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Abstract—In the last years, support vector machines (SVMs)
have shown excellent performance in many applications, especially
in the presence of noise. In particular, SVMs offer several advan-
tages over artificial neural networks (ANNs) that have attracted
the attention of the speech processing community. Nevertheless,
their high computational requirements prevent them from being
used in practice in automatic speech recognition (ASR), where
ANNs have proven to be successful. The high complexity of
SVMs in this context arises from the use of huge speech training
databases with millions of samples and highly overlapped classes.
This paper suggests the use of a weighted least squares (WLS)
training procedure that facilitates the possibility of imposing a
compact semiparametric model on the SVM, which results in a
dramatic complexity reduction. Such a complexity reduction with
respect to conventional SVMs, which is between two and three or-
ders of magnitude, allows the proposed hybrid WLS-SVC/HMM
system to perform real-time speech decoding on a connected-digit
recognition task (SpeechDat Spanish database). The experimental
evaluation of the proposed system shows encouraging perfor-
mance levels in clean and noisy conditions, although further
improvements are required to reach the maturity level of current
context-dependent HMM-based recognizers.

Index Terms—Additive noise, artificial neural network
(ANN)/hidden Markov model (HMM), compact support vector
machine (SVM), hybrid automatic speech recognition (ASR),
machine learning, real-time ASR, robust ASR, SVM/HMM.

I. INTRODUCTION

H IDDEN Markov models (HMMs) have become the most
employed core technique for automatic speech recogni-

tion (ASR). However, the HMM-based ASR systems seem to
be close to reaching their limit of performance. Hybrid systems
based on a combination of artificial neural networks (ANNs)
and HMMs, referred to as hybrid ANN/HMM [1]–[3], provide
significant performance improvements in noisy conditions [4],
[5]. However, progress on this paradigm has been hindered by

Manuscript received July 28, 2011; accepted November 15, 2011. Date of
publication December 08, 2011; date of current version February 24, 2012.
This work was supported in part by the projects funded by the Spanish Ministry
of Science and Innovation TEC 2008-06382 and TEC 2008-02473 and by the
regional grant Comunidad Autónoma de Madrid-UC3M CCG10-UC3M/TIC-
5570. The associate editor coordinating the review of this manuscript and ap-
proving it for publication was Dr. Dimitra Vergyri.

R. Solera-Ureña, C. Peláez-Moreno, M. Martínez-Ramón, and F. Díaz-de-
María are with the Department of Signal Theory and Communications, Univer-
sidad Carlos III de Madrid, Leganés 28911, Spain (e-mail: rsolera@tsc.uc3m.es;
carmen@tsc.uc3m.es; manel@tsc.uc3m.es; fdiaz@tsc.uc3m.es).

A. I. García-Moral is with Fonetic Solutions S. L., Madrid 28037, Spain
(e-mail: ana.garcia@fonetic.es).

Digital Object Identifier 10.1109/TASL.2011.2178597

their training computational requirements, which were exces-
sive at the time these systems were proposed, and the inherent
difficulty of competing with a technique that has been fine tuned
during decades.

Support vector machines (SVMs) [6] have shown superior
performance than ANNs in a variety of tasks. There are two
fundamental reasons: first, the SVM training process is guaran-
teed to converge to the global minimum of the associated cost
function; and second, SVMs exhibit superior generalization ca-
pability. This last property allows SVMs to make more accurate
decisions in noisy environments, which is a valuable character-
istic in the field of automatic speech recognition. Inspired by
these potential strengths, several authors have suggested the use
of SVMs in ASR [7]–[13]. However, a key difficulty still re-
mains: though hybrid SVM/HMM systems [10]–[12] are able to
deal with the time variability of speech utterances and reason-
able solutions for multiclass classification and probability esti-
mation have been proposed, the resulting SVMs are too complex
and computationally demanding to allow for real-time speech
recognition.

This problem is actually twofold: first, the maximum number
of samples that can be used for the SVM training is limited
to a few millions; second, large speech databases with highly
overlapped classes lead to huge models that must be evaluated
at the decoding phase. In this work, the first problem is allevi-
ated by randomly selecting a balanced subset of training sam-
ples, which significantly reduces the computational cost of the
training process while causing negligible reduction in perfor-
mance, as it was previously demonstrated in the ANN/HMM
paradigm [5]. However, further research on this issue is required
for the proposed system to manage more demanding ASR tasks.
It is the second of the above-mentioned problems that actually
hinders the possibility of real-time decoding of speech utter-
ances. This issue constitutes the focus of the present paper.

The complexity of SVMs in a hybrid SVM/HMM speech
recognition system must be notably reduced in order to achieve
a real-time operation. To this end, we propose here the use of
compact SVMs. Specifically, we suggest training the SVMs
through a weighted least squares (WLS) procedure [14] that
converges to the original solution obtained by quadratic pro-
gramming (QP) techniques. The WLS procedure does not
produce any complexity reduction per se, but facilitates the
possibility of selecting an a priori target complexity by im-
posing a compact semiparametric model on the SVM [15], [16],
which is expressed in terms of a reduced set of representative
vectors. To this end, a sequential selection approach based on
the approximate linear dependence (ALD) condition [17], [18]
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is employed to obtain a set of nearly independent vectors in
the feature space. The use of these techniques leads to support
vector classifiers (denoted as WLS-SVC) that are compact
enough for the decoding system to operate in real-time on
a medium-complexity speech recognition task, while main-
taining its performance. Namely, the computational burden at
the decoding stage, in terms of kernel evaluations, is reduced
by between two and three orders of magnitude with respect
to the baseline SVM/HMM system. Moreover, experimental
results in clean and noisy conditions show similar or even
better performance than standard monophone-based HMM
ASR systems, while using only 13% of the full training dataset.
Finally, it should be noted that the proposed WLS-SVC/HMM
system constitutes a very promising starting point for the
development of practical SVM-based ASR, but substantial
improvements are still required. Specifically, both the training
procedure when dealing with very large speech databases and
the way to take full benefit of contextual information should be
improved in order to reach the performance of state-of-the-art
context-dependent HMM-based recognizers.

The rest of this paper is organized as follows. Hybrid systems
for ASR are presented in Section II with special emphasis on the
state-of-the-art of hybrid SVM/HMM speech recognition. Next,
our proposal is described in Section III, which consists of a brief
review of the WLS-SVC formulation and a description of the
data selection methods employed to obtain a balanced subset
of training samples and an adequate base of centroids for the
compact SVM. Finally, experiments and results are presented in
Section IV followed by conclusions and suggested future lines
of research.

II. HYBRID SYSTEMS FOR AUTOMATIC SPEECH RECOGNITION

A. Motivation

The discrimination ability of ANNs was soon recognized as a
desirable characteristic that could contribute to the improvement
of ASR systems. However, the duration variability of the speech
instances corresponding to the same class hindered the straight-
forward application of ANNs. To overcome this problem, a va-
riety of different architectures and novel training algorithms that
combined HMMs with ANNs were proposed in the late 1980s
and early 1990s. The fundamental advantage of this approach
is the introduction of a discriminative technique (ANN) into a
generative system (HMM) that retains its ability to handle the
temporal variability of the speech signal. For a comprehensive
survey of these techniques, see [3].

In this paper, we have focused on the architecture, initially
proposed by Bourlard and Morgan [1], [2], that applies ANNs
to estimate the HMM emitting state likelihoods previously pro-
vided by Gaussian mixture models (GMMs). The authors ex-
ploited the well-known capability of feed-forward networks,
such as multilayer perceptrons (MLPs), of estimating a poste-
riori probabilities when trained in classification mode (see [19]
for the fundamentals of MLPs). The specific formulation will
be introduced in Section II-B.

Though at the time this approach was suggested the use of
these MLPs in speech recognition was still a challenging issue

from a computational point of view, the following remarkable
advantages were identified (from [20]):

• Model accuracy: ANNs have greater flexibility to provide
more accurate acoustic models.

• Local discrimination ability (at a frame level): MLPs are
trained to obtain class boundaries instead of providing an
accurate (generative) model for each particular class.

• Parsimonious use of parameters: all the classes share the
same ANN parameters (this does not hold for every ANN,
but it does for MLPs).

• HMMs and ANNs exhibit complementary abilities for
ASR tasks, which lead to higher recognition rates, espe-
cially under noisy conditions.

• Adaptation techniques have also been proposed (for ex-
ample, speaker adaptation as in [21]–[23]).

Thanks to the improvement of computational capabilities, the
last decade has witnessed an emergence of variants of this model
that profited from the aforementioned advantages. In particular,
hybrid systems have been found very appropriate and flexible
for introducing all sorts of information missing in the classical
HMM paradigm. From the parameterization point of view, fea-
tures do not need to be uncorrelated because the network learns
the local correlation between its input units. This has been used
to include alternative features such as spectro-temporal parame-
ters obtained by frequency filtering (FF) [4] or linear prediction
[24], [25], or speech production knowledge in the form of ar-
ticulatory features which led to more robust systems [26]–[28].
Most noteworthy, the possibility of augmenting the time-span
in the feature extraction procedure together with the various
methods available for combining these features (multistream,
concatenation, probabilistic, etc.) has broadened the choices for
phonetic context dependency representation [29], [30]. The ad-
dition of transitional units (diphones) is another economical al-
ternative to triphone units for the inclusion of context-dependent
acoustic modeling in the hybrid approach [31], [32].

As a drawback, we can mention that most implementations
rely on an initial segmentation of the training set at the level
of the classes considered by the ANN. That is, each training
frame must have its corresponding class label (phoneme, state
of phoneme, etc.). However, large databases are rarely manu-
ally labeled at a phoneme level because of the enormous human
effort necessary for the task. Therefore, most state-of-the-art hy-
brid recognizers perform an initial forced alignment with con-
ventional HMMs. This alignment becomes the ground truth for
the training of the ANN. We have made use of this approach
and further subdivided the phonemes into three sections (ini-
tial, middle, and final) making a finer segmentation attending
to the distribution of the frames into the states of the HMMs
employed for forced alignment. Further realignments using the
models trained at each iteration would improve the segmenta-
tion of the training database, but this issue is beyond the scope
of this work.

B. Problem Formulation

It is well known that the speech recognition problem can be
stated as finding the sequence of words that maximizes the
probability , where is the sequence
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of input observation features. This problem is usually factorized
using Bayes’ theorem as

(1)

where the a priori probabilities are modeled using a
language model and the likelihoods are estimated
by the HMMs. Here, is modeled as a sequence of states

, where each state describes the probability of
occurrence of an input feature vector by means of an emis-
sion probability density function . Hybrid SVM/HMM
systems substitute Gaussian mixture models for support vector
machines to provide robust a posteriori probabilities ,
of class given the feature vector . True emission likelihoods
can be obtained from the probabilities provided by SVMs by
using Bayes’ rule

(2)

The a priori probability can be dropped from the equa-
tion as its value is the same for every class. Therefore, the a pos-
teriori probabilities should be normalized by the class priors to
obtain what are called scaled likelihoods. However, it will be
noted later in this paper that such a normalization is unneces-
sary when balanced training datasets are used.

C. Hybrid SVM/HMM Systems

This section presents a description of the hybrid SVM/HMM
systems proposed in the last years and their practical limitations,
which justify, in our opinion, the interest of the work presented
in this paper. For a more detailed review on the use of support
vector machines for ASR, including systems and difficulties,
refer to [33], [34].

Hybrid systems based on discriminative models like artifi-
cial neural networks have demonstrated good performance in
automatic speech recognition. Nevertheless, support vector ma-
chines offer several theoretical advantages that have attracted
the attention of many speech processing researchers in the last
years. First, they are capable of dealing with samples of a very
high dimensionality. Second, their convergence to the global
minimum of the cost function is guaranteed by means of QP
techniques. Finally, the maximum margin solution provides
SVMs with superior generalization capability, which should
result in improved robustness in the presence of noise. In our
opinion, these characteristics make SVMs a promising future
alternative to Gaussian mixture models and artificial neural
networks for the problem of acoustic modeling in robust speech
recognition.

However, the application of support vector machines to
automatic speech recognition is not straightforward. There are
mainly two reasons for the scarce use of SVMs in this field.
First, the high computational cost of SVMs and their difficulty
to handle large databases prevent them from being used in
speech recognition. Second, SVMs are static classifiers that
need fixed-dimension input vectors, so they cannot directly
deal with the variable time duration of speech units.

The first problem has been avoided or even ignored in the
great majority of works in the field, whereas several solutions

can be found in the literature for the latter. Some of them per-
form a previous processing of the speech or feature sequence in
order to obtain fixed dimension vectors that fit the SVM input.
This normalization can be achieved by means of simple uniform
[35] or nonuniform [36], [37] feature sequence resampling pro-
cedures. Other authors apply the so-called triphone model ap-
proach, which assumes that speech segments corresponding to
phones are composed of a fixed number of sections (3 in most
cases). Feature vectors in each segment are averaged and the
results are then concatenated to form a fixed-dimension vector
[38]–[40].

Preliminary versions of the hybrid SVM/HMM systems cur-
rently employed were proposed in [9], [41], [42], and [43], all
of them comprising a two step decoding process. In [9], [41],
[42], hidden Markov models are used to generate phonetic level
alignments on the speech utterance. The previously mentioned
triphone model approach is then applied to extract fixed-dimen-
sion feature vectors from each segment. On the other hand, the
system described in [43] operates on a frame by frame basis. In
both cases, the support vector classifier uses the feature vectors
obtained in the previous step to generate segmental or instanta-
neous phoneme decisions, which are incorporated into a Viterbi
decoding stage that rescores a N-best list provided by Gaussian
mixture models in the first step.

A major drawback of all of these systems is the requisite for
a previous segmentation of the speech utterances. In contrast
to current one-pass hybrid systems, these speech recognizers
require an HMM-based forced alignment in both training and
recognition phases to achieve such a segmentation. This fact
makes the practical application of support vector machines in
automatic speech recognition difficult, since a double decoding
process must be done. To overcome this problem, some authors
proposed the combination of SVMs and HMMs in hybrid sys-
tems inspired by the ANN/HMM framework [1], [2]. The basis
of this approach is to merge SVMs and HMMs into a single
hybrid SVM/HMM system that benefits from their complemen-
tary abilities for ASR tasks, namely: the capability of HMMs
to handle the time variability of speech and the discrimination
power provided by support vector machines.

Hybrid SVM/HMM systems like those proposed in [10],
[11], [44] replace Gaussian mixture models with support vector
machines as probabilistic estimators in the acoustic modeling
phase. Thus, SVMs estimate the HMM state emission proba-
bilities that will be employed by a Viterbi decoder to obtain the
transcription of the speech utterance. These systems work on
a frame by frame basis and therefore do not need a previous
segmentation of the speech utterances in the decoding stage,
which is performed in a single step. In this case, only an initial
state level alignment of the training set is required to obtain
labeled feature vector examples for the multiclass SVM to be
trained. A conventional GMM/HMM-based system is used for
that purpose.

These systems achieve a similar or even slightly better per-
formance than standard baseline HMM-based systems in clean
conditions. Nonetheless, the high computational cost of SVMs
has prevented them from becoming a viable alternative to con-
ventional systems for robust automatic speech recognition. The
computational burden of support vector machines affects hybrid
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SVM/HMM systems in two ways. First, it limits to a few mil-
lions the maximum number of samples that can be used in the
training stage of the SVM. Second, large speech databases with
highly overlapped classes lead to huge models, with too many
support vectors whose kernel functions must be evaluated at
the decoding phase. The former problem could limit the perfor-
mance of the hybrid SVM/HMM recognition system, whereas
the latter hinders a real-time decoding of the speech utterances.

Up to our knowledge, only the work in [12], [45] has ad-
dressed in a systematic manner the issue of the computational
burden involved in hybrid SVM/HMM systems. This work fo-
cuses on identifying the indispensable binary classifiers, among
those that form the multiclass SVM, that should be evaluated
during the decoding stage to obtain accurate enough acoustic
decisions. Thus, a dynamic selection method that picks out the
most relevant binary SVMs and discards those less influential
for the decision is proposed. On average, this method enables
the evaluation of only 14% of the binary classifiers and re-
duces the recognition time between 90 and 180 times, with no
performance degradation. However, this system still operates
five-to-ten times slower than real-time speech recognition.

III. REAL-TIME HYBRID SVM/HMM AUTOMATIC

SPEECH RECOGNITION

This section is devoted to the presentation of a new hybrid
system that constitutes a promising starting point for the de-
velopment of real-time SVM-based robust automatic speech
recognition. This work is based on that described in [11], where
a preliminary hybrid SVM/HMM system takes advantage of
the discrimination power provided by SVMs to estimate robust
emission probabilities, while keeping the capability of HMMs
to handle the variable time duration of speech utterances. The
drawback of its high computational burden at the decoding
stage is faced in this work, with the result of a speech recog-
nition system that is now capable of performing real-time
speech decoding on a medium-complexity ASR task while
achieving similar or even better results than context-indepen-
dent HMM-based recognizers.

The approach proposed in this paper is based on the use of a
compact semiparametric model for the SVM. A WLS procedure
is then used to train the compact SVM. This procedure is care-
fully described in this section, in addition to some other practical
issues related to the implementation of the hybrid SVM/HMM
system.

A. Support Vector Machines

The support vector machine is a well-known statistical
learning method, first proposed in [46] as an extension of the
generalized portrait method for the construction of nonlinear
classifiers and regressors. Its formulation is based on statis-
tical learning theory (SLT) and implements the structural risk
minimization (SRM) criterion [47], a principle that bounds
overfitting by setting a tradeoff between the model complexity
and its empirical risk. This leads to the maximum margin
solution, which endows the SVM with a higher generalization
ability and, presumably, improved robustness in the presence
of noise compared to other machine learning methods.

The support vector classifier (SVC) assigns a label
to the input vector according to the following function:

(3)

where is a nonlinear function that maps input
vector into a feature space of a higher (possibly infinite) di-
mensionality. The vector denotes the separating hyper-plane
in such a space and represents the bias with respect to the
origin.

The reason that gives the SVM good generalization proper-
ties is that its formulation involves a joint minimization of both
empirical and structural risks. Structural risk minimization is
equivalent to the minimization of the norm of vector . Thus,
the solution to the SVM is given by the minimization of the fol-
lowing quadratic problem:

subject to

(4)

where are the training vectors with la-
bels . The variables represent the error for every
input vector and sets the compromise between the minimiza-
tion of empirical and structural risks.

This problem is usually solved using the Wolfe dual [48],
where Lagrange multipliers are found according to

subject to

(5)

The optimum decision boundary is given by

(6)

Only those training vectors with associated Lagrange mul-
tiplier will contribute to determining the decision
boundary, thus receiving the name of support vectors. The
mapping function is seldom explicitly known. However,
the optimization problem in (5) is set in terms of dot products

, which can be evaluated using a Mercer kernel
function . The Mercer Theorem [49] states that a map-
ping function and a function
exist if and only if is positive semidefinite. By means of
the so-called kernel trick, the output of the SVM finally adopts
the following expression:

(7)

B. Multiclass SVMs and Probability Estimation

Support vector machines are binary classifiers in their orig-
inal formulation, whereas the acoustic modeling stage in ASR
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can be stated as a multiclass problem. Nevertheless, there exist
several ways to solve -class problems using SVMs. True
multiclass solutions reformulate the SVM equations to consider
all classes at once in a single optimization problem [50]–[52].
Other methods are based on the combination of a number of
binary classifiers, each of them trained independently from
the others. On the one hand, the one-versus-the-rest approach
trains binary classifiers that compare each class against the
rest. To test for a new vector all the classifiers are evaluated
and the test sample is assigned to the classifier (class) with the
largest output. On the other hand, the one-versus-one method
trains binary classifiers, each of them comparing
two classes. In the test phase, all of the classifiers are eval-
uated and then a voting scheme or a multiclass probability
estimation method is adopted to assign the test sample to its
corresponding class. Besides these methods, there exist other
multiclass approaches such as the directed acyclic graph [53]
or the error-correcting output codes [54], [55], less used in
practice.

The choice of a suitable multiclass SVM method heavily de-
pends on the specific characteristics of the problem at hand.
Both the size of the database and the complexity of the speech
recognition task addressed in this work advise using the one-
versus-one approach. Several arguments support this statement.
First, this method is preferred when dealing with large training
datasets (see [56] for a detailed discussion) due to the fact that
SVM’s computational burden at the training step is approxi-
mately quadratic in the number of samples. The computational
load of the task addressed in this paper is too large (in terms
of memory requirements) for one-versus-the-rest and true mul-
ticlass SVMs, as they must handle some million training sam-
ples at once. In contrast, although the one-versus-one method
must train more binary classifiers than the other approaches,
each classifier is trained with a smaller fraction of the data-
base. Second, each binary classifier in the one-versus-one ap-
proach deals with a more simple, balanced and easily separable
problem. Finally, the reduction of the whole multiclass problem
into smaller binary classification tasks allows for the use of
larger training datasets, which provide more varied acoustical
information for the speech recognition task.

In this work, the classes considered by the support vector ma-
chine correspond to the states of the phoneme hidden Markov
models. As will be shown later in this paper, 18 Spanish con-
text-independent phonemes are modeled by three-state HMMs,
which leads to 54 acoustic classes. Thus, 1431 binary classifiers
must be trained according to the one-versus-one approach.

A multiclass support vector machine is used in the hybrid
approach to estimate HMM-state emission probabilities. SVMs
do not directly provide calibrated posterior probabilities but
class labels. Nevertheless, several methods have been proposed
to obtain these probabilities from SVM outputs. One of the
most widely employed when dealing with multiclass problems,
which is implemented by the LibSVM toolbox [57] used in
this work, is based on the calculation of Platt’s probabilities
[58] for every binary classifier. This method assumes roughly
exponential class-conditional densities between the margins
in each binary classifier. Bayes’ rule on two exponentials
suggest using a sigmoidal parametric model for the posterior

probability. Thus, assuming that a one-versus-one multiclass
approach is used, Platt’s probabilities of belonging to class
are calculated for every binary SVM as follows:

(8)

where is the output of the binary classifier for
sample . The sigmoid’s parameters and are estimated
discriminatively by maximizing the log-likelihood function over
training data.

These binary probabilities must be
translated into multiclass a posteriori probabilities

. To this end, a version of the Re-
fregier–Vallet method based on the Bradley–Terry model is used
[59]. The following optimization problem must be solved once
for each input pattern in order to obtain the corresponding
posterior probabilities

subject to

(9)

where . This problem is
convex and can be solved by means of a simple iterative
method.

C. Data Selection and Balancing

Software tools employed at present to train support vector
machines can only deal with a maximum of a few million
training samples. In the state-of-the-art HMM-based frame-
work, however, large databases containing several hundred
hours of recorded speech have become an indispensable basis
for relevant performance improvements. This makes the re-
search in the hybrid SVM/HMM framework extremely difficult
due to the huge computer memory requirements of SVMs and
the large amount of time spent on tuning, training and testing
these models. Thus, a reduction of the size of the datasets
employed for training the SVMs becomes essential.

It is worth mentioning that such a reduction should be
done by taking into account the particular characteristics of
the speech database. Namely, the nonuniform distribution of
the sounds of a given language and their different temporal
durations lead to highly imbalanced classes. This means that
certain phonemes are overrepresented in the speech databases
in comparison to others, which results in skewed classification
problems. In our case, two main consequences of imbalanced
data can be stressed. First, especial care must be taken with
respect to the minority classes, as scarce and/or short phonemes
are usually the key to distinguish among confusable sets of
words. Second, highly imbalanced problems can bias the
solution obtained by the support vector machine to the most
populated class.
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Data selection is a common practice among the machine
learning community, where several techniques have been
proposed in the last years to deal with imbalanced data (see
[60]–[62] for an overview). However, the need for whole
speech training utterances complicates the application of these
techniques in conventional HMM-based ASR. This problem is
overcome by hybrid systems, where theoretically independent
and identically distributed (i.i.d.) training samples are presented
individually to the classifier. Some practical examples in the
ANN/HMM context can be found in [63] and [64].

In this work, a simple selection method based on a random
downsampling of the majority classes in the whole original
training database is used to produce fully balanced reduced
training sets. As a result, all classes (states of phonemes) are
represented by the same number of training samples, which is
given by the less populated class. Despite being a straightfor-
ward solution, the balanced approach presents several beneficial
consequences. First, and most important, it reduces the com-
putational burden in the training stage significantly without
a loss of performance. Second, it overcomes the problem of
training the support vector machine with imbalanced datasets
that may affect the determination of the optimal decision
boundary. Finally, this simple solution provides the desired
emission likelihoods as the outputs of the SVM. The problem
of obtaining scaled likelihoods from a posteriori probabilities
in the hybrid ANN/HMM context was an open issue since
mismatches between the a priori probabilities of the training
and test databases led to inconsistent results [1], [4], [20], [63],
[65], [66]. In [5] it is shown that scaled likelihoods should
always be estimated using the prior probabilities from the
training data. In our case, the balancing of the training set
enables the interpretation of the outputs of the SVM as scaled
likelihoods without the need of applying any corrections.

D. Review of the WLS-SVC Formulation

The computational burden of SVMs at the decoding stage
depends on the number of support vectors, that is, those training
samples that are present in (7) with . In the standard SVM
formulation, support vectors are given by the resolution method.
This leads to huge machines that cannot be used in real complex
applications such as speech recognition, where one can find a
large number of training samples distributed through a number
of highly overlapped classes.

This drawback can be overcome by means of an alternative
training procedure [14], which solves a series of weighted least
squares problems that converges to the support vector classi-
fier solution. This method, called WLS-SVC, does not produce
any complexity reduction per se. However, it is more versa-
tile than traditional QP schemes and, additionally, facilitates the
possibility of developing compact solutions through the use of a
preset compact model for the SVM [15], [16]. A brief descrip-
tion of the WLS-SVC algorithm is presented below. A more de-
tailed derivation of the mathematical formulation can be found
in [14], [15], [67]. Furthermore, its convergence to the original
SVC solution is proven in [68].

Let us revisit the primal formulation defined by (4). The
linear constraints in that expression can be incorporated into
the so-called Lagrangian functional with associated Lagrange
multipliers and , respectively,

(10)

The second term in (10) vanishes as KKT conditions must
hold (see [69] and [70, p. 131], for more details). After sev-
eral operations, the Lagrangian can be seen as a weighted least
squares functional plus a Tikhonov regularization term [71]

(11)

where

(12)

and is the error for the training vector
.
The minimization of (11) with respect to and cannot be

done in a single step because depends on . Thus, the fol-
lowing iterative WLS procedure was proposed in [14]:

1) Minimize (11) with respect to and , assuming that
holds fixed.

2) Update using and KKT conditions.
3) Repeat until convergence.
The minimization of (11) produces the following system:

(13)

where , and is
a diagonal matrix with .

The solution of the above system of equations is ex-
pressed in terms of the nonlinear mapping function , which
is seldom explicitly known. Fortunately, the representer theorem
[72] states that vector can be expressed as a linear combina-
tion of the training samples:

(14)

where . Replacing its expression in (13) and
after several algebraic transformations (see [67, Appendix A.1])
follows:

(15)

where is the kernel matrix. The solution
of the above system of equations must be obtained in every step

bns
Highlight
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of the WLS procedure. The value of the coefficients can be
obtained by forcing KKT conditions to hold. Knowing that

if
if

(16)

can be obtained as follows:

if
if (17)

In practice, a maximum value for is imposed to avoid nu-
merical problems when goes to zero. This limitation is
equivalent to a numerical regularization of the kernel matrix.

The output of the WLS-SVC described above adopts the fol-
lowing expression:

(18)

where it is worth noting that converges asymptotically to
in (7) and, therefore, the WLS-SVC converges to the original
SVM.

Unlike with standard QP training methods, we can take ad-
vantage of the WLS formulation to fix a priori the complexity
of the support vector machine. Compact machines can be im-
plemented by imposing an alternative simple semiparametric
model on vector :

(19)

where , , and .
Vectors should form an orthogonal base for the training sam-
ples in the feature space. As the calculation of such a base can be
hard, iterative sample selection methods, clustering techniques
or PCA analysis can be used to select a set of representative
centroids for the training database. In this case, the compact
WLS-SVC solution obtained is just an approximation of the
original SVC:

(20)

It should be noted, however, that the complexity of the com-
pact WLS-SVC is not given by the number of support vectors
anymore, but by the number of centroids. By substituting (19)

in (13), multiplying it by and reordering terms, the

following system is obtained:

(21)

where is the kernel matrix of the training samples
and the centroids and is the kernel matrix of the
centroids. This system of equations must be solved with respect
to the solution in every step of the WLS procedure,
assuming fixed values for . Next, their values must be updated
according to (17).

The experimental results in Section IV-C show that effi-
cient base selection methods, as that described in detail in

Section III-E, enable important complexity reductions when
using the compact support vector machine (up to 500 times and
even higher), without a significant decrease in its recognition
accuracy. Thus, the practical interest of the compact hybrid
WLS-SVC/HMM system is demonstrated, achieving real-time
speech decoding in a connected-digit recognition task with
similar performance to that of the baseline SVM/HMM recog-
nition systems.

E. Base Selection for Compact Multiclass SVMs

The hybrid SVM/HMM speech recognition systems de-
scribed in Section II-C are still far from performing a real-time
decoding. The main reason is that hard problems like auto-
matic speech recognition, with millions of training samples
and highly overlapped classes, result in huge support vector
machines when using conventional QP training techniques. To
alleviate this drawback, we suggest controlling the complexities
of the SVMs by imposing a semiparametric compact model on
the weight vector , as shown in (19). A WLS procedure is
then used to train the compact SVM.

The key point, therefore, lies in finding a reduced yet repre-
sentative set of centroids for the compact WLS-SVC. As previ-
ously stated, there exist a number of alternative procedures to
the exhaustive search for an orthogonal base of vectors, which
may be a hard problem. Several techniques such as clustering or
PCA have been employed in other application contexts to obtain
suitable bases for the semiparametric model [16].

In this work, a sequential selection approach based on the ap-
proximate linear dependence (ALD) condition is used to obtain
a set of nearly independent vectors in the feature space. This pro-
cedure has been designed to exploit the specific distribution of
the training samples in the feature space and the one-versus-one
multiclass architecture employed in this work. First, our selec-
tion method aims at reducing both intra-class redundancy and
inter-class overlap in order to achieve a small base of repre-
sentative centroids. The origin of this overlap is twofold: the
coarticulation effects that make the boundaries of the classes
quite blurry, which is augmented by the fact of using three dif-
ferent classes per phoneme, and the segmentation errors pro-
duced by the baseline HMM-based system that performs the
initial forced alignment. Second, remarkable complexity reduc-
tions are achieved by forcing all the binary classifiers in the mul-
ticlass SVM to share a unique small base of centroids. It may
seem surprising that the set of centroids of a given binary clas-
sifier can contain samples belonging to other different classes.
This fact is explained, however, by the overlap existing between
different classes that allows certain training samples to be rep-
resented by feature vectors from other classes.

It is worth highlighting the use of a unique base of centroids
for the multiclass SVM, as it allows us to achieve larger com-
plexity reductions than other methods previously published in
the literature. For example, a similar approach based on ap-
proximating the SVM decision surface by a reduced set expan-
sion was proposed by Burges in [73]. Although this method has
demonstrated good performance for binary classification tasks
in the speech recognition framework [74], it fails to achieve the
large complexity reductions required in this work since different
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support sets are obtained for each binary classifier. The same
conclusion holds for the kernel online algorithm by Orabona et
al. [75], where each support vector is shared by only two binary
classifiers.

Basing on the ALD condition, the training samples are se-
quentially added to the base of centroids if their projection error
exceeds a preset threshold. Specifically, given a set of centroids

and a new training sample , there exists an op-
timal linear combination of the elements of the base, with pro-
jection coefficients , that minimizes the following squared
error:

(22)

Solving (22) yields the optimal value of [18]

(23)

and the residual

(24)

where is the kernel matrix of the centroids in the base and
denotes the kernel vector of the centroids and the training

sample : . In our selection
approach, a new training sample will be added to the base of
centroids if , where is a preset accuracy threshold
(growing threshold). Otherwise, the sample will not be added to
the base of centroids as it can be represented with a negligible
approximation error by the current centroids.

Once the key fundamentals of the base selection method used
in this work have been presented, we proceed to describe it in
more detail. The selection procedure consists of the following
sequential sample addition (growing) and deletion (pruning)
processes:

1) Intra-Class Selection: First, samples belonging to each
class are processed independently to obtain a set of centroids

for every class . This process aims at re-
ducing the intra-class redundancy and consists of the following
steps.

• A temporary base is initialized with the first
training sample in class .

• Training samples belonging to class are processed se-
quentially in order to compute their ALD residual (24)
with respect to . A new training sample will be
added to the temporary base if its residual is greater than
the growing threshold .

• The projection coefficients vector is computed for every
training sample in class . Their absolute values are then
accumulated in a variable denoted by .

• The components of are normalized with respect
to the maximum. Those centroids in with an
accumulated projection coefficient lower than
a pruning threshold are removed from the list. The
remaining vectors will form the base for class .

2) Inter-Class Selection: Second, the centroids in all the
bases are put together in a single temporary base
and then processed to eliminate the inter-class overlap. This pro-

cedure is similar to the previous one and consists of the fol-
lowing steps.

• A temporary base is initialized with the first vector
in .

• The centroids in are processed sequentially in order
to compute their ALD residual (24) with respect to

. A new centroid will be added to if its
residual is greater than the growing threshold .

• The projection coefficients vector is computed for every
sample in . Their absolute values are then accumu-
lated in a variable denoted by .

• The components of are normalized with respect to
the maximum. Those centroids in with an accumu-
lated projection coefficient lower than the pruning
threshold are removed from the list. The remaining vec-
tors will form the definitive base of centroids for the
semiparametric model in the compact WLS-SVC formula-
tion.

As previously stated, the same base of centroids is em-
ployed in all the binary classifiers of the multiclass SVM.

It will be shown in Section IV that such a simple selection
method leads to compact hybrid WLS-SVC/HMM recognition
systems that are now capable of performing a real-time decoding
of the speech utterances on a medium-complexity connected-
digit recognition task. Namely, it will be shown in Table III
that the complexity of the compact support vector machines (in
terms of the number of centroids in the base) is 266 to 497 times
lower than the complexity of the conventional SVMs (in terms
of the number of support vectors).

IV. EXPERIMENTS AND RESULTS

This section starts with a description of the experimental
setup. Then, we present some experimental results that show
the benefits of the proposed compact hybrid WLS-SVC/HMM
system with respect to the baseline systems.

A. Database

1) Description: The well-known SpeechDat Spanish data-
base [76] is used to assess the performance of the proposed
system. This large vocabulary (more than 24 000 words) con-
tinuous speech recognition database comprises recordings from
4000 Spanish speakers recorded at 8 kHz over the PSTN using
an E-1 interface, in a noiseless office environment. This data-
base comprises 160 000 utterances with isolated and connected
digits, natural numbers, spellings, city and company names,
common application words, phonetically rich sentences, etc.
Most items are read and some of them are spontaneously
spoken.

The database is partitioned into three main sets: training set
(80%), development or validation set (8%), and test set (12%).
The original database is then processed to eliminate the silence
samples placed at the beginning and end of the sentences,
using the time marks in the database label files. As a result,
the training set used for the baseline HMM-based systems
contains approximately 50 hours of continuous speech from
3146 speakers (71 046 utterances).

The development set contains 7436 utterances from 350 dif-
ferent speakers (5 hours of voice after preprocessing) with the
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TABLE I
SUMMARY OF THE DATASETS EMPLOYED IN THE PAPER. THE THREE TRAINING SETS (NB-NONBALANCED-, B1–BALANCED 1-, AND B2–BALANCED 2-) DIFFER IN

THE PORTION OF THE AVAILABLE DATASET USED. DEVELOPMENT AND TEST SETS ARE THE SAME FOR ALL OF THE EXPERIMENTS

same varied content as the training data set. A subset is used to
select the word insertion log-probability for the Viterbi decoder,
since we have found this value very sensitive to different noisy
conditions, and the training parameters of the support vector ma-
chines ( , kernel parameters, growing and pruning thresholds,
etc.).

The test set employed for validation corresponds to the con-
nected-digit recognition task of the SpeechDat database, which
comprises 2122 utterances and 19 855 digits (5 hours of pro-
cessed speech) from 499 different speakers. The number of rec-
ognized phonemes is restricted to the 18 present in Spanish
digits (we have dropped the samples corresponding to the re-
maining 14 phonemes from the data set used for training the
SVMs). The number of discarded samples represents just 8.8%
of the samples in the whole training set.

Finally, it is worth noting that the experimental setup
employed for validation is a trade-off between algorithmic
approach suitable for continuous speech recognition and
computational tractability using current SVM software imple-
mentation. First, the connected-digit task described in this work
is set from a continuous speech recognition point of view, so
that the proposed approach itself is scalable to more complex
tasks. Second, the size of the SpeechDat database (50 hours
of speech) allows us to investigate the different configurations
described in the paper while extracting significant conclusions
from the experimentation.

2) Database Contamination: The robustness of the hybrid
SVM/HMM ASR systems has been tested in clean conditions
and in the presence of additive noise. For that purpose, white
and babble noises extracted from the NOISEX-92 database
[77] were added to the clean speech signals at four different
signal-to-noise ratios (SNRs), namely 12, 9, 6, and 3 dB. Only
the testing and development subsets have been corrupted in the
way previously stated, whereas the acoustic models (GMMs
and SVMs) have been estimated or trained using only clean
speech.

3) Feature Extraction: We use a conventional parameteriza-
tion based on 12 Mel-frequency cepstral coefficients (MFCCs)
plus the energy coefficient, and their first and second deriva-
tives. Thus, a 39-dimensional feature vector is computed every
10 ms using an analysis window of 25 ms. We have employed
the Cambridge University Hidden Markov Toolkit (HTK) [78]
for this purpose.

The cepstral coefficients are then normalized on an utterance
basis, a necessary task for noisy environments, where training
and testing conditions do not match. Besides, this normaliza-
tion is advisable to facilitate the convergence of SVMs. Thus,

every parameter is normalized in mean and variance (CMVN)
according to the following expression:

(25)

where represents the component of the feature vector
corresponding to frame , and and are the estimated
mean and standard deviation from the whole utterance, respec-
tively, for the component.

4) Data Balancing and Context: As mentioned in
Section III-C, the computational limitations of current SVM
software implementations forced us to extract two reduced
balanced data subsets (3 and 6 hours of speech) for the training
of the SVMs. The new training datasets are extracted from
the whole (non-balanced) SpeechDat training set by selecting
phone samples randomly so that each class is equally repre-
sented. Consequently, these acoustic units appear in general
contexts and not only in those observed in the test. In addition,
a large percentage of the discarded samples correspond to
silence segments (as silences represent approximately 34% of
the original training set). Table I summarizes the distribution of
data into these sets.

It is worth mentioning that hybrid speech recognition systems
clearly benefit from the use of context information [29]. For
scalability reasons, the use of context-dependent speech units
is not straightforward. However, context information can be in-
cluded in this case by joining adjacent feature vectors together
into a single input vector, since SVMs can handle vectors of
a very high dimensionality. The empirical study in the hybrid
ANN/HMM ASR framework presented in [5] suggests an op-
timal context length of three frames, which roughly corresponds
to the mean duration of the acoustic units (states of phoneme).

B. Baseline Systems

1) Baseline HMM Systems: A standard left-to-right
HMM-based recognition system implemented using HTK,
similar to that described in [79], is employed to produce a
forced alignment necessary to obtain the labels for the SVMs,
as SpeechDat is not phonetically labeled. More sophisticated
techniques could be included in the recognizer, with minimal
impact on the overall conclusions of this work.

Each of the 32 context-independent phone models consists
of three active states (plus initial and final non-emitting states)
where emission probabilities are modeled by a mixture of 32
Gaussians. The training process of the acoustic models consists
of several steps, including an initial bootstrap models training,
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segmentation of the training set using those models, and iterative
re-estimation of the parameters of the HMM.

This system is employed to produce the state-level segmenta-
tion of the training set used for the hybrid SVM/HMM systems,
i.e., we label each frame with one of the possible 54 states (cor-
responding to 17 phones plus silence). To avoid the potential
appearance of empty states, the HMM topology does not allow
to obviate any of the states except in the /sil/ model whose cen-
tral state is designed to model short pauses and allows a jump
from the first emitting state to the last one and vice versa.

The results of a triphone-based HMM system are also in-
cluded for the sake of completeness. This system, also based
on [79], defines 5,357 triphone models with three active states
modeling the emission probabilities by a mixture of 32 Gaus-
sians.

The word error rates (WER) obtained for the baseline HMM
recognizers in clean conditions are 2.41% for the mono-
phone-based system and 1.87% for the triphone-based one.
Previously published results on comparable tasks prove that the
performances of our baseline HMM-based systems are in the
state-of-the-art. Namely, the word error rate reported in [80]
for a connected-digit recognition task using a triphone-based
HMM system is 2.17%.

As we will show in a more detailed comparison in
Section IV-C, the SVM-based ASR systems present sim-
ilar or even better results in noisy conditions than the baseline
monophone-based HMM system. However, there is still a gap
with respect to the performance of context-dependent HMM
systems. In our opinion, a more effective procedure for the
SVM-based systems to take full benefit of contextual informa-
tion should be developed in order to overcome this gap.

2) Baseline LibSVM/HMM System: A baseline hybrid
SVM/HMM speech recognition system, based on the conven-
tional formulation of the support vector machine, has been
built for comparison purposes. This hybrid system is based
on [11] and employs an SVM to estimate the HMM emission
probabilities that will be used by a Viterbi decoder to obtain the
transcription for the speech utterances.

The SVMs have been trained with the balanced data sets spec-
ified in Table I using the LibSVM toolbox. In this work we em-
ploy the versatile Gaussian kernel function

(26)

The optimal values for the training parameters and were
obtained empirically through a validation process that uses a
subset of the development set described in Table I. Different
values of the training parameters must be used for each of the
context lengths, namely: , for a context length
of 1 frame, and , for a context length of three
frames.

The complexity of the SVM (samples that become support
vectors with their corresponding Lagrange multipliers ) is de-
termined by the training algorithm. In this case, the support
vectors represent at least 69.87% and 65.36% of the balanced
training sets when a context length of 1 and 3 frames is used,
respectively. The dimension of the input feature vectors also

depends on the context length employed in the experiments,
leading to 39 and 117-dimensional training samples. The out-
puts of the SVM provide 54 a posteriori probabilities corre-
sponding to each of the states in our system.

3) Compact WLS-SVC/HMM System: The structure of this
system is similar to that of the previous one, but in this case
the weighted least squares procedure described in Section III is
used to train compact SVMs. A modified version of the software
LibSVM has been employed for this purpose.

Different values for the training parameters were obtained for
each context length through a validation process similar to that
described before: , , , for a
context length of 1 frame, and , , ,

for a context length of 3 frames.
As previously stated, the complexity of the compact SVM

can be fixed a priori by imposing a semiparametric model on
vector . The growing and pruning thresholds con-
trol the number of centroids that form the base for the model.
Their optimal values result from a compromise between size
and accuracy in the SVM. In this case, the centroids represent
a maximum of 0.22% and 0.26% of the balanced training sets
when a context length of 1 and 3 frames is used, respectively. It
will be shown in the next section that such a huge reduction in
the complexity of the support vector machine allows a real-time
decoding of the speech utterances.

C. Experimental Results

Once the experimental setup has been described in detail in
the previous sections, we proceed to present a performance com-
parison of the proposed compact WLS-SVC/HMM recognizer
with both baseline LibSVM/HMM and standard HMM-based
systems. Table II shows the word error rates obtained by these
systems in a connected-digit recognition task. The conventional
HMM-based recognition systems were trained using the whole
non-balanced dataset (NB). For computational reasons, the hy-
brid SVM/HMM systems were trained using the two balanced
subsets (B1 and B2) described in Table I. Context windows of 1
and 3 frames have been considered since previous works in the
field have demonstrated the benefits derived from the inclusion
of acoustic context in the hybrid approach.

In our opinion, the results in Table II show the potential of
hybrid SVM/HMM systems. This fact is especially evident
in noisy conditions, where the best LibSVM/HMM recog-
nition system outperforms the baseline monophone-based
HMM system. Furthermore, the improvements are statistically
significant in five out of eight cases. The proposed compact
WLS-SVC/HMM recognizer provides (statistically significant)
better results than the monophone-based HMM system for
white noise at 3 and 6 dB and equivalent performance (i.e.,
within the confidence intervals) for the remaining cases. It is
worth mentioning that the proposed hybrid SVM/HMM sys-
tems provide competitive performance on this task, while using
much less training samples, namely a maximum of 13% of
the samples in the whole non-balanced dataset (NB) employed
for training the Gaussian mixture models in the conventional
HMM recognizers. Thus, support vector machines seem to be a
promising future alternative to conventional acoustic modeling
techniques in automatic speech recognition. However, it is
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TABLE II
PERFORMANCE COMPARISON OF HMM, LIBSVM/HMM AND WLS-SVC/HMM RECOGNITION SYSTEMS IN NOISY CONDITIONS.

WORD ERROR RATES (WER) WITH 95% CONFIDENCE INTERVALS (CI) ARE SHOWN FOR DIFFERENT NOISE ENVIRONMENTS,
ACOUSTIC CONTEXTS (1 AND 3 FRAMES) AND TRAINING DATASETS (B1, B2 AND NB)

TABLE III
COMPARISON OF THE COMPLEXITY OF HMM, LIBSVM/HMM AND WLS-SVC/HMM RECOGNITION SYSTEMS AT THE DECODING STAGE.

ACOUSTIC MODEL SIZES, IN TERMS OF THE NUMBER OF GAUSSIAN FUNCTIONS TO EVALUATE, AND DECODING TIMES, REFERENCED

TO REAL-TIME (RT) PERFORMANCE, ARE PRESENTED FOR ALL OF THE RECOGNITION SYSTEMS

worth noting that, nowadays, the proposed SVM-based systems
benefit from the inclusion of a three-frame context window
less than HMM-based systems do from the use of triphone
models, as shown in Table II. Therefore, we think that more
elaborate methods for the inclusion of contextual information
in the SVM-based hybrid architecture are required to overcome
current context-dependent HMM-based recognizers. As pre-
viously stated, several interesting alternatives can be found in
[29]–[32].

Comparing now the two hybrid SVM-based systems, it can
be said that the WLS-SVC/HMM recognition system proposed
in this paper provides similar performance to the baseline
LibSVM/HMM recognizer. Comparable word error rates are
achieved by both systems, with the LibSVM/HMM system out-
performing our proposal only in clean conditions (B2 training
set and three frames context length). However, the compact

WLS-SVC/HMM recognizer entails a much lower computa-
tional burden that allows it to perform a real-time decoding
of the speech utterances. Table III shows a comparison of the
decoding stage complexity for these systems.

The complexity of the acoustic models for each of the four
speech recognition systems described above is determined by
different sets of parameters. The model size for the baseline
monophone-based HMM system (1728 Gaussians) result from
54 states, each one modeled by a mixture of 32 Gaussians. The
model size of the triphone-based HMM system is 123 776 Gaus-
sians, since several models share certain states. In the case of
the hybrid LibSVM/HMM and WLS-SVC/HMM systems, their
complexities are given by the number of support vectors in (6)
and the number of centroids in (19), respectively. However, both
values can be expressed in terms of the number of Gaussians
to be evaluated at the decoding stage, due to the fact that such
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Fig. 1. Comparison of the most remarkable results for HMM, LibSVM/HMM and WLS-SVC/HMM recognition systems in noisy conditions. Abbreviation w3
denotes three-frame context length. B1 and B2 denote the training datasets. Vertical segments represent 95% confidence intervals (CI).

a kernel function has been employed in the SVMs. Table III
shows how support vectors represent a large proportion of the
training datasets in the case of the LibSVM-based system. This
is an inherent result in speech recognition, where large datasets
with highly overlapped classes lead to huge SVMs. In contrast,
the weighted least squares training procedure allows us to im-
pose a preset compact model that controls the size of the WLS-
SVC. Consequently, the complexity of the acoustic model in the
WLS-SVC/HMM system is reduced by between two and three
orders of magnitude with respect to that of the baseline hybrid
recognizer.

Decoding times for the speech recognition systems, ref-
erenced to real-time (RT) performance, are also presented
in Table III.1 From these results, it can be seen that the pro-
posed compact WLS-SVC/HMM recognizer achieves similar
performance to the baseline LibSVM/HMM system with a
much lower complexity. The reduction in decoding time is
proportional to the reduction of the model sizes. Although these
recognition times are still higher than those of the conventional
HMM-based systems, the proposed hybrid recognizer is able to
perform a real-time decoding of the test set in three out of four
cases. It is worth noting that although the complexities of the
HMM-based systems are similar or even higher than those of
the WLS-SVC/HMM systems, the decoding time of the latter
is considerably higher. The reason is that all of the Gaussian
kernels must be evaluated in the multiclass SVM to obtain
a single posterior probability. On the other hand, only those
models corresponding to active nodes in the Viterbi search
must be evaluated at a given time in the HMM-based systems.

1Due to the huge computational burden of the LibSVM/HMM recognizer, all
of the decoding time measures in Table III were taken over a reduced test set
and then extrapolated. For this purpose, a PC equipped with an Intel Core 2
Duo E8400 processor at 3 GHz and 3 GB of RAM was employed. Nonetheless,
word error rates shown in Table II were obtained over the whole test set. For the
LibSVM/HMM case, a computer grid was employed.

Finally, we would like to highlight a subset of results se-
lected from Table II. For that purpose these results are replicated
graphically in Fig. 1. First, let us compare the results achieved
by the WLS-SCV/HMM system for the two training databases
(B1 and B2). Although the size of the training database has a no-
table influence on the decoding complexity, since it determines
the number of centroids, the differences in performances are
small and not statistically significant. Therefore, the proposed
system can be trained using a really small database. Second,
since the contextual information has a noticeable influence on
the system performance, we focus our attention on the results
achieved using a three-frame context window (denoted as w3).
We can see that the proposed WLS-SVC/HMM system attains
competitive performance with respect to the monophone-based
HMM system in both clean and noisy conditions, while reducing
the complexity of the SVM/HMM system enough to allow for
real-time speech recognition. In our opinion, these results repre-
sent an important step forward for SVM-based speech recogni-
tion, although further research in this framework is still required
to allow for practical application of the proposed system in more
demanding ASR tasks.

V. CONCLUSION AND FURTHER WORK

The hybrid speech recognition framework has demonstrated
its capability to overcome some of the limitations of HMM-
based recognizers. Support vector machines have several ad-
vantages over classical artificial neural networks, especially in
noisy conditions. However, their computational burden has pre-
vented them from being used in practice in ASR, although sev-
eral preliminary hybrid systems can be found in the literature
[10]–[12]. In this paper, we suggest the use of a weighted least
squares training procedure [14] that allows us to control the
complexity of the resulting SVM (denoted as WLS-SVC) by
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imposing a preset compact model. Other practical issues re-
lated to the application of SVMs in automatic speech recogni-
tion are also addressed. An exhaustive experimental study based
on a connected-digit recognition task reveals the proposed hy-
brid WLS-SVC/HMM recognizer as a promising starting point
for the development of preliminary SVM-based ASR systems.
Specifically, we would like to highlight the following conclu-
sions:

• Competitive performance with respect to standard mono-
phone-based HMM systems has been obtained in clean
and noisy conditions. Furthermore, statistically significant
better results have been obtained in a few noisy cases.

• Real-time speech decoding has been achieved by means of
compact support vector machines.

• Only a small subset (from 6.5% to 13%) of the full training
set (NB) is required to obtain competitive results on the
selected task, which partially alleviates the inherent com-
plexity of SVMs at the training stage.

Once we have implemented a first hybrid WLS-SVC/HMM
system that is able to perform real-time speech decoding on
a medium-complexity connected-digit recognition task, further
research lines open up in order to improve its performance and
to extend it to large-scale ASR. In particular:

• development of better procedures for the selection of the
base of centroids for the compact WLS-SVC in order to
obtain larger reductions in the complexity of the SVM-
based recognizers and better recognition performance;

• analysis of more suitable multiclass architectures and
probability estimation methods for the speech recognition
problem at hand;

• use of more adequate spectral feature representations and
adoption of more elaborate methods for the inclusion of
contextual information in the hybrid architecture such as
[29]–[32], which should contribute to overcome the gap
with respect to triphone-based HMM systems.

Finally, the use of specific techniques for sequence data pre-
diction such as structured SVMs (e.g., hidden Markov support
vector machines [81], maximum margin Markov networks [82],
kernel conditional graphical models [83]) is also among our fu-
ture research lines.
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