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Abstract

This paper presents an image processing technique for automatic real time fire detection in video images. The underlying algorithm is

based on the temporal variation of fire intensity captured by a visual image sensor. The full image sequences are analyzed to select a

candidate flame region. Characteristic fire features are extracted from the candidate region and combined to determine the presence of

fire or non-fire patterns. Fire alarm is triggered if the fire pattern persists over a period of time.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The progress on video surveillance and monitoring
equipment technology in the last decade has increased the
presence of Closed Circuit Television (CCTV) cameras in
many public and private areas. Their presence has opened
the CCTV market to the opportunity to perform, besides
monitoring and storage, automatic event detection, e.g.
real time video fire detection.

Image processing algorithms for automatic video fire or
smoke detection have been developed in the past for
applications in tunnels, aircraft hangars, fighting ships, etc.
[1–3]. But none of the algorithms presented in the past are
so robust and flexible as to face all of the problems typical
in the CCTV automatic video fire detection. These
problems are:
�
 Lighting conditions (day and night, artificial lights, light
reflections, shadows).

�
 Image quality (poor camera resolution, poor camera

contrast, poor signal transmission, dirty lens, vandalism
affecting the image quality).

�
 Scene complexity (moving objects and people: different

velocities and sizes).
e front matter r 2006 Elsevier Ltd. All rights reserved.
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�
 Processor performance (real time detection, processor
speed and memory).

�
 System installation (friendly configuration and parame-

trisation).
Great flexibility and high reliability are required from the
fire detection algorithms to reduce the false alarm rate and
to decrease the alarm reaction time. Moreover the
detection algorithms must not disturb the performance or
reduce the quality of the monitoring and storage task.
The method presented in this paper uses the temporal

accumulation of time derivative images to extract the best

candidate fire region. The temporal accumulation and the
candidate fire region are described in Section 2. The
subsequent analysis for the detection of fire is evaluated
with the data of the best candidate fire region. Character-
istic fire features are extracted from the image data of this
region, as described in Section 3. These features are used to
compute the fire indicator, see Section 4, whose pattern
describes the presence of fire or non-fire in the video
sequence. A fire alarm is triggered if this fire pattern
persists for a critical time. In Section 5, the sensitivity
parameters of the algorithm are introduced and their effect
on the false alarm rate and alarm reaction time are
explained. Finally, in Section 6, the response of the
algorithm towards a series of tests in different environ-
ments is discussed.
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Fig. 1. Typical fire video image (a) and its cumulative matrix (b).
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2. Candidate fire region

Fire has the property to flicker, increasing and decreas-
ing the intensity of the emitted light. From the point of
view of a camera, this flicker causes an increase and
decrease in the luminance of the video images. The typical
fire flicker frequency is in the 1–10Hz range [4]. Moreover,
fire is, typically, the strongest source of light, thus the
luminance of the pixels near the fire tends toward the
maximal value allowed by the camera, reaching in most
cases the saturation level. These two properties of the fire,
flickering and reaching maximal luminance, are used to
model the algorithm presented in this paper.

The ‘‘YUV’’ representation of the video data is assumed
here. The luminance component is represented by Yik(t)
and the chrominance, i.e. the colour information, by its
two components Uik(t) and Vik(t), where t is the time and
the indices i, k are the horizontal and vertical pixel
position.

The time derivative of the luminance Yik(t) is zero for the
stationary scene regions, and is non-zero for moving
objects. Thus the time derivative of the video images will
track a moving object. The sum of the absolute value of the
derivatives increases if the object moves periodically
around a region. In case of a fire scene, the property of
the fire to flicker increases permanently the pixels value
near the fire region. This sum of derivatives is represented
by:

Mik ¼
X

t

DikðtÞ; t0ptotn;

where [t0, tn) is the discrete summation interval and
DikðtÞ ¼ jqtY ikðtÞj is the absolute value of the luminance
time derivative, e.g. the discrete approximation is:

DikðtÞ ¼ jY ikðtÞ � Y ikðt� 1Þj.

A more efficient and robust way to express the sum Mik(t)
is to introduce the cumulative time derivative matrix Aik(t),
expressed by the recursive formula

AikðtÞ ¼ aAikðt� 1Þ þ ð1� aÞDikðtÞ,

where a represents the cumulative strength, 0pap1. The
matrix Aik(t) describes approximately the mean of the time
derivatives Dik(t) in the time interval ½t�N; t� with
N þ 1 ¼ N/a. Contrary to the sum Mik, the cumulative
time derivative matrix Aik(t) has the advantage of being
recursive and the values of Aik(t) increase or decrease
exponentially according to the cumulative strength a,
converging to finite values:

minfDikðtÞgpAikðtÞpmaxfDikðtÞg.

Fig. 1(b) shows a typical cumulative time derivative matrix
Aik(t) of a fire video sequence. The values of Aik(t) are
scaled to fit an 8 bits luminance image.

In the fire scene, the cumulative matrix Aik(t) will have
high values at the borders of the flame region and
otherwise values nearly zero. For persistent fire, the values
of Aik(t) near the flame region converge as a geometric
series to the temporal mean of Dik(t). In the center of the
fire, most luminance pixels are saturated, their time
derivative is zero, and they do not contribute to Aik(t).
In order to improve robustness of the cumulative time

derivative matrix towards false alarms, the time derivative
Dik(t) is multiplied by a weight matrix Wik(t):

AikðtÞ ¼ aAikðt� 1Þ þ ð1� aÞDikðtÞW ikðtÞ.

To enhance the property of the fire of having pixels with
maximal luminance and to suppress those having low
luminance, the weight matrix Wik(t) is chosen to be
proportional to the luminance. This condition is expressed
by

if Y ikðtÞXd then W ikðtÞ ¼ Y ikðtÞ; else W ikðtÞ ¼ 0,

where the luminance threshold d(l1,l2) depends from two
empirical constants l1 and l2. These empirical constants
ensure that the threshold d is always between the maximal
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fire luminance and the scene mean luminance, suppressing
most of the non-fire pixels of the scene.

Pixels in the cumulative time derivative matrix Aik(t)
with high value represent pixels with high probability of
being fire pixels. Thus, to extract the best candidate fire

region OROI, the pixel with maximal value in the cumulative
matrix is chosen:

ðiROI; kROIÞ ¼ fði; kÞjmaxfAikðtÞgg.

The region OROI, is defined in the algorithm implementa-
tion as a 32� 32 pixels neighborhood of (iROI,kROI).

The method presented here uses only one OROI region to
detect the presence of fire. Obviously, it is possible to
choose more than one non-overlapping candidate fire
region.

3. Features extraction

In the second part of the detection, the analysis is
focused only on the candidate fire region OROI: character-
istic fire features are extracted and combined to evaluate
the presence of fire or non-fire patterns.

To extract the six features used for fire detection, the
notion of the active pixels of the OROI region is introduced:
it is defined as the pixels (i,k) of OROI whose values Aik(t)
are greater than or equal to a threshold Z1, where
0pZ1p255 for Aik(t) quantized to 8 bits. The set of active
pixels of OROI is thus

pROI ¼ fði; kÞ 2 OROIjAikðtÞXZ1g.

The luminance of the active pixels in the OROI region
provides the basis for the extraction of three main features:
The luminance of the active pixels: IROI(t).
The frequency of IROI(t): fROI(t).
The amplitude of IROI(t): aROI(t).
The luminance of the active pixels is thus

IROIðtÞ ¼ fmeanfY ikðtÞgjði; kÞ 2 pROIg.

The features fROI(t) and aROI(t) are estimated analyzing the
luminance curve IROI(t) over the time t.

The second set of three features is related to the numbers
of pixels:
The number of active pixels: rROI(t).
The number of saturated pixels: sROI(t).
The number of fire-color pixels: cROI(t).
Fig. 2. Qualitative representation of the chrominance sector Oc and the

chrominance pixels (Vik(t), Uik(t)) for a typical fire video sequence.
The number of active pixels rROI(t) is defined as the size of
the set pROI:

rROIðtÞ ¼ kpROIk ¼ fnumber of ði; kÞ 2 OROIjAikðtÞXZ1g.

Thus rROI(t) is in the range 0orROIðtÞoNROI, where NROI

is the total number of pixels in the region OROI. The feature
rROI(t) acts as a measure of the number of pixels in OROI

that fulfill the fire properties described by the cumulative
time derivative matrix Aik(t).

The second feature of this group, sROI(t), represents the
number of luminance pixels that are saturated, i.e. pixels
whose value is bigger than or equal to a threshold Z2:

sROIðtÞ ¼ fnumber ofði; kÞ 2 OROIjY ikðtÞXZ2g,

where Z2o255 and Z2b0. This feature acts as a measure of
the number of pixels in OROI that fulfill the condition that
fire pixels have maximal luminance value.
The feature cROI(t) is defined as the number of

chrominance pixels in the region OROI falling in a
chrominance sector Oc divided by all the active chrominance

pixels in OROI:

cROIðtÞ ¼ fnumber ofði; kÞ 2 OROIjðVikðtÞ;UikðtÞÞ 2 Oc

and kðV ikðtÞ;UikðtÞÞkXe and AikðtÞXZ1g=rðtÞ,

where (U,V) represents the chrominance vector, and r(t) is
the number of active chrominance pixels in the region
OROI:

rðtÞ ¼ fnumber of ði; kÞ 2 OROIjkðVikðtÞ;UikðtÞÞkXe

and AikðtÞXZ1g,

where e is typically 0oeo20. The first inequality in r(t),
J(Vik(t),Uik(t))JXe, ensures that the pixels near the grey
scale are eliminated. The second inequality ensures that
chrominance pixels that are not active pixels are not
considered. This feature measures the presence of fire pixels
in OROI using the color propriety of fire. For monochrome
cameras and poor color cameras, this feature can be
switched off, as described in Section 5, or its contribution
to the final fire pattern can be attenuated.
The chrominance sector Oc is in the algorithm imple-

mentation represented by two lines, dividing the chromi-
nance space in two sectors, see Fig. 2. The fire sector is
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around the color red and is chosen wide enough, so that
chrominance analysis for poor quality color cameras or
cameras with slight color shift can be still done.

In order to have robust and continuous feature values,
each feature is accumulated over the time using the efficient
recursion method:

xROIðtÞ ¼ bxROIðt� 1Þ þ ð1� bÞxROIðtÞ,

where xROI(t) is the feature value, e.g. the active pixels
feature rROI(t). b is the accumulation strength and xROI(t)
is the resulting cumulative feature value. The strength b is
chosen so that it reproduces a time integration over 1 s, i.e.
b ¼ 0:96 for a video frame rate of 25 fps.

4. Fire pattern

Each of the six features, xROIðtÞ, is associated with an
indicator, I(x,t), as follows:

Iðx; tÞ ¼ 1 if mlowðxÞXxROIðtÞXmhighðxÞ

Iðx; tÞ ¼ 0 else.

The values of the thresholds mlow(x) and mhigh(x) are
determined empirically. All these indicators are combined
together to build the fire indicator IF(t), which describes the
presence of fire or non-fire. An intuitive and easy way to
represent IF(t) is to multiply all the six indicators xROIðtÞ:

IFðtÞ ¼ IðI ; tÞIðf ; tÞIða; tÞIðr; tÞIðs; tÞIðc; tÞ.

Obviously, more sophisticated representations of IF(t) are
possible, e.g. the combination of the features xROIðtÞ to a
neural network.

The fire pattern is recognized if the fire indicator IF(t) is
equal to 1. A fire alarm is triggered if this fire pattern
persists for a critical time. This is expressed by the
integrator Q(t), which increments or decrements according
to the value of IF(t):

QðtÞ ¼ Qðt� 1Þ þ nð2IFðtÞ � 1Þ,

where n represents the decrement and increment strength.
The integrator Q(t) increases by a factor n if IF(t) is equal to
1, else it decreases.

In order to prevent an endless decrement or increment,
Q(t) is saturated to 0 on the bottom and by the threshold
QT on the top. Alarm is then triggered if the integrator Q(t)
reaches the threshold Q0 : QðtÞXQ0 ) fire alarm, where
0pQ0pQT. Fig. 3 shows a typical Q(t) pattern, where fire
has been detected.
Fig. 3. Typical Q(t) for fire pattern, alarm is triggered if Q(t)XQ0.
5. Sensitivity

The scene environment and the application require-
ments—e.g. outdoor scene with low false alarm rate—
demand high flexibility from the algorithm. Internal
parameters need to be adapted without affecting seriously
the detection performance and reliability.
Four sensitivity parameters have been introduced to

modify the algorithm’s internal parameters according to
the requirements and needs:
Sr
 time reaction sensitivity,

Sl
 luminance sensitivity,

Sm
 motion sensitivity,

Sc
 chrominance sensitivity.
The S are in the range: 0pSp1 and the default value, or
standard configuration, of S, with the exception of Sc,
whose default value is 1, is 0.5. The change of one or more
sensitivity parameters has an immediate impact on a set of
corresponding internal parameters.
The time reaction sensitivity Sr ¼ Srðn;Q0;QTÞ affects

the parameters n, Q0 and QT, defined in Section 4.
Increasing the sensitivity parameter Sr, decreases the
reaction time of the algorithm: less time is needed to
trigger the fire alarm.
The luminance sensitivity Sl ¼ Slðl1; l2; Z1; Z2; bÞ influ-

ences the internal parameters l1, l2, Z1, Z2 and b, defined in
Sections 2 and 3. It is coupled to the light condition of the
environment scene: luminance, contrast, saturation, etc.
Increasing the sensitivity Sl increases the algorithm’s

reaction to small changes of the scene’s light condition.
The motion sensitivity Sm ¼ SmðaÞ controls the build-up

of the cumulative matrix Aik(t) by affecting the internal
parameter a. Higher values of Sm mean that the algorithm
is more sensitive to moving objects, e.g. tree’s leaves, snow
flakes, light reflections, etc.
The chrominance sensitivity Sc weights the chrominance

indicator I(c,t), in such a way that if Sc is equal to 0, no
color analysis is considered; if it is equal to 1, the
chrominance indicator is weighted with the same strength
as the other indicators. In the case of a monochrome
camera or a poor color camera, Sc is set to 0.
The sensitivity parameters—except Sm—can be adjusted

by analyzing offline the values of the features for a
representative time interval. A special software simulator
tool has been developed to analyze offline the features data
and to estimate good values for the sensitivity parameters.
False alarm rate and reaction time can be tuned by
changing the sensitivity parameters directly on the software
tool.

6. Tests and conclusions

The algorithm has been implemented on an Equator
MAP-CATM digital signal processor (DSP). CCTV cam-
eras have been installed in different indoor and outdoor
environments and connected to the DSP board. The video
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images have been down-sampled to the CIF format
(288� 352 pixels) before being analyzed at 25 fps.

The tests have been subdivided in two phases: a training
or learning phase—where the algorithm’s parameters are
tuned to the scene environment—and an operating phase—
where the detection was operative.

During the training phase, which lasted between 15 to 20
days, the algorithm ran with the default sensitivity
parameters. Every ca. 30 s (ca. 750 frames) all the features
values of one frame were written on a file. Thereafter, the
software simulator tool, which delivers the false alarm
statistics, analyzed the collected data. It simulates offline
the change of the false alarm statistics according to the
change of the sensitivity parameters.

In our tests, the sensitivity parameters have been
changed in order to have at least 2 false alarms in 10 days.
First the time reaction sensitivity, Sr, was adjusted to have
60 s maximum reaction time. Then the luminance sensitiv-
ity, Sl, was adjusted according to the environment light
conditions, with the intent of reducing the remaining false
alarms. Motion and chrominance sensitivity, Sm and Sc,
were not changed. If some false alarms were still present,
the time reaction sensitivity was decreased again to reach
the desired compromise between the false alarm rate and
the reaction time.

In the operative phase, the algorithm has been reconfi-
gured with the new sensitivity parameters. The tests in the
operative phase lasted for ca. 25 to 40 days.

The algorithm has been tested in different environments.
As expected, in the operative phase, the algorithm detected
less than one false alarm per week in almost all environ-
ments. In one case, the particular environment as well as
the position of the camera and the type of the moving
object have generated an unfavorable set of conditions so
that the false alarm rate was very high under specific
lighting conditions.
In general, the tests showed that the method proposed

here works under a variety of conditions. It has high
reliability and a strong robustness towards false alarm in
most critical environments. Moreover, the reaction time
and the sensitivity of the algorithm can be adjusted
according to the scene complexity and light condition,
increasing the flexibility of the method. Tests with true fires
in the laboratory showed a fast reaction of the algorithm.
Other tests with true fires in non-laboratory environ-
ments—working rooms, high rack warehouses—are in
progress.
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