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Web usage mining is a significant research area with applications in various fields. How-
ever, Web usage data is usually considered streaming, due to its high volumes and rates.
Because of these characteristics, we only have access, at any point in time, to a small frac-
tion of the stream. When the data is observed through such a limited window, it is chal-
lenging to give a reliable description of the recent usage data. We show that data
intralinkings, i.e. a usage record (event) may be associated with other records (events) in
the same dataset, are common for Web usage streams. Therefore, in order to have a more
authentic grasp of Web usage behaviors, the corresponding data stream models for Web
usage streams should be able to process such intralinkings. We study the important con-
sequences of the constraints and intralinkings, through the ‘‘bounce rate’’ problem and
the clustering of usage streams. Then we propose the user-centric ABS (the Anti-Bouncing
Stream) model which combines the advantages of previous models but avoids their draw-
backs. First, ABS is the first data stream model that is able to seize the intralinkings
between the Web usage records. It is also the first user-centric data stream model that
can associate the usage records for the users in the Web usage streams. Second, owing
to its simple but effective management principle, the data in ABS is available at any time
for analysis. Under the same resource constraints as existing models in the literature,
ABS can better model the recent data. Third, ABS can better measure the bounce rates
for Web usage streams. We demonstrate its superiority through a theoretical study and
experiments on two real-world data sets.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The bounce rate (BR) of a website is the percentage of visitors (or users) who hit a given page and do not visit any other

page on that website. It is defined as BR ¼ To
Tv

� �
with To the total number of visits viewing only one page and Tv the total

number of visits. According to Wikipedia it essentially represents the percentage of initial visitors to a site who ‘‘bounce’’ away
to a different site, rather than continue onto other pages within the same site [46]. Bounce rate is very important for usage
ier).
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Table 1
Streaming events (1), their corresponding navigations (2) and the navigations in Bn , the batch that contains the last six events (3).

(1)
Event e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

User u1 u2 u3 u4 u1 u5 u3 u6 u5 u7

Page a b d b c a e b c b

(2)
u1 u2 u3 u4 u5 u6 u7

a b d b a b b
c e c

(3)
u1 u3 u5 u6 u7

c e a b b
c
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analysis and most commercial websites would like to lower it.1 Actually, let us consider a website C. When a user clicks
through a paid advertisement on website A and arrives on a landing page on C, she is expected to navigate through several pages
on C. If this is not the real case, then the advertisements may be not well targeted. Usually, the aim of commercial websites is to
drive their users through multiple pages since they are expected to click on paid advertisements. For such websites, bounce rate
indicates how the pages succeed in encouraging the users to browse different pages. There are many reasons for a high bounce
rate. We separate these reasons in two categories.

The first category is related to the content of the page, for instance, its relevance with regards to the users interests, the
links to other pages, the bad ergonomics or the keywords which do not reflect its content.

The second category is related to the data model used for the usage analysis. This is particularly true for data streams. We
claim that, in some cases, the observed bounce rate is higher than the real one, because of the data stream model. To the best
of our knowledge, this is the first paper providing a study for lowering the observed bounce rate in data streams.

1.1. Measuring the bounce rates for web usage streams

Let us introduce some definitions related to usage data streams. Because of their high volumes and rates, it is usually
impossible to analyze such streams in real time. Sometimes, it is even impossible to solely store their whole content.

Definition 1. An event ei is a tuple ei ¼ huid; time; pagei, where i is the identifier of e, uid is the user identifier, time is a
timestamp and page is the page requested by user uid at that timestamp. An event data stream is a stream of events.
Definition 2. An observation window of size n is a set of n events from the stream.
Definition 3. The navigation of a user ui, at time t is the series of events ex ¼ huj; tk; pli; k 2 ½0; t�, where uj ¼ ui.
According to Definition 1, an event data stream contains the user requests. Since the whole set of events from a data

stream is too large to fit in main memory, the stream is usually processed through an observation window containing a sub-
set of n events (C.f. Definition 2). The navigation of a user, as given by Definition 3, contains the set of pages that have been
requested by that user up to the current time. A model represents the information and description of the stream. In this
paper, a model is a set of navigations, built on the events that have been selected from the stream. Obviously, the content
of a model depends on the event selection strategy. Let k, be the maximum number of events that can be kept in main mem-
ory. A popular data stream model is based on batches of events [17,23,29], where the observation window is the chunk con-
taining the last k events. For each batch, the events are processed while the next batch is being filled with the new events.
Each batch is discarded when the next one is ready for processing. Example 1 illustrates this model (which will be detailed in
Section 2) and its principle on a toy dataset.

Example 1. Let us consider the events given in Table 1 (1). Each event ei associates an event Id i, a user (or visitor) and a
page. The navigations on the whole dataset in this example are given in Table 1 (2). For instance, the navigation of u1

contains two pages (a and c). For simplicity, we only keep the pages in the navigations (we do not show the timestamps). Let
us consider Bn which is the batch containing the last six events in this stream (i.e. ½T5::T10�Þ. The navigations of Bn are given in
Table 1 (3). The main observation is that the navigations of users u1 and u3 are truncated. This has important consequences
on the data analysis:
1 Meanwhile, some websites will not try to lower their bounce rate. A website might, for instance, want to provide its users with fast and accurate
information (in that case, it does not want to keep the users as much as possible on its pages).
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1. The observed bounce rate in Bn is much more important than the real bounce rate 4
5 in Bn vs: 4

7 in the whole data
� �

.
2. Let us consider the clusters that would be obtained in Bn and the ones obtained in the total data. A reasonable clustering

obtained on the whole dataset would be fClust1 ¼ ðu1;u5Þ; Clust2 ¼ ðu2;u4;u6;u7Þ; Clust3 ¼ ðu3Þg which would be
described by the centers fa; cg; fbg and fd; eg. Meanwhile, the clusters obtained for Bn would be
fClust1 ¼ ðu1Þ; Clust2 ¼ ðu3Þ; Clust3 ¼ ðu5Þ; Clust4 ¼ ðu6;u7Þg having centers fa; cg; fbg; feg and fcg. Obviously, the cluster-
ing result on Bn is very different from the one obtained on the whole data (or a larger set of recent data).

3. Truncated navigations cannot be reliably retrieved.

The main point from Example 1 is the observed bounce rate according to existing models in the literature is higher than
the real one. This is due to the fact that existing data stream models are based on removing obsolete events. Actually, the
data stream models from the literature have a common point: they sort the events by timestamp and they maintain a maximum
number of events in the model. Therefore, the navigations of many users cannot be reliably retrieved. In Example 1 the nav-
igations of users u1 and u3 are truncated. Hence, the need for a better model that would keep such a valuable information.
1.2. Data intralinking in event streams

In many applications such as Web usage analysis and online shopping/auction systems, records that are already in the
event streams may be ‘‘intralinked’’ (i.e. associated) with others arriving before or after them. For instance, when users
access internet through mobile phones, due to the operation inconvenience, they are unable to visit several Web pages
within a very short period. Their requests are thus separated into several records occurring at non-successive time steps.
In the case of Web usage, over time, new users are added. Moreover, when existing users request new URLs, the URLs are
added to the tuples of these users. Let the Web page request list of a user be the behavior summary of this user, we see that
the behavior summaries of the users in usage streams are evolving along time. The intralinkings of records in the Web usage
streams are therefore very important for investigating user behaviors.

In essence, an event stream with data intralinkings is an event stream having records with user identifiers, with the full
usage records of each user being distributed as separate records inside the streams. We would like to clarify that ‘‘an event
stream with data intralinkings’’, is not a very novel definition, since a lot of the data (e.g. Web usage data) for mining and
management are similar to the one used in this paper. However, existing methods often assume that the raw data has been
pre-processed before analyzing the data. For instance, in Web usage mining, identifying users and user sessions, and defining
transactions are both needed before association rule mining [14,33]. Yet such data preparation methods, were off-line ones
and do not apply to data streams.

Actually, there are two levels of data linking–interlinking and intralinking. Both linkings are important. The interlinking of
Web data resources has received a lot of research focus [4,5,22,16,38,9], yet few investigations have been made in the intra-
linking of records within a single Web usage stream. For Web usage data, the interlinking of different Web data resources
enables the interconnection of information from different usage data; while the intralinking of Web usage records within
the same usage dataset identifies the connections between the data records so that we can make more complete and authen-
tic descriptions of user behaviors. Existing data stream models, however, have not taken into account such data intralinkings.
Hence, the need of a new data stream model that is able to support the processing of the intralinkings between records in
Web usage streams.
1.3. Contributions

We introduce the user-centric ABS (Anti-Bouncing Stream) model, a new model relying on a novel point of view. The goal
of ABS is to maintain a reliable representation of the recent data in the stream while avoiding to break down the navigations.
Using ABS, we can

1. connect and group the usage records by their users. Without ABS, these usage records would otherwise be inappropri-
ately processed as independent ones by existing data stream models.

2. maintain a set of events that represents the recent data of the stream while avoiding to split down the navigations.
3. lower the observed bounce rate (avoid the drawback of existing models, as the one illustrated in Example 1).

We show through theoretical and experimental analyses that owing to its simple but effective management principle,
ABS lowers the negative influence of a restricted observation window. It gives a more authentic summarization of user
behaviors and a more reliable measurement of bounce rate. In this work, we consider the case of bounce rate and clustering,
but ABS should have the same advantages for other techniques such as pattern extraction [7,13], behavioural modeling
[6,26,15], recommendation [40] or stream analysis in social networks [30].

In this paper, we extend the work of [48] and elaborate in depth about the data-intralinking problem in Web usage
streams and the solutions, including detailed techniques and experimental results.
Please cite this article in press as: C. Zhang et al., The anti-bouncing data stream model for web usage streams with intralinkings, Inform.
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The rest of the paper is organized as follows. We introduce the related work in the following section, then present our
model and theoretical studies in Section 3. Next, we analyze the complexity of different data stream models in Section 4
and show the experimental results in Section 5. We conclude the paper in Section 6.

2. Related work

In this section, we first give an overview of Web access log analysis in the case of usage mining. Then, we focus on stream
mining, since this work is towards Web usage streams. Finally, we discuss existing work on measuring the bounce rates of
Web usage streams.

2.1. Web log analysis

The initial function of the Web access logs was to log all the requests, detect the errors (for instance 404) and fix them.
Usually, the log files record the information about each access to the website that includes the IP address of the machine
used to access the site, the access time, the resource (URL) requested and the result of this request. Soon, the size of the
Web access logs grew so large that analyzing them through manual check became very difficult. In this context, people began
to use data mining techniques to automatically extract patterns and knowledge from the log files. That was the beginning of
Web log analysis.

In [35], the issue on the automatic adaptation of websites is investigated. The goal is to improve the arrangements of the
websites by exploiting Web access patterns obtained from Web usage data. In [27], the authors summarize existing Web
mining techniques and highlight the relationship between such techniques and the content, structure and usage of Usenet
services. Then, a discussion on data mining patterns and knowledge extracted from those sites and how they correspond to
users’ needs and expectations is given.

In [45], the authors adopt the general point of view of Information Systems and propose a study on techniques dedicated
to improving users’ navigations, interface customization and adaptation. Their initial work focuses on Web site design by
means of Web log data mining. Their approaches allow discovering patterns from such logs to achieve the automatic creation
of index pages. In [18], the authors propose a Web log clustering approach. They consider the web log sessions as transac-
tions and adapt K-means to cluster such transactions.

All the above approaches handle static data stored in logs by information systems. However, these static methods do not
fit to streaming data, where users’ requests arrive on the fly and data analytics need to be performed in real-time on such
streaming data. In this case, data stream mining techniques are needed. Below, we introduce techniques on data stream
mining.

2.2. Data stream mining

2.2.1. Data stream models
The work in [23] gives an interesting comparative study of Batch and Sliding Window (SW) models. The authors propose

two approaches designed towards anytime algorithms and their exploitation in data streams. The principles of the Batch
model [17,23,29] and the sliding window model [42,23,3] are illustrated by Fig. 1 and 2.

When an event data stream is observed through batches (C.f. Fig. 1), the navigations corresponding to the events of that
batch are built and processed. With sliding windows (C.f. Fig. 2) we need to maintain a list of current events in the model.
The main difference from the Batch model lies in (i) the frequent updates (each new transaction has to be added to the
Fig. 1. Representing the data stream with batches of six events. The users’ navigations are built and analysed for each batch.

Please cite this article in press as: C. Zhang et al., The anti-bouncing data stream model for web usage streams with intralinkings, Inform.
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corresponding navigation, and removing the oldest event requires to update or delete the corresponding navigation) and
(ii) the availability of the model at anytime. However, when a batch is complete and ready for analysis at time t, the sliding
windows model at time t contain the exact same events (and navigations).

Let us also mention some other data stream models such as the landmark windows [28], where the analysis is maintained
for a window ranging from one fixed point in the past to the current time, and the decaying factor [10,12] which aims to give
higher weight to recent events in the analysis.
2.2.2. Clustering data streams of feature vectors
Most papers on data stream mining have considered streams of feature vectors [1,43,12,44,47], where there is no link

between the records (i.e. each new record in the stream is the whole set of a user’s requests, whereas in this paper, the users’
requests arrive in parallel and event after event). In [1], the authors introduced the concept of micro-clusters and the Clus-
Stream algorithm. A micro-cluster is a data structure that maintains statistical information about the data locality. It con-
tains feature vectors that capture, for each record in a micro-cluster: the sum of squares of the data values, the sum of
the data values, the sum of squares of the time stamps, the sum of the time stamps and the number of values. Such a struc-
ture allows for easy retrieval of the centroid of a micro-cluster and for fast update of the features (it has an additive property
that make it suitable for data streams). Micro-clusters can then replace the original values at a higher granularity and be used
in a global, off-line, clustering step when decided by the end-user.
2.2.3. Itemset mining over data streams
Itemset discovery is a major concern in data mining, because it is the basis for correlation analysis and association rules

discovery. It has been thoroughly studied in the literature with different principles [17,24,8,41]. The work in [17] exploits the
FPGrowth algorithm in a batch environment and uses a decaying factor to manage the history of extracted patterns. The
algorithm is based on the Batch model, for each batch, an FP-tree is built [21] and analyzed for frequent pattern extraction.
Then, the extracted patterns for each batch are stored in a global tree where the support of this pattern is maintained with a
tilted time window (allowing for multiple granularity of representations). In [29], the authors propose to extract sequential
patterns with a batch principle and an alignment technique. In [24], the authors propose a sliding window structure and
encode the transactions in a bit-sequence representation. Thanks to this representation, the left bit-shift technique can be
used to shift the window efficiently. In [8], the model is different from those presented above (i.e. sliding window, batches
or landmark) since the authors propose to find the period of time during stream processing that optimizes the support of an
itemset. Their goal is therefore to find both the itemsets and the periods when the itemsets are frequent. [11] proposes to
discover frequent sequential patterns with an algorithm based on prefixspan [34] and to optimize the process by incorpo-
rating prior knowledge in the discovery technique.
2.2.4. Data streams with tuple revisions
In this paper, we consider the case of data streams where the events belong to global objects. These events are pages

requested by users. Therefore, the data is streaming on two dimensions: the pages and the users. Despite the possible appli-
cations associated with this kind of data streams, they received little attention in the literature.

Viewing the Web usage streams with data intralinking from the user perspective, we see that the usage record set
describing a user’s Web usage behavior can be revised in data streams. The tuple revision problem in data streams has
already been studied in the literature [37,32,20,31]. But all these work deal with query processing.
Please cite this article in press as: C. Zhang et al., The anti-bouncing data stream model for web usage streams with intralinkings, Inform.
Sci. (2014), http://dx.doi.org/10.1016/j.ins.2014.03.089
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� ‘‘. . .Many data stream sources (e.g., commercial ticker feeds) issue ‘‘revision tuples’’ (revisions) that amend previously
issued tuples. . .’’ Esther Ryvkina et al. in [37].
� ‘‘. . .A data stream is an append-only sequence of time-stamped items. . .While this is the commonly accepted definition,

there are more relaxed versions; for example, revision tuples, which are understood to replace previously reported data,
may be considered so that the sequence is not append-only. . .’’, Tamer Özsu and Patrick Valduriez in [32].

We would like to clarify that tuple revisions are different from tuple updates. The main problem for the latter is how to
keep the patterns or query answers up-to-date when new tuples come and/or old tuples expire [19]. In [37], Esther Ryvkina
et al. clarified the definitions of tuple revisions and updates, and pointed out the differences between them: ‘‘. . .Note that
revisions .. are not the same as updates. . .Revisions are corrections as they invalidate previously processed inputs, and by
implication, all query results that were produced from them. On the other hand, updates close the time interval during which
previously processed inputs were valid, and therefore do not invalidate any previously output query results. . .’’.

To minimize the staleness of query results over streams with revision tuples, Alexandru Moga et al. proposed an efficient
storage-centric framework for load management over the streams [31]. They proposed two respective storage models for
streams with keys having uniform revision frequencies, or with non-uniformly updated keys.

Parisa Haghani et al. studied the problem of continuous top-k query processing over multiple non-synchronized streams,
where the attributes of an object arrive separately in different streams such that the value of the object is incomplete [20].
Exploiting the dominance relationship of the objects in terms of the estimated aggregate value interval and time to life, the
authors proposed an approximate algorithm that provides highly accurate results and reduces greatly the number of candi-
dates for top-k objects.

2.2.5. Scalability issue in data stream mining
Scalability is a major concern for data stream mining methods. Owing to the speed and amount of the streams, there are

the two main requirements on data streams mining algorithms. First, the algorithms should be able to process the data in
real-time. Second, the algorithms have to work with limited memory. It might be possible to store the whole streams on disk,
but the processing power may be inadequate to analyze the large amount of streaming data in real-time. Therefore, scala-
bility is a very important evaluation criteria for data stream mining algorithms.

In [25], the authors propose a monitoring system for traffic stream. It is based on distributed roadway traffic mining and
prediction. The data stream of current traffic is redirected to a central node, where a pattern mining algorithm is applied as a
training phase. Then, the discovered patterns are communicated to the sensors on the roads where traffic predictions are
calculated. In case of abnormal traffic, an alarm is raised. The scalability of the system has been studied in the experiments,
with respect to the number of nodes (sensors).

The authors of [36] propose Astrolabe, an information management service that continuously computes data summaries
by means of aggregation operators. Those operators are applied on-the-fly and considered as a type of data mining capability.
Astrolabe is based on a distributed structure and a gossiping protocol between hosts. Scalability is validated through exper-
iments where the system performance is tested with respect to the number of participants.

2.3. Measuring the bounce rates for web usage streams

Bounce rate is a recent, though important, metric that is relatively unstudied in the literature. It is a significant metric for
measuring users’ experiences when they navigate a website. Commercial companies usually refer to this metric when opti-
mizing their websites. In [39], the authors proposed interesting techniques towards prediction of an advertisement bounce
rate by analyzing its features. Though not related with data streams and observation window issues, this recent paper is one
of the first studies on this subject.

To summarize this section about related works: in the literature on data streams we mainly find papers dedicated to a
number of models (e.g. Batch, Sliding Window, decaying factor), to clustering data streams of feature vectors and to frequent
pattern mining in data streams of events, to update the results of the monitoring queries over data streams with tuple revi-
sions or updates. However, there is no comparative study on models for event data streams nor proposals for lowering the
observed bounce rate in usage data streams.
3. ABS: the anti-bouncing stream model

As stated before, existing data stream models share some characteristics:

1. They sort the events by timestamp, and their observation windows depend on that principle.
2. They cut the users’ navigations and do not reflect the recent content of the stream beyond the observation window.

So, how to keep an accurate and seamless representation of the recent events? How to make the model available for any
time analysis, while avoiding the drawbacks of existing models? How to be as straight as a batch processing while maintain-
ing cohesive navigations? And, ideally, how to answer all those questions at the same time?
Please cite this article in press as: C. Zhang et al., The anti-bouncing data stream model for web usage streams with intralinkings, Inform.
Sci. (2014), http://dx.doi.org/10.1016/j.ins.2014.03.089

http://dx.doi.org/10.1016/j.ins.2014.03.089


C. Zhang et al. / Information Sciences xxx (2014) xxx–xxx 7
3.1. A new management and pruning principle

The key idea of ABS is to eliminate the idea of observation window on the event data stream. While the models based on
batches, sliding windows or decaying factors maintain a list of events, our model only considers the new incoming events
one by one. However, we cannot always add new events without regularly removing some data since we cannot afford
the memory overhead. Essentially, ABS provides a new management and pruning principle as follows:

1. Acquire new events and update the model on the fly.
2. Maintain a relation of order between the users.
3. Monitor the current number of events in the model and remove the last user from the model when the maximum avail-

able memory is reached.

3.1.1. Update principle
The main difference between ABS and the existing models in the literature (besides the absence of an observation win-

dow on the data stream) is that ABS does not sort the events. Instead of a relation of order between the events, ABS proposes and
exploits a relation of order between the users. The most up to date user is at the head of the structure while the user at the other
end of the structure is the one with the oldest update. Thus, ABS arranges the users in a sorted list that is updated after each
event is read from the stream. When a new event occurs, the corresponding user is updated or created, and moved to the
head of the list. This operation is not costly. Retrieving a user in order to add the new event to its navigation can be done
in Oð1Þ time, thanks to a map (as it is the case in Batch and SW). Afterwards, moving the user to the head of the list is
straight-forward and done in Oð1Þ time.

Thanks to this update principle, the users are always sorted from the less up to date to the most up to date, as stated by
Property 1.

Property 1. At any time a, let ui be a user at the ith position in the model, then the following property holds:

8ex ¼ hui; tk; pli; 8j < i; 9ey ¼ huj; tr ; pmi; r > k

(where j < i means that uj is before ui in the list, and r > k means that tk is older than tr).
Proof 1. Let us consider that Property 1 does not hold for a value of j < i (i.e. we consider that 9= ey ¼ huj; tr ; pmi with r > k).
Therefore, 9ez ¼ hui; tw; pv i such that w > r. Consequently, at time w;ui has been moved from its current position to the head
of the list. Afterwards, no event has been added to uj from time w to time a (otherwise the property
8j < i; 9ey ¼ huj; tr; pmi; r > k would hold). Then, the order between ui and uj did not change at time a and ui is before uj,
which does not correspond to the statement of Property 1. h
3.1.2. Pruning principle
The pruning principle of ABS allows for fast and relevant removal of users. We consider a maximum number of events

allowed in the model. This maximum number can be, for instance, equal to the size of a batch. When the current number
of events is larger than the maximum, ABS removes the last user from the model and the number of events in the model
is decreased accordingly (i.e. decreased by the number of events of the removed user). Consequently:

1. The number of events in ABS and Batch or SW is approximately the same at any time. Actually, the number of pages con-
tained in the user removed from ABS is negligible with regards to the number of events maintained in the model (the
larger the maximum number of events allowed in main memory, the more similar the amount of events in each model
at any time).

2. The pruning step of ABS is faster than SW, since we do not need to retrieve any user for a removed event. We just remove
the user at the end of the structure. Moreover, that operation is not required for each new event (only when the model has
reached the maximum number of events).
Property 2. Let k be the maximum number of events and jMj be the size of model M. 8t > k; jSWj ¼ k and k� r < jABSj 6 k with
r the number of events in the navigation of ui, the last user removed from ABS.

The proof of Property 2 is straightforward since it corresponds to the principle of ABS (C.f. Fig. 5). Owing to this
straightforward pruning principle, ABS does not need to maintain the list of monitored events for user removal.

3.1.3. Illustration
Let us consider again the dataset in Table 1 with a memory size of six events. It is not relevant to directly describe the

content of ABS for the last six events, since it strongly depends on the arriving order of the events in the stream. We need
to consider each event, from the beginning, in order to describe the evolution of the model over this toy dataset. From e1 to e4

the users are added to the model, from the oldest to the newest one, as illustrated by the first table in Fig. 3. After e5, the
Please cite this article in press as: C. Zhang et al., The anti-bouncing data stream model for web usage streams with intralinkings, Inform.
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navigation of user u1 is updated with a new page (c) and u1 is moved from its current position (oldest) to the head of the
structure (most up to date user). Next (event e6) a new user (u5) is added to the model. After e7, the navigation of u3 is
updated and u3 becomes the most up to date user. Furthermore, since memory is limited to six events and the model con-
tains seven events at that step, we have to remove a user. The last user, u2 is removed with all of its navigation. The process
goes on until e10.

Finally, the data in ABS after e10 with the example dataset is illustrated by Fig. 4, which can be compared to Figs. 1 and 2.

3.1.4. Algorithm
As can be seen in the pseudo-code of ABS (Fig. 5), the data in our model is available for analysis at any time (like SW)

while proposing a management that is as straightforward as Batch. Furthermore, ABS allows a seamless representation of
the recent data in the stream. Actually, the navigations in ABS are usually longer, compared to a Batch or a Sliding Window
with the same memory size. We propose an analysis of these properties in Section 3.2.

3.2. Does ABS avoid to break down the navigations?

We consider that (i) the occurrence of event ei ¼ ðu; t; pÞ is independent of t � 1 (the time of the previous event) and (ii)
the probability distribution of a number of events occurring in a period ½0; T� is the Poisson distribution. If the expected num-
ber of occurrences in this interval is g then the probability that there are exactly n events is f ðn;gÞ ¼ gn :e�g

n!
, where g is a posi-

tive number, equal to the expected number of occurrences that occur during the given interval time ½0; T�. For instance, if the
events occur seven times per minute in average, and we are interested in the number of events occurring in a period of
10 min, the model would be a Poisson distribution with g ¼ 70.

Let ki be the average rate of events for user ui and Ni be the number of events associated with ui during the period ½0; T�.
The distribution of Ni is a Poisson distribution given by:
Please
Sci. (2
P½Ni ¼ k� ¼ ðkiTÞk � e�kiT

k!
: ð1Þ
Let si be the time interval between two events of ui. The probability that the time between two events of ui oversteps a
value t is given by P½si > t� ¼ e�ki t . Let us now consider two users a and b. At time tb 2 ½0; T�, the event ðb; tb; ptb

Þ occurs, asso-
ciated with b, and the most recent event associated with a is ða;0; p0Þ. The probability Pa that an event of a occurs before T is
the probability that the second event of a occurs before T, knowing that this time is larger than tb. P½sa 6 T=sa > tb�, this
Fig. 3. Principle of ABS detailed for six events in our toy example.

Fig. 4. A data stream with ABS on six events. The less up to date user is removed when the model is full.
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Fig. 5. Algorithm for the ABS model.
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probability, is given by 1� e�kaðT�tbÞ (according to the Bayes theorem). Let us note P:b the probability that no event associated
with b occurs before T. It is given by the probability that the time between two events associated with b is larger than T � tb,
i.e. P½sb > T � tb� ¼ e�kbðT�tbÞ.

If Pa is high (close to 1) and P:b is low (close to 0), a will remain in ABS, along with the event ða;0; p0Þ but b, along with the
event ðb; tb; ptb

Þ will be removed. Actually, Pa depends on the values sa and T � tb. If the difference between ka and kb is sig-
nificant, then the event ða;0; p0Þ is highly likely to stay in the model. Let us consider, for instance, ka ¼ 2 (the average rate of
events associated with a is 2 per second) and kb ¼ 0:5. Fig. 6 gives the values of Pa and P:b for T � tb 2 ½0::4�. In this case, at
time T � tb ¼ 2, we have Pa ’ 1 and P:b ’ 0:35. Therefore, user a has a high probability to stay in the model since P:b is not
small.

However, at time T � tb ¼ 4; P:b ’ 0:15 is small and the chance that new events associated to a and b occur are high. Actu-
ally, the analysis above is more complicated when the period ½tb; T� is large. In this case, the probability that an event occurs
becomes high for any user and it is not easy to evaluate the chance of ða;0; p0Þ (the first event of a) to stay in the model. We
need to consider that a new event ða; t0; pt0 Þ occurs to evaluate the probability that ða;0; p0Þ stays in the model.

Let Uðt0Þ ¼ fu 2 U=9ðu; t; ptÞg; t 2 ½0; t0� be a set of users where the last event ðu; t; ptÞ occurs in the period ½0; t0�. Therefore,
for each new event ða; t0; pt0 Þ of a, the probability that u 2 Uðt0Þ is not associated with any event during the period ½t0; T� is
given by e�kuðT�t0 Þ. If this probability is small, then the event ða;0; p0Þ has high probability to stay in the model. Actually,
in this case the probability P½sa 6 T � t0� ¼ 1� e�kaðT�t0 Þ must be compared to minfP½su 6 T � tu=su > t0 � tu� ¼
e�kuðT�t0 Þ=u 2 Uðt0Þg where tu is the time of the last event of u in the period ½0; t0 �. Therefore, the probability that a stays in
ABS depends on the minimum of values ku;8u 2 Uðt0Þ. In other words, there are two important influence factors on the
chances of a to remain in ABS. First, as the value ka represents the frequency of events associated with a during this period,
a long navigation (where the number of pages is important) has a significant probability to be updated in ABS. Second, the
probability that a stays in the model is larger when there exists one user ulow with a low frequency of events such that one
event of ulow occurs in the period ½0; t0�.

The above reasoning is based on time intervals. However, ABS is based on a given number of events. Meanwhile, it is pos-
sible to build a relationship between the time period ½0; T� and the number n of events in the model. It is given by the sum of
Poisson distributions. Since the number of events of a in the period ½0; T� follows a Poisson distribution, the mathematical
expectation or mean E½Na� is equal to kaT. Furthermore, since the random variables ðNu=u 2 UÞ are independent, we have
E
P

u2UNu
� �

¼
P

u2UkuT . Consequently, the value T of the period ½0; T� can be estimated by:
Please
Sci. (2
T ¼
P

u2Uku

n

Fig. 6. Probabilities that an event occurs for of user a and does not arrive for user b.
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3.3. Discussion

The advantage of SW over Batch is to make its data available at any time. On the other hand, this feature is costly, both
from the CPU and memory points of view. Actually, SW needs (i) to keep the list of events in the observation window and (ii)
to update the navigations both upon arrival and removal of events. Modeling the stream with Batches of events is much sim-
pler, but the data is available only after the batch is fulfilled. Furthermore, both models, as well as (to our knowledge) other
existing models in the literature are not designed towards a lower bounce rate and a seamless representation of the recent
data in streams of usage. ABS has the same advantages as Batch and SW since it allows for anytime analysis while relying on
a fast and low memory consumption management principle. Besides, as shown in 3.2, ABS is well suited for usage data
streams where the navigations should not be interrupted in the model.

As discussed above, with ABS the navigations can expand up to a number of pages that is not attained by other models in
the literature. In Fig. 7, we compare the models on the toy example after reading e10. The clusters’ centers in ABS are exactly
the same as those obtained on the original data. Meanwhile, Batch or SW give very different centers. Furthermore the objects
in ABS and the whole data are classified in the same clusters. This is not the case for Batch/SW, where u1 and u5 should be in
the same cluster. The bounce rate (column ‘BR’) observed in ABS (0.5) is very close to the real bounce rate in the original data
(0.57), which is not the case for Batch/SW (0.8). The same remark can be made for the average length of the navigations in
each model.
4. Complexity analysis

In this section, we discuss how to utilize the Batch model, the Sliding Window (SW) model and the ABS model to sum-
marize event streams with intralinkings and estimate the corresponding costs. The cost is measured in terms of CPU cost and
memory usage.

4.1. CPU cost

We use the Batch model, the SW model and the ABS model to summarize event streams with intralinkings. To analyze the
efficiency of each candidate model, we consider the price to pay for the operations of search, insertion, deletion, and update on
the model as computational overhead.

The Batch model waits until the buffer is full of events. When a new event arrives, we insert it to the event buffer. When
the buffer is full, to summarize events we need to build a map to identify and merge the events with identical identifiers (C.f.
Fig. 1). For each event, the total cost is the search cost plus the insertion cost and the updating cost.

To summarize event streams with intralinkings, the sliding window model needs to keep the events in a sliding window,
meanwhile it needs to maintain and update the summarized objects in extra data structures on the fly such that the arranged
objects are always available for analysis (C.f. Fig. 2). Each time a new event arrives, (1) we should not just insert it in the
sliding window, but also search and update the corresponding objects and (2) when the sliding window is full, the oldest
event should be removed; we also have to search the object that contains the oldest event to be removed and update the
objects correspondingly.

Using ABS model, when a new event comes, we look up the map to check whether the according identifier already exists
in the map. As each identifier is unique, the cost for the search over the map is O (1). Then, we will have three possible oper-
ations on the data associated with the identifier: insertion, update and deletion. If it is a new identifier, we will insert a key in
the map. Additionally, we will create a new object then insert it in the tail of the list. The total cost for insertion is the search
Fig. 7. ABS and Batch/SW compared to the original data (navigations, clusters, bounce rate and average navigation length).

Please cite this article in press as: C. Zhang et al., The anti-bouncing data stream model for web usage streams with intralinkings, Inform.
Sci. (2014), http://dx.doi.org/10.1016/j.ins.2014.03.089

http://dx.doi.org/10.1016/j.ins.2014.03.089


Table 2
Memory cost of three candidate models.

Candidates Memory for modeling Memory for data Overall memory usage

Batch map size data size map size + data size
SW map size + data size data size map size + 2⁄ data size
ABS map size data size map size + data size
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cost plus the insertion cost. If it is an existing identifier, then we will update the according object in the list and move it to the
tail of the list. If we are going to remove an object from the list, we simply delete it from the list without looking up the map,
since we always remove the oldest one from the head of the list.

In summary, when a new event arrives, the insertion and update costs are the same for the three models. Although the
Batch model does not have deletion cost, the objects cannot summarized in real-time but delayed until the new batch is full.
Comparing to the sliding window model, for each new event, ABS model requires less deletion than the sliding window
model. Moreover, when deletions are needed, unlike the sliding window model, ABS does not result in extra search and
update cost. Thus, the deletion cost of ABS is much lower than the SW model.

4.2. Memory usage

The memory cost for each model is listed in Table 2. The memory usage of Batch model contains two parts. One part is the
memory for keeping the batch of events. The other part is the memory required for establishing a map to identify and merge
the events with the same identifiers. In sliding window model, we have to not only keep the events in the sliding window,
but also maintain a map and extra arranged objects for all the identifiers. As a result, the memory usage of the SW model is
two times of the data size added by the map size. In ABS model, we need a map to identify and summarize events with iden-
tical identifiers into objects, the objects are directly linked in a list. As we do not keep other extra data structures, the total
memory usage is the size of the data added by that of the map.

Therefore, that Batch model and the ABS model have the same memory usage. The SW model, however, uses much more
memory than the ABS model and the Batch model.

5. Experiments

Our goal is to evaluate algorithms from three points of view: bounce rate (Section 5.1), clustering results (Section 5.2) and
time response (Section 5.3). We have implemented and tested three models (Batch, SW and ABS) on two datasets. The first
dataset contains 3 months of requests from Orange’s subscribers2 to their mobile portal. The original file is 7 GB and contains
19 millions requests. The second dataset comes from the WWW access log file of INRIA Sophia-Antipolis from February 2006 to
May 2007. It is 14 GB and contains 20 millions requests (both log file formats are different, hence the different file sizes). For
each dataset we want to know if our results are close to the ideal case where we could afford to analyze the stream with a much
larger window. Therefore, we consider a ‘‘reference’’ model which is a batch of high capacity and the results on evaluated mod-
els will be compared to the results on the reference. Fig. 8 illustrates the principle of our reference model. The reference (in red)
is based on the principle of a batch that is �times larger than the evaluated model. With the same number of events, ABS
(dashed lines) is expected to contain navigations that spread over a larger period than Batch (in black). During the stream pro-
cessing, we randomly chose 200 random measure points. The points are selected prior to the experiment and are the same for
each model. In the following experiments, ‘‘Window Size’’ is the size of the observation window (number of events allowed in
memory). As explained in Section 2, when a batch is ready for analysis, the data of SW at that point in the stream is the same.
Therefore, our measure often compare ABS to one model called Batch/SW when it is clear from the context.

5.1. Bounce rate and average length of navigations

We first measured the bounce rate of each model (ABS and Batch/SW) under the same constraint of memory size. Our
measures, given by Fig. 9 and 10 (left) clearly show a lower bounce rate for ABS. For instance, with a memory size of
120,000 events, the bounce rate on mobile usage is 0.81 with Batch/SW and 0.79 with ABS. There are approximately 5 mil-
lions users in this file. The difference represents 100,000 users that were wrongly considered in the bouncing category. The
average navigation length is represented on the right in Figs. 9 and 10. We can observe that, unlike Batch/SW, ABS is very
close to the reference in the mobile data, whatever the memory size. In the WWW data, ABS is even above the reference,
which means that ABS is able to represent navigations that go beycond the maximum affordable reference on this machine.
We will give details about this point in Section 5.2. We would like to note that we do not give here the real value of bounce
rate and average length of navigations in the Orange usage data (these statistics are not publicly available). These numbers
are obtained from observation windows on a biased sample.
2 Orange is a major mobile operator in Europe.

Please cite this article in press as: C. Zhang et al., The anti-bouncing data stream model for web usage streams with intralinkings, Inform.
Sci. (2014), http://dx.doi.org/10.1016/j.ins.2014.03.089

http://dx.doi.org/10.1016/j.ins.2014.03.089


Fig. 8. Comparison of the evaluated models to a reference.
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5.2. Cluster validation

We compared the clustering results on the data of ABS and Batch/SW with the reference. The clusters in these experi-
ments come from an implementation of AP [49] applied at each random step. For a comparison, we only keep the users
at the intersection between the evaluated model and the reference. For instance, with Fig. 7 if we wanted to evaluate the
clusters of ABS compared to the clusters of the reference, we would keep only 4 users (u3;u5;u6 and u7). Afterwards, we mea-
sured the purity and entropy as described in the following. Let C be the set of clusters obtained on a model, Ci be the ith
cluster, and R be the set of clusters obtained from the reference.

The entropy [2] value addresses the consistency of clustering C with R. The larger the entropy, the worse the clustering
compared to the reference. If the objects which originally belong to the same clusters in Ci are scattered across the clusters in
R, the entropy of this cluster will be high. Let n be the total number of objects, jRj be the number of clusters and C01 . . . C0jRj are

clusters for R, the entropy of a cluster Ci in C is given by: EðCiÞ ¼ � 1
logðjRjÞ

PjRj
j¼1
jCi\C0j j
jCi j

log
jCi\C0j j
jCi j

� �
. The global entropy for clustering

C, is sum of the entropy values of all the clusters: EðCÞ ¼
PjCj

i¼1
jCi j
n EðCiÞ.

Purity [2] is another consistency measure of a clustering. It allows to check if a set of objects that belong to the same
cluster in R also belong to the same cluster in C. The purity of a cluster is given by: PðCiÞ ¼ 1

jCi j
maxjCi [ C0jj; j ¼ 1;3; . . . ; jRj.

The higher the purity, the better the clustering. The global purity of C is the weighted sum of the individual purities:

PðCÞ ¼
PjCj

i¼1
jCi j
n PðCiÞ.

Figs. 11 (left) gives the average purity of the clusters on ABS and Batch/SW compared to the reference with the mobile
data. We can observe that ABS has a better entropy than ABS from 20,000 to 120,000 events in memory. The global trend
of ABS’ entropy is to decrease with the memory size, when Batch’s entropy grows. Since, the average entropy value (average
of all random points) does not give enough details, we propose a diagram with box plots in Fig. 11 (right). This diagram gives
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Fig. 9. Average bounce rate (left) and average length of navigation per user (right) in ABS and Batch/SW on the mobile usage data.
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the minimum, first quartile, median, third quartile, and maximum entropy values for the clustering on ABS and Batch for all
the random points (given a memory size). For instance, when the memory is set to 10,000 the maximum entropy of a clus-
tering on ABS is 0.38 (and 0.2 for Batch/SW). In this case, the detailed results are close to the average but, as we will see in the
following, that is not always the case. Fig. 12 (left) gives the average purity of the clustering of ABS and Batch with the mobile
data. Once again, the higher the memory size, the better the clustering of ABS. We can see the detailed values in Fig. 12
(right). It is interesting to observe some outlying results, such as a minimum purity of 0.65 with a memory of 80,000 events.
A purity of 0.65 is not a good result. Meanwhile, let us analyze that result. First, this is an outlier (and does not reflect the
average trend). Second, we believe that our reference model does not allow to really evaluate how much ABS can spread its
navigations over long periods. Let us consider u1 ¼ ðb; cÞ and u2 ¼ ða; b; cÞ, two users and their navigations. If u2 has requested
a very early, then Batch, SW and the reference will not keep a in his navigation. Therefore, they will group u1 ¼ ðb; cÞ and
u2 ¼ ða; b; cÞ in the same cluster when ABS will separate them. Hence, a lower purity of ABS in that case. A similar example
could show that, sometimes, the reference does not cover an observation window that is large enough for assessing the
entropy of a clustering in ABS. For the same reasons, we can find a larger value of the average navigation length in ABS
(Fig. 10), even compared to the reference. This shows that ABS may contain navigations that spread on larger periods than
the reference. Therefore, our comparison protocol is not perfect but (i) it is reliable for most results and (ii) our reference
model is the largest we can afford, given the characteristics of the datasets and the machine. Eventually, we observe that
ABS has a lower purity on the WWW data, whatever the memory size. Unfortunately, as shown in Fig. 10 (right), the refer-
ence is sometimes limited compared to ABS for this dataset, making the results difficult to analyze (see Figs. 13 and 14).
5.3. Time response

The most time consuming part of ABS is the analysis (i.e., the clustering). The complexity of that step depends on the
number of objects and their average number of features. In Fig. 15, we give the response time of the models we have imple-
mented (ABS, Batch and SW). We also report the difference (percentage) between the time response of ABS and the best time
response among the other models. For instance, on the WWW usage data, with a memory size of 10,000 transactions, we
observe that the response time of ABS is 47% of Batch’s response time (ABS is twice as fast). With the mobile usage data,
the response time of ABS and the best model are very close. With such a low difference in execution times, the criteria to
chose a model should be the observed bounce rate and the clustering quality. We also observe that the analysis time upon
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each model increases linearly with the window size, but ABS uses less time than SW. From these points of view, ABS is better
than SW for real-time data analytics. Finally, all the models have longer response times on the WWW usage data (compared
to the mobile usage data) since the number of features is 8000 (versus 24 features in the mobile usage).
6. Conclusion

Lowering the bounce rate is a critical issue for most Web sites. To that end, the best solution is obviously to understand
the reasons for bounce rate and to enhance the site accordingly. However, the observed bounce rate might be higher than it
really is in the original usage stream. As we have shown, this can be due to the model used for observing the stream. We also
point out that data intralinkings are common in Web usage streams, data stream models for Web usage streams should
therefore be able to process such intralinkings. We have proposed ABS, a new model that allows to (i) lower the observed
bounce rate, (ii) better represent the recent data in the stream and (iii) better summarize the users’ Web usage behaviors
and avoid breaking down the navigations represented in the model. Our experiments showed that ABS allows a better rep-
resentation of data streams while reducing the processing cost.
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