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Abstract—Efficient sensor data fusion is one of the more critical 
and challenging tasks in building practical sensor networks. It is 
widely understood that transmitting raw sensor data to a central 
location for processing is severely hampered by scaling, in terms 
of energy consumption and latency costs, in large scale wireless 
networks. However, many detection, classification, estimation, 
and phenomena modeling algorithms rely heavily on the individ-
ual data from each sensor and thus require raw data collection, if 
not from the entire network, then at least among localized node 
clusters of varying sizes. In order to make the data collection as 
efficient as possible, various compression and fusion techniques 
have been proposed and are currently being investigated. In ad-
dition to the compression and fusion algorithms, the topology of 
the aggregation, e.g. the clusters and routes used, can play a sig-
nificant role in the achievable compression rates. 

In this paper, we investigate the problem of cluster formation 
for data fusion by focusing on two aspects of the problem: (i) how 
does one estimate the number of clusters needed to efficiently 
utilize data correlation of sensors for a general sensor network, 
and (ii), given the number of clusters, how does one pick the clus-
ter-heads (sinks of information) to cover the sensor network 
more efficiently. We start by first analytically deriving and ana-
lyzing the number of required cluster heads. We then propose an 
algorithm for the head selection. Simulation results are used to 
investigate the performance of the algorithm compared to ex-
haustively found optimal solutions which show that significant 
improvements in energy efficiency of the fusion algorithms can 
be obtained through minimal efforts spent on optimizing the 
cluster head-selection process.  

Keywords: sensor network, sink selection, data compression, 
power consumption 

I. INTRODUCTION 
Sensor networks have emerged as a fundamentally new tool 

for monitoring inaccessible environments such as nondestruc-
tive evaluation of buildings and structures, contaminant track-
ing in the environment, habitat monitoring, and surveillance in 
military zones. Many autonomous, resource-efficient, sensor 
network applications aim to answer questions about the basic 
patterns, structures, and relationships in the measured data by 
the sensors. Such questions can often be posed as detection, 
classification, estimation, phenomena modeling, or other simi-
lar problems that have been widely studied in the past under 
the assumption that the data is stored and processed at a central 

location. With sensor networks that assumption is changed; we 
assume that the data is not centralized, but rather distributed 
across a collection of networked devices or clusters there of. 
This is driven by the fact that the cost of computation at each 
node is typically much less than the cost of communication 
between the nodes, making the option of transmitting all data 
to a central site for processing relatively expensive and unat-
tractive in comparison. 

Although relying on the data remaining distributed in the 
network is often much more efficient in terms of energy con-
sumption and latency, it creates severe restrictions on the kinds 
of algorithms, their accuracy, and implementation feasibility in 
the network. By collecting a subset of the data in clusters of 
increasing sizes, one can trade off the energy and latency costs 
of the data collection process with the flexibility and ability to 
run more powerful fusion and inference algorithms. 

Having energy as the primary constraint on all aspects of 
design in wireless sensors networks naturally leads to the in-
vestigation of finding ways to reduce the power consumption 
associated with such data aggregation schemes. For example, 
W. Heinzelman et al propose LEACH [5], which randomly 
selects cluster-heads and provides data fusion (aggregation) in 
each hop to the head to reduce energy consumption. Mo Chen 
et al [18] demonstrate the importance of data aggregation for 
energy efficiency by showing that using data aggregation with 
LEACH can increase the lifetime of the network. Pattern et al 
[8] show that the routing relative to data correlation can im-
prove data fusion performance and provide better energy effi-
ciency. They also analyze optimal and near-optimal solutions 
with an assumed data correlation model with uniformly located 
sensors in one dimension. In their model, the data correlation is 
determined by the physical distance of sensors. 

The works mentioned above investigate and show how data 
aggregation can reduce power consumption in, and extend the 
life time of, sensor networks. Furthermore, the routing algo-
rithms based on data correlation in the network can provide 
more efficient data fusion and help in reducing the overall 
power consumption. However, currently it is not clear how to 
apply routing algorithms based on data correlation in general 
sensor networks. For example, nodes in real sensor networks 
are often randomly located in the area of interest. Due to obsta-
cles, device orientation, and observed phenomena changes, the 
relation of sensors cannot be simply given by the physical dis-



tances of sensors. In order to tackle the larger problem, our 
goals in this paper are two fold: (i) How to estimate the number 
of clusters needed to efficiently utilize data correlation of sen-
sors for a general sensor network and (ii) how to pick cluster-
heads according to a given number of clusters to cover the sen-
sor network more efficiently. The answers to these questions 
are crucial in devising routing and other algorithms that rely on 
cluster-based topologies to perform data fusion, compression, 
and aggregation. 

II. RELATED WORK 
Routing protocols for wireless ad hoc networks and sensor 

networks typically optimize the performance in terms of en-
ergy consumption, end-to-end delay, and/or throughput. Varia-
tions of shortest-path routing schemes have been used in such 
networks for a long time. Reference [9] presents an energy-
aware routing protocol that minimizes the energy consumption 
and maintains good end-to-end delay and throughput perform-
ance at the same time. The algorithm constraint is based on the 
maximum transmission distance with minimum hops routing. 
Even through the algorithm provides a trade off method for 
energy consumption and end-to-end delay, its performance is 
heavily dependent on the value for the maximum transmission 
distance constraint. Reference [7] provides a solution for deliv-
ering messages from any sensor to a sink sensor along the 
minimum cost path in a large sensor network. The cost field 
setup algorithm finds the optimal costs of all nodes to the sink 
with one single message overhead at each node. In this algo-
rithm, each node broadcasts the optimal cost to its neighboring 
sensors. Once a minimum-cost path is established, the mes-
sages carrying dynamic cost information flow along the path. 

The problem of maximizing the overall system lifetime for 
data collection is investigated in [17]. There, the sensors in the 
network are grouped into several clusters and sensor data in the 
same cluster are gathered, aggregated, and combined during 
the data collection. The sink sensor of each cluster is regarded 
as a node at a higher level of the data collection hierarchy. The 
sink senor in each cluster is chosen in a round-robin manner in 
each round to minimize the energy burden on the sink node. In 
[6] attempts are made to find data gathering schemes that bal-
ance the energy and delay costs, quantified by energy×delay 
product. The algorithm uses a chain-based multiple level 
scheme to optimize the energy×delay product for the sensor 
network. In each level, sensors are classed as several clusters. 
Data from the sensors are transmitted to the sink senor of that 
cluster by chain link and fused during the transitions. This 
method does not use data correlation or a similar heuristic to 
find an optimal route for compressing during aggregation. 

The potentially heavy overlap in data and distributed nature 
of sensor networks requires efficient and fully distributed data 
compression techniques without requiring the sensors to talk to 
one another during data compression. Distributed source cod-
ing (DSC) is the fundamental concept in information theory 
applicable to this problem. Reference [2] reviews the main 
ideas, provides illustrations, and gives the intuition behind the 
theory that enables this framework. Reference [4] proposes 
distributed source coding (DSC) to reduce energy consumption 
in a sensor network, showing an estimated 10%-65% im-
provement. An adaptive filtering scheme is used to continu-

ously estimate the relevant correlation in the measured data. 
The authors provide a simple distributed algorithm (one 
modulo operation) to implement the DSC. The decoding error 
is unavoidable by this method although error detection and 
correction techniques can deal with such errors. 

The topology in data-gathering in wireless sensor networks 
is a spanning tree because the traffic is mainly in the form of 
many-to-one flows. References [10], [11], [12], and [13] pre-
sent several examples of approaches for energy aware and hi-
erarchical clustering and data collection algorithms. Reference 
[14] evaluates the effect of localized topology generation 
mechanisms on network performance metrics: node degree, 
robustness, channel quality, data aggregation and latency. A 
total of four mechanisms are used there: earliest-first, random-
ized, nearest-first, and weighted-randomized. The simulations 
of [14] show that localized cluster head selection strategies can 
significantly impact the global performance of the network in 
different ways.  

In this paper, we first estimate the optimal cluster size and 
then present a method to select the cluster heads to cover whole 
sensor network so that total information transmitted through 
the sensor network is minimized. 

III. PRELIMINARIES 

A. Distributed Source Coding in Sensor Networks 
References [1], [2], and [16] discuss Distributed Source 

Coding (DSC) in sensor networks. DSC techniques use a 
jointly designed codec of several sensors to reduce the data 
size. If the sensor network contains N sensors (x1, x2 … xN), the 
information obtained by this sensor network can be evaluated 
by the entropy H(x1, x2, …, xN). The information of the sensor 
network is obtained by a large number of distributed sensors 
that transmit to a sink sensor independently. The redundant 
information from the different sensors will require more hard-
ware resources and communication bandwidth. The relation 
between the information of the sensor network and individual 
sensors can be given by information theory as follows: 

 H(x1, x2, …, xN) ≤ H(x1) + H(x2) +…+ H(xN) (1) 

The entropy of sensor network can be expressed by: 

 H(x1, x2, …, xN) = H(x1) + H(x2| x1)+…  

 + H(xN| x1, x2, …,xN-1) (2) 

Here H(x2| x1) is entropy of x2 given information of x1 and 
H(x2| x1) ≤ H(x2). H(xN| x1, x2, …,xN-1) is entropy of xN given 
information of x1, x2, …,xN-1 and H(xN| x1, x2, …,xN-1) ≤ H(xN). 
The equality is satisfied when xN is uncorrelated with any of 
the other sensors. The basic idea of DSC is to use redundant 
information between the sensors to reduce final data size for 
transition. References [3] and [4] discuss how to estimate the 
correlation between the sensors and use those correlations to 
decide how many bits to send by each sensor. 

We assume that each sensor in the sensor network has the 
same hardware architecture, sensor equipment, and data sam-
pling frequency. So each sensor obtains the same amount of 
information in the local region during a given time period. 
However, not all of that information should be transmitted to 



the sink sensors due to limited hardware resource and poten-
tially redundant information between all of the sensors. In or-
der to apply DSC in the sensor network, each sensor has to 
know the relevant correlation of all sensors in network. The 
relative cost to learn and store the correlation information is 
particularly high for sensor with limited power. Thus, although 
not a practical solution here, DSC can be treated as the optimal 
policy providing a lower-bound on the bit-hop metric. 

B. Power consumption in wireless communication system 
The radio model discussed in [15] can be used to evaluate 

power consumption of data transmission. In this model, a radio 
dissipates Eelec (50 nJ/bit), defined for the transmitter or re-
ceiver circuitry, and εamp (100 pJ/bit/m2), defined for the trans-
mitter amplifier. We assume all sensors have transmit-power 
control and can use just the minimum required energy to send 
information to the intended recipients. The sensors could turn 
off their transmitter and receiver to avoid receiving uninterest-
ing information and save energy. This is motivated by the fact 
that receiving is also a high cost operation in the wireless 
communication systems in our aim. The equations used to 
model power consumption of a sensor node for communication 
are given below. 

The power consumption for transmitting sensor: 

 ( ) 2, dkkEdkE ampelecTx ⋅⋅+⋅= ε  (3) 
The power consumption for receiving sensor: 

 ( ) kEdkR elecTx ⋅=,  (4) 

Here d is the distance between two sensors, k is the number 
of bits of information sent, and Eelec and εamp are the constants 
as previously defined. The total power consumption cost is 
given by: 

 ( ) ( )
( ) kdE

dkRdkEE

ampelec

TxTxtotal

⋅⋅+=

+=
22

,,

ε
 (5) 

The power consumption is a second order function of dis-
tance. So the data routing with multiple shorter nearby hops 
will typically be more efficient than directly transmitting be-
tween two far sensor nodes. The power consumption is also a 
linear function of k which is bits of information transmitted 
through the sensor network.  

C. Routing Relative to Data Aggregation 
Reference [4] proposes distributed source coding (DSC) to 

reduce energy consumption. With an ideal DSC schedule, each 
sensor will send exactly the data which would not be transmit-
ted by any other sensor. To apply DSC in a sensor network, 
each sensor has to know the relevant correlation of all sensors 
in the network, making it impractical in a real sensor network. 
As mentioned above, LEACH randomly selects cluster-heads 
and provides data fusion in each hop to reduce energy con-
sumption. Pattern et al [8] show that the routing relative to data 
correlation can improve data fusion performance and provide 
better energy efficiency. They analyze the data correlation 
model in one dimension with uniformly spaced sensors. 

The simple example below illustrates the main concept mo-
tivating our approach here. 

 
Figure 1. Data correlation and power consumption example. 

Fig.1 shows a simple network composed of 5 sensors. Sup-
pose that data from sensor X is to be transmitted to sensor Y. 
Here, path X→b1→Y will be better than path X→a1→ a2→Y if 
total distance or hop count metrics are used. However, assum-
ing |X-b1|<25, |X-a1|<21 and |a2-a1|<21, we can just send the dif-
ference between two sensors instead of the original data. In this 
situation, less data will be transmitted through path X→a1→ 
a2→Y than path X→b1→Y. In real system, it’s better to find 
routing path according to data correlation. We elaborate more 
on this in the next section. 

IV. ROUTING SCHEMES AND CLUSTERING 
Given a graph representing the communication topology 

and a cluster head (root), one can choose different routing 
schemes to optimize energy efficiency. With DSC, each sensor 
can just send information to root through the shortest path 
without any aggregation during transmition because there is no 
redundancy of information in the data sent by any two sensors. 
Thus, the routing with DSC will be straight forward as the 
problem reduces to the well understood shortest-path routing. 
However, as shown in our example in Fig.1, shortest path is 
not the most efficient technique for data compression. Our 
routing policy in this paper is based on data aggregation meth-
ods as discussed in [8]. Here, data is aggregated at each hop 
and routed to the next hop so as to allow for maximum possible 
aggregation along all paths. Consequently, the number of clus-
ters and selection of cluster heads play a very important role in 
obtaining energy efficient solutions [14]. 

A. Number of Clusters in a Sensor Network 
Consider the sensor network with N randomly located sen-

sors. Suppose the average distance from a sensor Si to the other 
sensors which it can directly communicate with, is di. Entropy 
of the sensor Si is Hi. The information that is only provided by 
the sensor Si can be expressed by entropy: 

 ( ) ( )isSHSH ∩−  (6) 

where ( )SH  is entropy of total sensor network; ( )isSH ∩  is 
entropy of total sensor network excluding sensor Si. The coef-
ficient ci is defined as the percentage of unique information of 
sensor Si compared to ( )iSH , the complete information pro-
vided by Si: 

 ( ) ( )
( )i

i
i SH

sSHSHc ∩−= , 10 ≤< ic  (7) 

The coefficient ci can express the degree of correlation be-
tween a sensor and its neighborhood sensors. In real sensor 
networks, the data from two sensors will be almost decorrela-
tive when both sensors are located far away from each other. 



 
 (a) (b) (c) (d) 

Figure 2. Analytical curves for number (K) and sizes of clusters (s) with respect to the degree of correlation (c) and the size of the network (N). 

Each sensor Si can estimate ci according to the correlation be-
tween current sensor and its nearby sensors. 

We consider K=N/s clusters each consisting of s sensors. 
The cluster head for each cluster is located at the center of clus-
ter. The total number of bits-hop cost for the whole sensor net-
work is expressed as: 

 ( ) ( )( ) ( )∑
=

+=+=
K

i
extraraextrarawhole EEKiEiEE

1
intint

 (8) 

where ( )iEintra  and  ( )iEextra  are the bit-hop cost within cluster i 
and the bit-hop cost for cluster i to the sink respectively. intraE  
and extraE  are the average bit-hop cost within the clusters and 
the average bit-hop cost from the clusters to the sinks. We can 
obtain expressions for each of these: 

 ( )( )( )
( )( )( )NdHcsHE

sdHcsE

1

1

extra

intra

−+∝

−∝  (9) 

where H, c and d is the average of H(si), ci and di. ( )Hcs 1−  

and sd  are average number of bits of all sensors except the 
head of cluster in a cluster, and average distance from the sen-
sors to the head of cluster respectively. ( )HcsH 1−+  and 

Nd  are average number of bits of the head of cluster after 
data fusion and average distance from the head of cluster to 
the root. The number of sensors in each cluster is much larger 
than one (s-1≈s when s>>1) in most case. So, we have: 

 ( )
NHcdN

NdNcHsHcdNsKEKEE extrarawhole

+

−+∝+= − 11
int  (10) 

The optimum value of the cluster size sopt can be deter-
mined by setting the derivative of the above expression equal 
to zero:  

 ( ) 01
2

0 2 =−−⇒=
∂

∂ − Ncs
s

c
s

E whole  (11) 

The optimum number of clusters can be expressed as: 
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The optimum number of clusters Kopt depends on the num-
ber of sensors in the entire sensor network and the degree of 
correlation c. Fig.2 shows how different number of clusters and 
cluster sizes perform across a range of correlation levels and 

sensor network sizes. As expected low correlation levels re-
quire small cluster sizes while high correlation levels require 
larger cluster sizes. Also the number of clusters is relative to 
sensor network size. In other words, the larger the sensor net-
work (larger N) the more clusters are required to apply optimal 
data aggregation. 

B. Selecting the Heads of Clusters 
The location of cluster head is very important in minimiz-

ing the total cost of power consumption. If the cluster heads are 
located too close to each other, the sensors that are far away 
from them will have to transmit their data using more hops to 
reach any one of the cluster heads, making the transmissions 
wasteful. Conversely, if the cluster heads are located too far 
from each other near the boundaries of the network, again rout-
ing data to them from the sensors will prove to be inefficient. 
The problem is further complicated in realistic deployments 
since all sensor node location information is not available cen-
trally. Here we propose an algorithm to select suitable cluster 
heads which cover more regions with smaller average total 
communication distances to the sensors in their clusters. 

It’s not difficult for each sensor to know how many hops it 
is away from another sensor. This process can be localized for 
larger networks by setting a limit on the maximum number of 
allowable hops. As an example, Fig.3 shows sensors in a net-
work with the maximum number of minimum hops (max-min 
hops), by which each can reach any other sensor. For example, 
a sensor with a number 2 in Fig.3 can reach all other sensors 
with only 2 hops while a sensor with a number 5 requires as 
many as 5 hops to reach all other sensors. The sensors with 
smallest of this max-min hop number are said to be located at 
the center of the network. In general, more than one such sen-
sor at or near the center will be obtained. An algorithm for de-
termining the max-min hop counts at each sensor can be di-
vided into the following three stages: 

i) Initialization: For each sensor, the hop number to all other 
sensors is infinite and the distance to itself is zeros: 
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ii) Find number of hops to any other sensor: For each step, 
the hop number from sensor i to sensor j is updated as: 
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Here k1, …, kL are the neighboring sensors of sensor i. L is 
the number of neighbors. 

iii) Find sensors in the center: When each sensor has the min 
hop number to all other sensors, find max hop number: 

 ( )( )Nkkihopnmaxn i L,1,,_max_ ==  (15) 

After that, each sensor will exchange information about its 
n_maxi and the sensor with minimum n_maxi will be a poten-
tial sink sensor. 

The process outlined above is one method of determining 
nodes that are in, or near the “center” of the network. The Clus-
ter Head Selection (CHS) algorithm we propose uses this in-
formation as a starting heuristic based on the n_maxi of each 
sensor. Note that it is not necessary for nodes to determine their 
exact locations with respect to the center of the network. How-
ever, in order to find a suitable solution, we not only must en-
sure that the roots are near the center (have a means of estimat-
ing such), but also that they are adequately away from each 
other so as to avoid the problem of having cluster heads that 
are located in a very small region. To do this, we utilize the 
following cost function:  

 ( ) ( )∑∑
==

−==
K

i
near

K

i
ii iidmaxnKisf

11
,_,...,1, λ  (16) 

where ( )neariid ,  denotes the distance between cluster head si 
and another nearest cluster head. Given the parameter λ, the 
cluster heads can be obtained by minimizing the func-
tion ( )Kisf i ,...,1, = . Fortunately, it is often not necessary to 
search all possible cluster head combination to find a good 
solution. To solve this minimization problem in our simula-
tions for example, we randomly select K sensors as initial 
cluster heads. We then perform a “move” operation which 
swaps a selected cluster head with a neighboring node. The set 
with small ( )Kisf i ,...,1, =  is kept as the potential cluster 
head assignment. If no moves lead to lower cost solutions, we 
randomly try a different set of K sensors and compare it with 
previous set. With randomly selecting initial cluster head as-
signments like this, it is possible to change cluster heads after 
a certain time period to avoid cluster heads that exhaust their 
energy supplies prematurely. In the simulations below, we use 
30 iterations to converge on the final result while λ is set equal 
to 0.5. 

 
Figure 3. Sensors with maximum hop number to any other sensor 

V. SIMULATION RESULT AND EVALUATION 
In order to illustrate and evaluate the performance of this 

algorithm, let us consider a network with 200 light sensor 
nodes, with 4 light sources located above the sensors with a 
constant movement speed in a randomly chosen direction. The 
power of each light source changes as it moves. The light am-
plitude which is detected by each sensor j is given by: 

 ( ) ( )
( )( ) n

StLdist
tPtdata

K

i ji

i
j += ∑

=1
2,

 (17) 

Here, K is the total number of light sources, Pi(t) is power 
of light i and dist(Li(t), Sj) is distance between light i and sensor 
j, n is system noise (different in each sensor). The data signal is 
digitized to 256 digital levels. Thus, most of the sensors have 
large data correlation while a few are uncorrelated. This simu-
lation evaluates the cluster head selection (CHS) algorithm and 
includes a total of 40 cases. Each sensor can directly communi-
cate with up to eight of its nearest sensors. Both sensor net-
work and light sources are randomly generated in each case. 
With our CHS algorithm, cluster head can be selected with the 
given cluster number (2 and 3 in this simulation). All sensors 
will be connected to the cluster head by a routing driven by 
data aggregation metric as previously described. Each sensor 
will thus transmit the data through the corresponding path 
(lowest cost) to the cluster head. At each passing hop, data 
fusion is applied to reduce data size. The power consumption 
of the sensor network is calculated using Eq.(5). The average 
power consumption of one sensor data to corresponding cluster 
head is calculated to evaluate performance of the cluster heads.  

For comparison, we also try all possible cluster heads using 
a exhaustive search. The optimal cluster head selection with 
the minimum power consumption found through this method is 
reported for reference. In addition, average and standard devia-
tion is calculated with result of all possible cluster heads. Fig.4 
(a) and (c) shows the power consumption with two and three 
cluster heads selected by CHS correspondingly. The power 
consumption of CHS is less than mean-STD of all possible 
cases in most situations. The performance of CHS is very close 
to the optimal result in most cases. Fig.4 (b) and (d) also show 
increasing power consumption of CHS compared with optimal 
result for two and three clusters correspondingly. On average, 
power consumption increases by 8.50% and 9.52% for the two 
and three clusters when compared to the optimum. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a practical approach for es-

timating the number of clusters and selecting cluster heads, to 
efficiently utilize data correlation for aggregation driven rout-
ing. The results indicate that here, minimal optimization efforts 
using heuristic starting solutions and probabilistic search meth-
ods can yield near optimal results when compared to exhaus-
tive search methods for cluster head selection. The cost of this 
optimization effort can be amortized in the long run in the sav-
ings that are achieved by the increased efficiency in data ag-
gregation, fusion, and compression phases that will potentially 
require far fewer total numbers of bits to be transmitted.  

There are several interesting and challenging questions that 
yet remain to be answered here. For example, modeling and 
quantifying the savings in data aggregation that result through 



the optimizations at the topology formation and management 
phases pose a number of challenges. Furthermore, the routing 
used in this paper allows for maximum possible aggregation at 
each hop which may not always be practically possible to im-
plement. The correlation between sensors also considers spatial 
relations among sensors. Temporal correlation in sensor data 
can also reduce power consumption which opens other avenues 
for future study.  
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Figure 4. Comparisons in performance of CHS with optimal cluster heads with mean and standard deviation of all case.  Figures (a) and (b) are result for two 
clusters while (c) and (d) are the result for three clusters. 


