developed in these works,
for the construction of compact discriminative spatial pyramids.
pyramids for object and scene recognition, Pattern Recognition
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These methods are especially appropriate due to the high dimen-
sionality of the pyramid representation.

An additional advantage of compact pyramid representations is
that it allows us to combine more features at the same memory
usage for image representation. Combining multiple features espe-
cially color and shape has recently shown to provide excellent
results [3,4,10,24–26] on standard image classification data sets. The
two main most common approaches to combine multiple features
are early and late fusion. Early fusion based schemes combine
features before the vocabulary construction phase. In case of late
fusion separate visual vocabularies are constructed for each feature.
Subsequently, the bag-of-word representations (histograms) over
the different vocabularies are concatenated. Both fusion approaches
have been investigated within the context of standard bag-of-words.
However, in the context of spatial pyramids, it is still uncertain
which of the two fusion approaches is more beneficial. Therefore,
in this paper we investigate which fusion approach is more appro-
priate within the spatial pyramids framework.

In summary, the objective of this paper is twofold. First, we
show that the AIB approach used to compress the vocabulary size
significantly degrades accuracy when applied at spatial pyramids. To
overcome this problem, we propose to use the divisive information
theoretic feature clustering (DITC) technique [23] that preserves the
overall accuracy while reducing the dimensionality of the pyramid
histogram significantly. Our results clearly suggest that pyramid
compression based on the DITC approach provides superior results.
Furthermore, DITC is computationally superior to AIB. Second, we
evaluate the two existing fusion approaches for combining multiple
features at the spatial pyramids level. We conclude that late fusion
significantly outperforms early fusion based approaches in spatial
pyramids. Finally, we combine both proposed contributions and
obtain promising results on challenging data sets.

This paper is organized as follows: Section 2 describes the data
sets used in the experiments. Section 3 discusses how AIB and
DITC can be used for building compact pyramids. Subsequently,
Section 4 proposes both an early and a late fusion strategies for
combining multiple features in the context of spatial pyramids.
Section 5 compares our results with current state-of-the-art
performance results. Finally, Section 6 concludes this paper and
describes the most important lines of future research.
Fig. 1. Example images from the data sets. From top to down: Butt
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2. Data sets and implementation details

In this section we provide details about the data sets which
will be used throughout the paper, followed by the experimental
setup employed to validate the two main contributions of our
approach, namely the use of DITC for vocabulary compression and
the use of early and late fusion in spatial pyramids. Fig. 1 shows
some example images from the five data sets.

2.1. Data sets

For scene classification, the experiments are performed on
Sports Events data set and 15 category Scenes data set. The Sports
Events data set [27] contains 8 Sports Events categories collected
from the Internet namely: bocce, croquet, polo, rowing, snow-
boarding, badminton, sailing, and rock climbing. The number of
images in each category varies from 137 (bocce) to 250 (rowing).
For each event class, 70 randomly selected images are used for
training and 60 are chosen for testing.

The 15 class Scenes recognition data set [12] is composed of
15 scene categories. Each category has 200–400 images. The
major sources of the pictures in the data set include the COREL
collection, personal photographs, and Google image search.

For object classification, the experiments are performed on
Butterflies [28] and Pascal VOC 2007 and 2009 data sets [15]. The
Butterflies data set consists of 619 images of seven classes of
butterflies, namely: Admiral, Swallowtail, Machaon, Monarch 1,
Monarch 2, Peacock and Zebra. Finally, the experiments are also
performed on the Pascal Visual Object Classes Challenge (VOC)
data sets: the Pascal VOC 2007 data set consists of 9963 images of
20 different classes with 5011 training images and 4952 test
images, while the Pascal VOC 2009 data set contains 13 704
images of 20 different object categories with 7054 training
images and 6650 test images.

2.2. Implementation details

We shortly discuss the implementation details we use for the
bag-of-words based image classification. We apply a standard
erflies, Sports Events, 15 class Scenes and Pascal VOC data sets.

pyramids for object and scene recognition, Pattern Recognition
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multiple-scale grid detector along with interest point detectors
(Harris–Laplace and blob detector). In the feature extraction step,
we use SIFT descriptor [11] for shape features, Color Names [29]
descriptor for color features and the SelfSimilarity descriptor [30]
to measure similarity based on matching the internal self-
similarity. We use a standard k-means for constructing visual
vocabularies. Finally we use a non-linear SVM with intersection
kernel for classification as in [31].

2.3. Image representation using spatial pyramids

Spatial pyramid scheme proposed by Lazebnik et al. [12] has
recently proven very successful results. These are formed by
representing an image using weighted multi-resolution histo-
grams, which are obtained by repeatedly sub-dividing an image
into increasingly finer sub-regions by doubling the number of
divisions in each axis direction and computing histograms of
features over the resulting sub-regions. Resemblances found at
finer resolutions are closer to each other in image space and are
therefore more heavily weighted. To accomplish this, each level l

is weighted to l=2L�l, where L is the total number of pyramid
levels considered. When histograms for all sub-regions at all
levels have been created, these histograms are concatenated to
form the final image representation. For example, a level 2 spatial
pyramid is constructed by concatenating a total of 1þ4þ16¼21
histograms.

Although a notable performance gain is achieved by using the
spatial pyramid method, the resulting histogram is often a magni-
tude higher in dimensionality over its standard bag-of-words
based counterpart.1
3. Compact pyramid representation

As discussed in the Introduction, one of the main drawbacks of
the spatial pyramid representation is its memory usage. We will
discuss two existing approaches, namely AIB and DITC, which
were shown to be successful for compact text document repre-
sentation [22,23]. Only AIB has been applied for compact image
representation [20], and none of them has been studied in
the context of spatial pyramids. In this section we will show
experimental results on the Sports Events [27] and 15 class
Scenes [12] data sets to demonstrate that our proposed compact
pyramid representation maintains the performance of their larger
counterparts.

In practice the final size of the pyramid is dependent on the
application, where users have to balance compactness versus
classification accuracy. Depending on the task a smaller repre-
sentation could be preferred over larger at the cost of perfor-
mance (e.g. real-time object detection based on ESS [13,33], or
large scale image retrieval [34]). In the case that users do not
want a drop in accuracy but do want to compress their repre-
sentation, cross-validation could be used to select the optimal
cluster size. Throughout this paper we consider that the final
representation size is an input parameter to the compression
algorithm.

3.1. Highly informative compact spatial pyramids

Let C be a discrete random variable that takes on values from
the set of classes C¼{c1, y, cl} and let W be the random variable
1 The winners of Pascal VOC 2007 [32] showed that dividing an image

horizontally 3�1 yields better performance than a conventional 4�4 structure.

The resulting histogram is therefore reduced from vocabulary size �21 to

vocabulary size �8.
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that ranges over the set of words W¼{w1, y, wm}. It is important
to note that we consider the number of words for the spatial
pyramid representation to be equal to the number of words used
for the visual vocabulary times the number of sub-regions in the
spatial pyramid. For a level two pyramid constructed from a
1000 word vocabulary, this will lead to a final representation of
(1þ4þ16)�1000¼21 000 words. We will consider clustering
these 21 000 words into a smaller set where each cluster
represents words with a similar discriminative power.

The joint distribution pðC,WÞ is estimated from the training set
by counting the number of occurrences of each visual word in
each category. The information about C captured by W can be
measured by the mutual information:

IðC,WÞ ¼
X

i

X

t

pðci,wtÞ log
pðci,wtÞ

pðciÞpðwtÞ
, ð1Þ

which measures the amount of information that one random
variable contains about the other. Ideally, in forming word
clusters we aim at preserving the mutual information; however,
usually clustering lowers the mutual information. Thus, we aim at
finding word clusters that minimize the decrease in the mutual
information:

IðC,WÞ�IðC,WC
Þ, ð2Þ

where WC are the word clusters {W1, y, Wk}. Note that this is
equal to maximizing the mutual information IðC,WC

Þ. Eq. (2) can
be rewritten as

X

i

X

t

ptpðci9wtÞ log
pðci9wtÞ

pðciÞ
�
X

i

X

j

X

wt AWj

ptpðci9wtÞ log
pðci9WjÞ

pðciÞ
,

ð3Þ

where pt is the prior of word, and is given by pt ¼ pðwtÞ.
In the seminal work [23], Dhillon et al. prove that this is

equal to

IðC,WÞ�IðC,WC
Þ ¼
X

j

X

wt AWj

ptKLððpðC9wtÞÞ,ðpðC9WjÞÞÞ, ð4Þ

where the Kullback–Leibler (KL) divergence is defined by

KLðp1,p2Þ ¼
X

xAX

p1ðxÞ log
p1ðxÞ

p2ðxÞ
: ð5Þ

Eq. (4) is a global objective function that can be applied to
measure the quality of word clustering. This object function
states that we should group words wt into clusters Wj, in such a
way that the summed KL-divergence between the word distribu-
tions pðC9wtÞ and their cluster distributions pðC9WjÞ is as low as
possible. Since the KL-divergence is a measure of similarity
between distributions, we are clustering words together which
contain a similar information with respect to the classes as
described in pðC9wtÞ. Next we discuss two existing algorithms
which aim to find the optimal clusters Wj as defined by Eq. (4).

AIB compression [22]: AIB iteratively compresses the dictionary
W by merging the visual words wi and wj that cause the smallest
decrease in the mutual information given by Eq. (1). The decrease
in the mutual information is monotonically reduced after each
merging. Merging is iterated until one obtains the desired number
of words. AIB is greedy in nature as it optimizes the merging of
just two word clusters at every step (a local optimization) and
thus the resulting algorithm does not directly optimize the global
criteria defined in Eq. (4).

DITC compression [23]: Other than AIB which iteratively reduces
the number of words until the desired number of clusters is reached,
DITC immediately clusters the words into the desired number of
clusters (during initialization) after which it iteratively improves the
quality of these clusters. Each iteration monotonically reduces the
pyramids for object and scene recognition, Pattern Recognition
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decline in the mutual information as given by Eq. (4), therefore the
algorithm is guaranteed to terminate at a local minimum in a finite
number of iterations.

To optimize the global objective function of Eq. (4), DITC
iteratively performs the following steps:
1.
P
(2
Compute the cluster distribution pðC9WjÞ according to:

pðC9WjÞ ¼
X

wt AWj

pt

pðWjÞ
pðC9wtÞ, ð6Þ

where pðWjÞ ¼
P

wt AWj
pt .
2.
Table 1
Classification score (percentage) on both the Sports Events and 15 class Scenes

data sets. The results demonstrate that by applying the AIB compression [20] a

considerable loss in performance occurred for compact vocabularies.

Method Level Size Sports Events 15 class Scenes

Pyramid 2 21 000 83.8 84.1

PyramidAIB 2 5000 81.5 81.7

PyramidAIB 2 1000 79.8 80.4

PyramidAIB 2 500 78.8 78.3

Table 2
Classification score (percentage) on both the Sports Events and 15 class Scenes

data sets. The results demonstrate that DITC successfully compresses the voca-

bularies while preserving their discriminative power.

Method Level Size Sports Events 15 class Scenes

Pyramid 2 21 000 83.8 84.1

PyramidDITC 2 5000 84.2 85.4

PyramidDITC 2 1000 85.6 84.4

PyramidDITC 2 500 84.6 84.2
Reassign the words wt to the clusters Wj based on their
closeness in KL-divergence:

jnðwtÞ ¼ arg min
j

KLðpðC9wtÞ,pðC9WjÞÞ, ð7Þ

where jnðwtÞ is new cluster index of the word wt.

The initialization of the k clusters is obtained by first clustering
the words into l clusters, where l is the number of classes. Every
word wt is then assigned to cluster Wj such that pðcj9wtÞ ¼

maxi pðci9wtÞ. This strategy guarantees that every word wt is part
of one of the clusters Wj. Subsequently we split each cluster
arbitrarily into bk=lc clusters. In the case that l4k we further
merge the l clusters to obtain k final clusters. The above algorithm
is only an approximation of the minimum but it was found to
yield accurate results [23].

The basic implementation of the DITC algorithm can result in a
large number of empty clusters, especially for large vocabularies.
To overcome this problem we propose a modified version of the
basic DITC algorithm. At each iteration our algorithm retrieves the
index e of the empty word clusters ce, where e� j. Subsequently
we assign at least one word wt to each ce. This is done using
Eq. (7) by first assigning each word wt to its closest word cluster
cj. Based on this assignment, we select that wt with the maximum
KL value returned by Eq. (7), i.e. that wt found at the furthest
distance from its currently assigned word cluster cj. Then we
reassign this wt to ce and remove it from cj.

Comparing the computational cost of the two algorithms
shows one of the advantages of DITC: AIB results in a high
computational cost of Oðm3cÞ operations as it runs an agglom-
erative algorithm until k clusters are obtained. Here m is the total
number of words and c is the number of classes in the data set.
The fast implementation of the AIB costs Oðm2cÞ. On the other
hand, the DITC algorithm requires Eq. (7) to be computed for
every pair, PðC9wtÞ and pðC9WjÞ at a cost of OðmkctÞ, where
generally k5m. The number of required iterations t to obtain
convergence is typically around 15. We found DITC in practice to
be computationally superior to AIB, obtaining a speedup between
one or two orders of magnitude. On a typical run for obtaining
100 clusters from 20 000 words on a data set with 15 classes,
AIB (using [20]) took 14 460 seconds while DITC converged in
234 seconds using a standard PC.

3.2. Experimental results

In this section, we compare the two algorithms discussed above
on the task of constructing compact spatial pyramids. To the best
of our knowledge we are the first to apply DITC to visual word
vocabulary construction. Lazebnik and Raginsky [21] propose a
method for discriminative vocabulary construction which uses ideas
of the theory of DITC [23]. However, the word clusters were
restricted to lie in Voronoi cells, whereas in the original algorithm
words are clustered without restrictions on their location in feature
space, and thus allowing for multi-model distributions. We show
that the pyramid compression based on DITC has a lower loss of
lease cite this article as: N. M. Elfiky, et al., Discriminative compact
011), doi:10.1016/j.patcog.2011.09.020
discriminative power, and is computationally more efficient com-
pared to compression based on AIB [20].

Table 1 shows numerical results obtained by applying AIB on
both the Sports Events and 15 Scenes data sets for different sizes.
We started by using vocabulary of size 1000 for constructing a
three level pyramid of 21 000 dimensionality, after which we
compress this vocabulary to a dimensionality of 5000, 1000 and
500. We can notice that by applying AIB compression on the
pyramids the performance drops significantly, especially when
we are going towards lower dimensionality. We attribute this to
the fact that the information bottleneck technique is agglomera-
tive in nature and results in a sub-optimal word cluster because it
greedily merges just two word clusters at every step and it does
not directly optimize the global objective function of Eq. (4).

Table 2 shows the results obtained using DITC. The main
observation is that the DITC approach succeeds in conserving
the discriminative power while reducing dimensionality of the
image representation. Furthermore, for both sets reducing the
dimensionality leads to an improvement of the classification
score, and even at the smallest dimensionality of 500 similar
results are obtained as with the total 21 000 word vocabulary.

Classification accuracies of both compression approaches are
shown in Fig. 2 which supports the two main conclusions: first,
using DITC compression mechanism leads to a compact pyramid
representation that reduces the dimensionality of the original
pyramid yet preserves or even improves its performance. Second,
compact pyramid representation based on DITC achieves better
results than those based on AIB approaches at all the vocabulary
sizes. Moreover the performance gain is more significant for smaller
vocabularies.

We also perform experiments comparing the performance of
DITC compression with Principle Component Analysis (PCA) and
Partial Least Square (PLS) techniques. Fig. 3 shows the comparison
on two data sets. We only show the performance for very
compact pyramid representations, since PLS is known to obtain
better results for compact representation and quickly deteriorates
for larger representation. Moreover, the number of dimensions of
PCA is bounded by the number of observations. DITC based
pyramid compression consistently outperforms the other two
compression techniques. It is worthy to mention that DITC also
provides better performance compared to both PCA and PLS with
a very small compact pyramid representation (50 bins).

The performance difference between DITC and AIB becomes
especially apparent for high compression. An initial pyramid
pyramids for object and scene recognition, Pattern Recognition
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Fig. 2. Sports Events data set (left) and 15 class Scenes data set (right) classification accuracy for compressing the whole pyramid representation leading to a more

compact pyramid representation using the two compression approaches considered namely: DITC vs. AIB.
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Fig. 3. Sports Events data set (left) and 15 class Scenes data set (right) classification accuracy for compressing the whole pyramid to a compact representation using

approaches namely: DITC, PLS and PCA. Note that DITC based compression also provides superior performance for very compact pyramid representations.

Table 3
Average-precision results for all classes of the Pascal VOC 2007 database. Comparison on the average accuracy of the original four level pyramid representation of size

25 500 compressed to size 200. The second row shows the compression results using the AIB [20] and the third row shows the results using DITC [23].

Plane Bike Bird Boat Bottle Bus Car Cat Chair Cow Table

Pyramid 72.1 54.9 41.9 62.6 23.9 46.3 71.4 51.4 48.8 37.4 46.8

AIB 53.2 28.3 24.6 43.2 11.4 27.5 54.2 29.9 35.6 11.1 13.9

DITC 61.4 50.6 36.5 49.1 20.3 43.9 68.2 44.1 47.1 29.7 38.8

Dog Horse Mbike Person Plant Sheep Sofa Train TV Mean

Pyramid 38.9 72.1 58.1 80.3 25.4 32.4 41 70.5 43.6 50.9

AIB 21.1 41.3 32.3 73.3 10.4 13.9 27.9 40.2 27.8 31.1

DITC 33.4 69.5 53.6 78.9 23.6 22.9 37.6 64.3 42.3 45.8

N. M. Elfiky et al. / Pattern Recognition ] (]]]]) ]]]–]]] 5
representation of the Pascal data set of 25 500 words is com-
pressed to 200 clusters. Table 3 shows a 14% higher mean
average-precision for having compact pyramid representations
based on DITC compared to those obtained using AIB on object
recognition.
3.3. Compact pyramid designs

As demonstrated in the last section, we can significantly
reduce the dimensionality while preserving or even improving
the performance of the original pyramid representation that we
started with. We next evaluate and compare two different design
strategies for building our final compact pyramid representations.
The main aim is to find an optimal design for obtaining compact
Please cite this article as: N. M. Elfiky, et al., Discriminative compact
(2011), doi:10.1016/j.patcog.2011.09.020
yet efficient pyramids based on the DITC compression algorithm.
The two proposed designs are the following:
1.
py
Compute a vocabulary, compress it using DITC and subsequently
build a compact pyramid representation based on the com-
pressed compact vocabulary (the traditionally used schema,
denoted as CompPyr hereafter).
2.
 Construct the pyramid representation for an image and sub-
sequently compress the vocabulary of the whole pyramid
directly using DITC (strategy presented in Section 3.1 and
denoted as PyrComp hereafter).

Table 4 shows the results obtained using both of the consid-
ered proposed designs on 15 class Scenes and the Sports Events
data sets. To compare the classification scores obtained from the
ramids for object and scene recognition, Pattern Recognition

dx.doi.org/10.1016/j.patcog.2011.09.020


N. M. Elfiky et al. / Pattern Recognition ] (]]]]) ]]]–]]]6
two designs, we consider the same dimensionality of size 1000.
For the 15 class Scenes data set, using CompPyr we got a score of
82.1%, while PyrComp gives us a performance of 84.4%. For the Sports
Events data set, we observe a similar gain in the obtained results.

These quantitative results suggest how optimal compact
pyramid representations can be built: although both designs
preserve the accuracy of the original pyramid representation,
the best results are obtained following the PyrComp strategy,
since it does not only preserve the original pyramid performance,
but also slightly improves the performance. Additionally Fig. 4
illustrates another interesting conclusion: the gain in perfor-
mance using PyrComp is obtained throughout all sizes, and this
gain is more significant at lower sizes.

The CompPyr compresses the vocabulary while ignoring the
spatial pyramid image representation to which it will later be
applied. This strategy is used by most existing methods for compact
vocabulary construction [21,35,36]. Our experiment shows that
compressing the vocabulary within the spatial pyramid, significantly
improves the results. Compression with PyrComp has the same
freedom as CompPyr to merge words within a sub-window. Addi-
tionally, it can also merge words of different sub-windows, some-
thing which is impossible within the CompPyr strategy.
4. Combining multiple features in spatial pyramids

In the previous section, we have provided an efficient method for
the construction of compact pyramid representations. The gained
compactness allows us to combine more features at the same
memory usage of the image representation. Here we analyze how
to optimally combine multiple features in a pyramid representation.

We will look at the particular case of combining color and
shape, which was shown to provide excellent results for object
Table 4
Classification score on the Sports Events and 15 class Scenes data sets using the

DITC approach comparing the two proposed designs: CompPyr (compute a

vocabulary, compress it, and then build a compact pyramid representation using

this compressed compact vocabulary) and PyrComp (i.e. construct a pyramid

representation for an image, then compress the words of the whole pyramid

afterwards).

Method Level Size Sports Events 15 Class Scenes

Pyramid 2 21 000 83.8 84.1

PyramidAIB 2 1000 79.8 80.4

CompPyr 2 1000 81.9 82.1

PyrComp 2 1000 85.6 84.4

Note: Bold numbers correspond to the highest classification scores.
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and scene recognition [14]. In particular we investigate two
approaches to combine multiple features, namely the early and
late fusion schemes. In the next section we provide results from
combining visual cues other than color and shape.
4.1. Early and late fusion spatial pyramid matching

In early fusion the local features of color and shape are
concatenated into a single feature. Subsequently, the combined
color and shape features are quantized into a joint shape–color
vocabulary. In general, early fusion results in vocabularies with
high discriminative power, since the visual-words describe both
color and shape jointly, allowing for the description of blue
corners, red blobs, etc. A significant shortcoming of early fusion
approach is that it deteriorates for categories which vary
significantly over one of the visual cues, for example, man made
categories such as cars and chairs which vary considerably in
color. In such cases, the visual-words will be contaminated by the
‘‘irrelevant’’ color information. The relevant shape words will be
spread over multiple visual-words, thereby complicating the task
of the learning algorithm significantly. On the other hand, early
fusion is suitable for categories which are constant over both
color and shape cues like plants, lions, road-side signs, etc.

The second approach, called late fusion, fuses the two cues, color
and shape, by processing the two features independent of each
other. Separate visual vocabularies are constructed for color and
shape independently, and the image is represented as a distribution
over shape-words and color-words. A significant drawback of late
fusion is that we can no longer be certain that both visual cues come
from the same location in an image. Late fusion is expected to
provide better results over early fusion on categories where one cue
is constant and the other varies considerably. Examples of such
categories are man made objects such as car, buses, chairs, etc.

Typically within the bag-of-words framework a number of
local features f c

mn, m¼1,y, M n are extracted from training
images In. Where n¼ 1;2, . . . , N, and cAf1;2g is an index indicat-
ing the different visual features. In case of early fusion, two visual
features are concatenated according to

f 1&2
mn ¼ ðbf 1

mn, ð1�bÞf 2
mnÞ: ð8Þ

Vector quantization of f1, f2, f 1&2 yields the corresponding voca-

bularies V1, V2, V1&2. We define hV
ðIÞ to be the histogram

representation of image I in vocabulary V. Early fusion represen-

tation of the image is given by hV1&2 ðIÞ and the late fusion is
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obtained by concatenating the separate histograms:

hðV1 ,V2ÞðIÞ ¼ ½bhV1ðIÞ, ð1�bÞhV2 ðIÞ�: ð9Þ

Note that we have introduced a weight parameter b for both early
and late fusions which allow us to leverage the relative weight of
the various cues. In our setting this parameter is learned through
cross-validation on the training data. Both fusion schemes can
easily be extended to accommodate several visual cues.

Before applying the two schemes on spatial pyramids, we
will shortly discuss the relation of existing approaches for the
combination of multiple features to early and late fusion. Bosch
et al. [3] compute the SIFT descriptor on the H, S, V channels and
then concatenate the final descriptor into a single representation.
van de Weijer and Schmid [26] compare photometrically invariant
representations in combination with SIFT for object recognition.
Recently, van de Sande et al. [10] performed a study on the photo-
metric properties of many color descriptors, and did an extensive
performance evaluation. In their evaluation OpponentSIFT was
shown to be the best choice to combine color and shape features.
Since in all these works color and shape are combined before
vocabulary construction, they are considered early fusion methods.

Regarding late fusion, several methods explore the combina-
tion of multiple features at the classification stage. These
approaches, of which multiple kernel learning MKL is the most
well-known [37–41], combine kernel combinations of different
visual features. A weighted linear combination of kernels is
employed, where each feature is represented by multiple kernels.
Besides the multiple kernel learning approach, the two conven-
tional approaches that combine different kernels at the classifica-
tion stage in a specified deterministic way are averaging and
multiplying the different kernel responses. Surprisingly, the pro-
duct of different kernel responses is shown to provide similar or
even better results than MKL in a recent study performed by
Gehler and Nowozin [24]. These approaches are considered as late
fusion since they perform vocabulary construction separately for
the different features. Recently, an alternative method for com-
bining color and shape, called color attention, was proposed by
Fig. 5. Early and late fusion pyramid schemes. In the early fusion pyramid scheme a com

representation is obtained. To construct a late fusion pyramid, a separate vocabulary i

We show that late fusion is the recommended approach for combining multiple featur

referred to the web version of this article.)
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Khan et al. [42]. However, it is unclear how this method can be
extended to incorporate spatial pyramids, since the normalization
performed in the sub-regions of the pyramid counters the color
attention weighting.

For the standard bag-of-features image representation there
is no consensus whether early or late fusion is better. Here we
investigate the two approaches in the context of spatial pyramids.
The common methodology employed in current object recogni-
tion frameworks is to build spatial pyramids of early fusion based
schemes (such as Opp-SIFT, C-SIFT, HSV-SIFT, etc.) [3,10,26]. We
refer to these spatial pyramids that are based on early fusion
scheme as early fusion spatial pyramids and the spatial pyramids
that are based on late fusion as late fusion spatial pyramids. Fig. 5
highlights the two spatial pyramid matching approaches.

4.2. Experimental results of early and late fusion based

spatial pyramids

To evaluate both early and late fusion spatial pyramids, we
perform an experiment for both object and scene recognitions.
For scene classification, the experiments are performed on Sports
Events data set. We use the Butterflies data set for the object
recognition task. To construct a shape vocabulary we use the SIFT
descriptor and the Color Names descriptor [29] for creating a
color vocabulary. We combine the two cues based on early fusion
and late fusion schemes, both at the standard bag-of-words level
and at the spatial pyramids level. To obtain a fair comparison
between early and late fusions we use the two standard imple-
mentations as given by Eqs. (8) and (9). The parameter b in both
equations is learned by cross-validation.

We also compare with OpponentSIFT which was shown to be
the best color–shape descriptor in a recent evaluation [10]. Table 5
shows the results obtained on Sports Events data set. For this data
set, shape is an important cue and color plays a subordinate role.
At the standard bag-of-words level, OpponentSIFT provides the
best results but as we move into higher levels of spatial pyramids
the performance of both early fusion and OpponentSIFT starts to
bined color–shape vocabulary is constructed as a result of which a single pyramid

s constructed for color and shape and spatial pyramids are obtained for each cue.

es. (For interpretation of the references to color in this figure legend, the reader is
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Table 5
Classification score (percentage) on Sports Events data set.

Method Level Size Score

Shape 0 800 80.6

Color 0 300 53.9

Opp-SIFT 0 1100 82.9
Early fusion 0 1100 80.6

Late fusion 0 1100 81.8

Opp-SIFT 1 5500 82.3

Early fusion 1 5500 80.8

Late fusion 1 5500 82.7

Opp-SIFT 2 23 100 80.8

Early fusion 2 23 100 82.7

Late fusion 2 23 100 84.4

Note: Bold numbers correspond to the highest classification scores.

Table 6
Classification score (percentage) on Butterflies data set.

Method Level Size Score

Shape 0 1000 79.4

Color 0 300 53.3

Opp-SIFT 0 1500 78.7

Early fusion 0 1500 79.6

Late fusion 0 1300 81.9

Opp-SIFT 1 7500 79.6

Early fusion 1 7500 81.7

Late fusion 1 6500 84.4

Opp-SIFT 2 31 500 81.0

Early fusion 2 31 500 83.3

Late fusion 2 27 300 87.9

Note: Bold numbers correspond to the highest classification scores.

Table 7
Classification score (percentage) on Sports Events, 15 class Scenes, Butterflies,

Pascal VOC 2007 and 2009 data sets.

Data sets Best score PS PSC PSCþPCCþPSSC

Size Score Size Score Size Score Size Score

Sports 6 K 84.2 [17] 21 K 83.8 1 K 85.6 2 K 87.1
15 Scenes 21 K 84.3 [43] 21 K 84.1 1 K 84.4 2 K 86.7
Butterflies 2 K 90.6 [28] 21 K 89.5 1 K 89.0 2 K 91.4
Pascal 2007 160 K 60.5 [10] 84 K 57.4 15 K 57.2 25 K 59.5

Pascal 2009 4194 K 64.6 [18] 84 K 55.7 15 K 55.2 25 K 57.6

Note: Bold numbers correspond to the highest classification scores.
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degrade (the performance of OpponentSIFT at the finest pyramid
level is below its performance at the standard bag-of-words level).
We also combined color and shape at the kernel level with the
product rule as advocated by Gehler and Nowozin [24]. However,
results were found to be inferior compared to the late fusion
spatial pyramid scheme.

Table 6 shows the results obtained on Butterflies data set. Shape
plays an important role as depicted from the results of individual
visual cues. Late fusion provides better results at the standard
bag-of-words level than both early fusion and OpponentSIFT. The
performance gain of late fusion is further increasing when more
pyramid levels are considered.

In conclusion, in a standard bag-of-words representation both
early and late fusions obtain comparative results. However, our
experiments show that within a spatial pyramid representation late
fusion significantly outperforms early fusion. These results of late
fusion could further be improved by applying multi-kernel learning.
5. Comparison to state-of-the-art

In the previous section we have investigated how to optimally
compute compact and multi-feature spatial pyramids. We have
shown that optimal results are obtained by using DITC algorithm for
compression, and using the PyrComp strategy for the computation of
compact pyramids. Furthermore, as demonstrated in the previous
section, late fusion pyramids are shown to be more efficient than
early fusion pyramids. In this section, we combine these conclusions
to construct compact multi-feature spatial pyramids. First we
compute compact spatial pyramids for each feature separately and
then combine them in a late fusion manner.
Please cite this article as: N. M. Elfiky, et al., Discriminative compact
(2011), doi:10.1016/j.patcog.2011.09.020
We denote our pyramid representation for SIFT with PS, and
the compact pyramids of SIFT, SelfSimilarity and Color with PSC,
PSSC and PCC respectively. We report the final results on all the
four challenging data sets obtaining very good classification
scores even when reducing the pyramid histograms significantly.
In addition, we compare our results with several recent results
reported on these data sets in the literature. Table 7 shows our
final results and a comparison with the best results reported on
the four data sets.

For the Sports Events data set experiments are repeated five
times by splitting the data set into train and test set and the mean
average accuracy is reported. As depicted from the results,
each feature’s compact representation preserves or even improves
the performance over its original pyramid histogram. The original
three level pyramid representation of SIFT (PSIFT) with dimen-
sionality 21 000 gives an accuracy of 83.8 while, compressing it to
1000 we improve the score to 85.6. By combining the three
compact pyramid representations we obtained a classification
score of 87.1 which exceeds the state-of-the-art results obtained
on this data set [17,16,43–45]. The final accuracy is obtained with
our compact histogram of dimensionality 2000 reduced from the
original pyramid histograms of dimensionality 42 000.

For the 15 category Scenes data set, we followed the standard
protocol of splitting the data set into training and testing five times
and reported the mean classification score. The results of each
feature compact pyramid representation preserves or even improves
the performance of its original pyramid representation. The original
three level pyramid structure of SIFT (PS) with dimensionality
21 000 gives an accuracy of 84.1 while, compressing it to 1000 we
improve the score further to 84.4. Since there is no color in this data
set, we only combine the compact pyramids obtained from SIFT and
SelfSimilarity. Our final compact representation has a histogram
of size 2000 reduced from original pyramid histograms having a
dimensionality of 42 000. We obtained a classification accuracy of
86.7 which is to the best of our knowledge the best performance on
this data set [17,16,43–45].

The Butterflies data set shows our approach on a object
recognition data set. Our compact pyramid representation of SIFT
provides comparable results w.r.t. the original pyramids of SIFT.
Our final combination yields a score of 91.4 which outperforms
the best reported result in [28].

The results on the Pascal VOC 2007 show that we reduce the
pyramid histogram of SIFT to one-third with a small loss. The final
mean average precision of 59.5 is obtained with a histogram size
of 25K. Our final results are close to state-of-the-art, but we have
significantly reduced the histogram dimension (25K) compared to
the approach of van de Sande et al. [10], where SIFT pyramids are
combined with 4 ColorSIFT pyramids, leading to higher histogram
dimensions of 160K. Lastly, it should be noted that better results
(63.5) were reported in [46], where authors include additional
information of object bounding boxes from object detection to
improve image classification.
pyramids for object and scene recognition, Pattern Recognition
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For the Pascal VOC 2009, a similar behavior is noticed. Hence,
with an original SIFT pyramid of size 84K a mean average score
of 55.7 is obtained. However, we maintained a score of 55.2
using our 15K compact SIFT representation. Finally, the results for
multiple features fusion improve the overall mean average score
up to 57.6 over the compact SIFT features.
6. Conclusions

A major drawback of spatial pyramids is the high dimension-
ality of their image representation. In this paper we have
proposed a method for the computation of compact discrimina-
tive pyramids. The method is based on the divisive information
theoretic feature clustering algorithm, which clusters words
based on their discriminative power. We show that this method
outperforms clustering based on the agglomerative information
bottleneck both in accuracy and in computational complexity.
Results show that depending on the data set dimensionality
reductions up to an order of magnitude are feasible without a
drop in performance. The gained compactness leaves more room
for the combination of features. We investigate the optimal
strategy to combine multiple features in a spatial pyramid setting.
Especially for higher level pyramids late fusion was found to
significantly outperform early fusion pyramids. We evaluated the
proposed framework on both scene and object recognitions, and
obtained state-of-the-art results on several benchmark data sets.

For future work we are particularly interested in applying
the compact pyramids to the task of bag-of-words based object
detection [13,46]. The application of bag-of-words based detec-
tion has been particularly advanced due to the efficient sub-
window search (ESS) algorithm proposed by Lampert et al. [13].
The usage of compact discriminative pyramids to this application
could help obtain faster detection methods without loss in
accuracy.

Another line of future research includes investigating the
application of DITC to sparse image representation [35,36], which
has been shown excellent results in recent works in image
restoration and face recognition [47,48]. Although discriminative
vocabularies within the context of sparse image representation
have been investigated, these methods still ignore the spatial
pyramid for the construction of discriminative vocabularies,
whereas our work shows that compressing the vocabulary within
the spatial pyramid significantly improves results. Therefore, we
expect that combining the strengths of both methods will lead to
further improvements.
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