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a b s t r a c t

TCP suffers dramatically when implemented within wireless multi-hop ad-hoc networks
due to its specific characteristics (e.g. mobility and being battery dependant). Being
battery operated, ad-hoc network nodes have to be energy conservative. Many researches
investigated the performance of TCP in terms of throughput and/or energy consumption.
Energy consumption studies, however, were only partial. This paper introduces complete,
detailed measurements of TCP’s energy consumption resulting from both communication
and computational energy costs. Our measurements are realized using a hybrid approach,
combining simulations and realistic test-bed configuration. Our study is conducted taking
into account different TCP variants facing various data loss situations within the network.
The obtained results show the impact of TCP’s congestion control algorithmonTCP’s energy
cost.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

TCP is the most commonly-used reliable transport protocol. Today, TCP is supported by almost all Internet applications.
However, TCP does not always perform optimally according to the network environment in which it is used. In order to
identify TCP’s performance limitations and thus be able to address them, it is important to study its behavior, categorize
its performance metrics and quantify them in each of the different environments where TCP can be used. In this paper,
we analyze an important performance metric within one increasingly-important environment in which TCP is to be used.
More precisely, we are interested in studying the energy cost of TCP when used in a wireless multi-hop ad-hoc networks,
also known as Mobile Ad hoc Networks (MANETs) environment. The major motivation behind this study resides in the fact
that mobile devices are battery-operated and it is crucial to optimize their energy consumption in order to increase their
batteries’ lifetime. Prior to any improvement, there is a need to better understand how andwhere energy is consumed in the
communicationpipeline. The energy consumption of a node canbe representedby twomajor parts: (i) computational energy
cost, and (ii) communication energy cost. The computational energy cost of TCP is the energy spent within the node’s CPU to
perform the various copy operations, compute checksums, respond to timeouts or triple duplicate ACKs, adjust timers, and
perform all other book keeping operations. This is the cost linked to the execution of the different TCP congestion control
algorithms (Slow-Start, Fast Retransmit/Fast Recovery, and Congestion Avoidance). The communication energy cost is the
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energy consumed in the transmission and reception of TCP segments over the wireless links along the route between the
source and the destination.

This work is a complete performance study of different TCP variants, within wireless ad hoc networks, in terms of
energy consumption. It complements a number of other researches that evaluated the communication energy cost of TCP
variants (i.e. energy consumed due to the transmission, retransmission and forwarding of TCP segments) [1–3]. Also, we
mention that this work extends our previous study conducted in [4]. Our study in [4] had the objective of calculating
the TCP’s computational energy cost using a realistic test bed implementation. Additionally, the present work studies the
communication energy cost of TCP using NS-2 simulations. The results of both studies are presented in this paper.

In thiswork, the fourmajor TCP variants, namely TCPNew-Reno, TCP SACK, TCP Vegas and TCPWestwood are considered.
In order to measure both the computational and communication energy cost while executing their different congestion
control algorithms, we implemented different data packet loss models (congestion, interference, link loss, and signal loss).
Measurement of the node-level’s computational energy consumption is realized using a realistic test-bed configuration. This
configuration introduces the effect of a real wireless multi-hop and mobile ad-hoc network environment (i.e. realistic data
packet delays and losses). In this paper,we introduce such effects using aMANETdelay andpacket-loss emulation tool,which
we designed and implemented, called SEDLANE (Simple Emulation of Delays and Losses for Ad-hoc Networks Environment).
This tool uses Network Simulator version-2 (NS-2) simulation scenarios in order to generate realistic data packet delays
and losses in MANETs. The use of such a hybrid approach (simulations and test-bed experiments) makes the evaluation
methodology combine the advantages of both methods. Hence, thanks to SEDLANE, the effect of different data packet loss
models (congestion, interference, link loss, and signal loss) as well as that of the ad-hoc routing protocol is introduced. Then,
through the realistic test-bed configuration,wemeasure the computational energy cost of TCP’s congestion control functions
as well as that of the different studied TCP variants at the node’s CPU unit, while the communication energy consumption
is evaluated through simulations using NS-2.

The ultimate goal of our study is to understand the impact of the different TCP loss recovery mechanisms on TCP
performancewithinwirelessmulti-hop adhoc environments. Hence, our conclusions can be used to derive design guidelines
for new TCP enhancements suited for wireless multi-hop ad hoc networks.

The reminder of this paper is organized as follows: after presenting the relatedwork in Section 2, we present an overview
of the different TCP variants studied in this paper, in Section 3. In Section 4,we describe themethodologywe used to evaluate
the performance of each of the studied TCP variants (simulations and realistic test-bed) and give an overview of the SEDLANE
emulation tool. We show the results obtained through our study and analyze them in Section 5. In Section 6, we discuss
the how results obtained through our study can be used as a guidelines and give the specifications of a new TCP variant
that can deal with the different data packet loss causes within wireless multi-hop ad hoc networks as well as improving
its performance in terms of both throughput and energy consumption. The conclusion of this paper and some ideas for
improving TCP performances in wireless multi-hop ad-hoc networks as a future work comes in Section 7.

2. Related work

In the past many researchers have been studying TCP performance in terms of energy consumption and average
throughput within wireless mobile networks [1–3]. Due to the specific issues related to wireless ad hoc networks, such
as node mobility, bandwidth and energy constraints, it is expected that the performance of TCP will be considerably
affected in these environments. Some research projects were specifically interested in studying TCP performance in terms of
energy consumption and/or throughput within such environments. In [1], the authors studied the energy consumption and
throughput of three TCP variants (TCP Reno, TCPNewReno, and TCP SACK) through test-bed experiments using randomdata
losses. They evaluated TCP total energy consumption and subtracted the idle energy consumption of the TCPnodes. However,
in their study, the authors applied random Round Trip Time (RTT) delays and random packet losses in their experiments and
did not separate the computational and the communication cost parts. We note here, that RTT delays and data packet loss
ratios over wireless ad hoc networks are highly related. For example, as an extreme but realistic case, if the data packet is
highly delayed over the network, it could be considered as lost by the TCP sender. Thus, the TCP sender triggers its congestion
control algorithm and retransmits the assumed to be lost data packet. Studying TCP using random values does not really
reflect the behavior of the wireless ad hoc network environment or nodes’ mobility either. The authors in [5] evaluated the
energy consumption of the TCP over wireless links with and without the Selective ACKnowledgement (SACK)1 option The
energy consumption was obtained by measuring the time needed to discharge the laptop’s battery rather than by direct
measurement means. The study did not include other TCP variants and concentrated only on the impact of the SACK option
In [6], the authors studied the performance of different TCP variants (TCP Tahoe, TCP Reno, TCP New Reno, and TCP SACK)
within wireless static ad hoc networks taking into account different ad hoc routing protocols (DSDV, DSR, and AODV). Using
simulations, they evaluated both TCP throughput and communication energy consumption. However, the performance in
case of link failure due to the nodes’ battery depletion was not studied. Moreover, none of these works [1,5,6] considered
the computational energy cost in their studies (i.e. only the communication energy cost was taken into account).

1 Selective Acknowledgment (SACK ) is an enhancement of TCP in order to improve its behavior in front of out-of-sequence data losses.
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The computational energy cost of the TCP implementation was studied in [7]. The study was conducted through test-
bed experiments in which they applied random RTT delays and packet losses. Here, again, using random values does
not represent the actual behavior of wireless connections, since both RTT delays and data packet losses are correlated.
Additionally, the authors in [7] did not evaluate other TCP variants. We also note that the above studies did not investigate
the mobility effect in wireless mobile ad hoc networks environments (MANETs).

None of the above mentioned studies considered evaluating TCP communication energy cost and computational energy
cost in the same work. Also, using random values to represent RTT values or data packet losses do not accurately reflect the
characteristics of ad hoc networks since losses and delays are correlated. In this paper, we aim tomake a clear and complete
comparative study for themost commonly-used TCP variants (NewReno, SACK, Vegas, andWestwood) undergoing different
data packet loss situations. This study incorporates both the computational and communication energy consumption of TCP.
We extended the experimental test-bed used in [7] to measure the computational energy cost by using a realistic wireless
multi-hop ad hoc network emulator (SEDLANE2 [8]) in order to enhance the quality of the obtained results. In fact, using
SEDLANE allows for representing more realistic data packet losses and delays over the connection compared to what had
been used so far. The decision to use test-bed experiments is based on the fact that most of the node’s related characteristics
(such as the computational energy cost spent within the node’s CPU unit) cannot be obtained using simulators. So far,
simulations allowed only for obtaining the nodes’ communication energy cost.

In the following section, we present the different TCP variants studied in this work and give an overview of their basic
operations.

3. Background

The Transmission Control Protocol (TCP) is a reliable transmission protocol that provides an ordered delivery of a stream
of bytes over the communication link between the sender and the receiver. TCP was originally designed to be deployed
within wired networks where the communicating nodes are connected through physical cables. Physical cables are reliable
transmission media where congestion is the most common cause of data packet losses. That is why TCP is a congestion-
control-oriented algorithm. TCP deploys flowcontrol mechanisms through its implemented algorithms (Slow-Start and
Congestion Avoidance). These algorithms tend to better utilize the available bandwidth and to avoid congestion episodes
over the connection by adjusting the CWND and SSThreshold parameters, to be discussed shortly.

In this section, we present the evolution of TCP since its first version that adopted a congestion control algorithm until
now. We will focus on the main variants that had been designed for a wired Internet. For each variant we discuss the main
drawbacks that led to the development of other variants.

3.1. TCP New Reno

TCP New Reno is the most widely deployed TCP variant. It was developed as an improvement of two preceding variants:
TCP Tahoe and TCP Reno, which are described below.

– TCP Tahoe is the first TCP variant to incorporate congestion control mechanisms. These algorithms are: Slow-Start,
Congestion Avoidance, and Fast Retransmit [9,10]. The goal of Slow-Start and Congestion Avoidance is to keep the
congestion window (CWND) around an optimal size as much as possible. Slow-Start Fig. 1 increases the congestion
window size rapidly to reach themaximum safety transfer rate (SSThresold) as fast as possible and Congestion Avoidance
increases the CWND slowly to avoid packet losses as long as possible. If a packet is not acknowledged after a predefined
timeout, Retransmission Time Out (RTO), it is regarded as lost and hence retransmitted. While, at the reception of three
DUPlicate ACKnowledgments (3 DUPACKs), the first unacknowledged packet is also considered as lost. In this case, the
Fast Retransmit algorithm (Fig. 2) (Fig. 3) is in charge of retransmitting the lost packet without waiting for the RTO timer
to expire. This speeds up the retransmission of the lost packet.

– TCP Reno [11] is an enhancement of TCP Tahoe, by adding a new algorithm that differentiates between heavy congestion
over the connection and light congestion or out-of-order packets situations, and acts accordingly to each of these cases.
The congestion control mechanism of TCP Reno retains the enhancements incorporated into TCP Tahoe, but modifies
the Fast Retransmit operation to include Fast Recovery [11] mechanism. Fast Retransmit and Fast Recovery are used to
recover from data packet losses without the need for RTO timer expiration [12] (Fig. 4).

TCP NewReno [13] is amodification of TCP Reno congestion control algorithm. Its particularity resides on the deployment of
partial acknowledgements that help notifying the TCP sender that the following segment in the sequence number is lost. This
approach leads to fewer data packet retransmissions over the connection, hence better utilization of the available bandwidth.
In TCP Reno, partial acknowledgements take TCP out of Fast Recovery phase by deflating the usable congestion window. In
TCP New Reno, partial acknowledgements do not take TCP out of Fast Recovery. Instead, partial acknowledgements received
during Fast Recovery are treated as an indication that the packet immediately following the acknowledged one in the

2 SEDLANE: Simple Emulation of Delays and Losses for Ad hoc Networks Environment.
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Fig. 1. TCP Slow-start mechanism.

sequence space has been lost, and should be retransmitted. Thus, when multiple packets are lost from a single window
of data, TCP New Reno can recover without a retransmission timeout, retransmitting one lost packet per round-trip time
(RTT) until all of the lost packets from the window have been retransmitted [12]. In this way, TCP resends only the lost
packets and eliminates unnecessary retransmissions.

TCP New Reno can recover frommultiple losses, and is therefore more suited than TCP Reno for a wireless environment,
where multiple packet losses are likely to occur during the same transmission window. However, during this recovery, the
TCP New Reno sender retransmits only one lost packet per RTT, since it must wait for the partial acknowledgement from the
receiver side as it does not know all the lost packets and the loss might be random (not burst). Consequently, whenmultiple
losses occur, TCP New-Reno usually recovers after a considerable delay, which is still a major drawback [14].

3.2. TCP SACK

Traditional implementations of TCP use an acknowledgement number field that contains a cumulative acknowledge-
ment, indicating that the TCP receiver has received all of the data up to the indicated packet. A selective acknowledgement
(SACK) option allows receivers to additionally report non-sequential data they have received. The SACK option is usedwithin
an acknowledgement packet to indicate which packets were received precisely [12] and thus allows the sender to deduce
which packets had been lost. This option aims to speed up the retransmission of lost packets and avoids retransmitting
the whole window of data. Adding SACK to TCP does not change the basic underlying congestion control algorithms. TCP
SACK implementation preserves the properties of TCP Tahoe and TCP Reno of being robust in the presence of out-of-order
packets, and uses retransmit timeouts as the recovery method as a last resort. The main difference between the TCP SACK
implementation and the TCP New Reno implementation is the behavior when multiple packets are dropped from one win-
dow of data [12]. The TCP SACK sender maintains a list of segments deemed to be missing (based on all the SACKs received)
and sends new or retransmitted data when the estimated number of packets in the path is less than the congestion window.
When a retransmitted packet is itself dropped, the SACK implementation detects the drop with a retransmission timeout,
retransmitting the dropped packet and then slow-starting. TCP SACK exits Fast Recovery under the same conditions as TCP
New Reno.
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Fig. 2. TCP fast retransmit mechanism.

Fig. 3. Congestion Window (CWND) evolution of TCP Tahoe.

This algorithm improves the transmission of data packets over the connection, but on the other hand, it complicates the
calculation process at the sender’s side as it should retain a complete list of sequence numbers of all the transmitted data
packets in order to deduce the numbers of lost ones when needed. This complexity might affect the overall performance of
TCP over the connection.

3.3. TCP Westwood

Another way to improve the performance of TCP was to implement a bandwidth estimation algorithm as in TCP
Westwood [15] variant. The bandwidth estimation algorithm opts to estimate the available bandwidth over the connection
through measuring and averaging the rate of the returning acknowledgements. TCP Westwood then, adapts its data
transmission rate according to the available bandwidth over the connection. This enhancement improves the performance
of TCP over wireless data networks as it optimizes the usage of the available bandwidth.

TCP Westwood is a sender-side modification of the TCP congestion window algorithm that is intended to bring
performance improvements to TCP Reno and TCP New Reno in wired as well as wireless networks. In fact, there are two
variants of TCP Westwood, one is based on TCP Reno and the other is based on TCP New Reno. Our explanation here, as
well as, our study in this work is based on the latter. The improvement is also targeted to be more significant in wireless
networks with lossy links. TCP Westwood [15] relies on end-to-end bandwidth estimation to identify the cause of packet
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Fig. 4. Congestion Window (CWND) variation of TCP Reno.

loss (congestion or wireless channel effect), which is a major problem in TCP New Reno, and then adapts the CWND size
accordingly. This loss cause identification is based on measured RTT values.

The key idea of TCP Westwood is to exploit TCP acknowledgement packets to derive bandwidth estimation and to
properly set the congestion window and the slow-start threshold. By backing off to CWND and SSThreshold values that
are based on the estimated available bandwidth (rather than simply halving the current values as TCP New Reno does),
TCP Westwood avoids overly conservative reductions of CWND and SSThreshold; and thus resulting in achieving a higher
throughput.

3.4. TCP Vegas

Another enhancement of TCP’s congestion control algorithm is the network’s congestion avoidance algorithm
implemented within TCP Vegas [16] TCP Vegas relies on measured RTT values of the sent packets to extend Reno’s
retransmissionmechanisms. According to thismeasurement, the RTO value is updated.When a duplicate acknowledgement
is received, Vegas checks to see if the difference between the current time and the timestamp recorded for the first
unacknowledged segment (i.e. its RTT) is greater than the timeout value. If so, then it retransmits the segment without
having to wait for three duplicate acknowledgements. This change helps TCP Vegas to detect losses much sooner than TCP
Reno [16] and other variants. Also, TCP Vegas uses RTT values to calculate the actual transmission rate in the network. Hence,
by comparing this valuewith the expected throughput in the network, TCP Vegas decides how to adapt its transmission rate.
TCP Vegas still contains Reno’s coarse-grained timeout code as a fallback mechanism.

This enhancement improves the performance of TCP in term of throughput as it discovers the loss of data packets faster
than the other variants and in turn recovers from losses faster, in the case of good estimation or measurement of the RTT
value over the connection. But, in case of wrong measurement of RTT values, as when the connection starts and there is
already congestion over the network links, the calculation of the data transmission rate will be wrong and might cause a
persistent congestion over the connection.

In the following section, we will describe the methodology and the test-bed configuration used in order to realize our
study.

4. Comparative study of TCP variants

In this section, we study the performance of the most common TCP variants (TCP New Reno, TCP SACK, TCP Vegas and
TCP Westwood) mentioned earlier in terms of communication energy consumption and computational energy cost taking
into consideration different data packet loss events. The loss situations studied include losses due to wireless channel errors
(interferences, and signal losses), losses due to link failures between the communicating nodes, and losses due to network
congestion.Wemention that, both TCP Tahoe and TCP Reno are not studied in this work, since they are obsolete evenwithin
wired networks.

The performance metrics mentioned above cannot all be obtained using the same evaluation tool. The TCP’s communi-
cation energy cost is obtained through simulations using Network Simulator version 2 (NS-2) [17]. However, since the TCP’s
computational energy cost cannot be traced using simulations (actual simulators calculate only the communication energy
cost) it is measured through a purpose-built realistic test-bed set-up.

The test-bed configuration, as well as the methodology and the evaluation scenarios used to measure the computational
energy cost are detailed below. But first, we will give an overview of our wireless multi-hop ad hoc network emulator
(SEDLANE), used in the performance evaluation.

4.1. Overview of SEDLANE

As depicted in Fig. 5, the main idea of SEDLANE [8] is to use a hybrid evaluation approach that takes benefit from
simulation results in order to enhance real test-bed experiments. It allows for configuringDummynet [18] pipes (i.e. defining
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Fig. 5. The principle of SEDLANE operation.

Fig. 6. TCP energy consumption measurements test-bed.

packet loss and delay rules) based on NS-2 (Network Simulator-2) [17] trace files. SEDLANE uses NS-2 TCP trace files to
identify classes of packets by grouping the packets that have similar RTT values. Then, SEDLANE dedicates one pipe or
communication channel for each group of packets. Hence, delay values (i.e. RTT/2 on eachway) and loss rates are distributed
among classes. Then, SEDLANE dynamically generates the Dummynet rules to be applied on the transmitted packets. In this
way, we control the ad hoc network parameters (in terms of delays and losses) in order to make our experiments more
realistic compared to those previously carried.

For more details on the SEDLANE processes, the reader can refer to [8].

4.2. Test-bed configuration and measurements methodology

For themeasurements of the TCP computational energy consumption, we extended themethodology used in [7] inwhich
we make use of SEDLANE emulator.

4.2.1. Test-bed configuration
Our test-bed configuration is shown in Fig. 6. It is composed of aDELL LATITUDED410 laptop playing the role of the sender

end side while the receiver end side is a DELL OPTIPLEX GX 520 Personal Computer (PC). Between the communicating nodes
we implement SEDLANE on a second DELL OPTIPLEX GX 520 PC, to get the effect of a wireless ad-hoc network environment
between the sender and receiver sides. The laptop communicates with the PC over a wireless link channel.

In order to calculate TCP energy consumption within the CPU unit, we measure both (i) the total energy consumption
within the laptop, and (ii) the energy consumed within the wireless card for transmission and reception, in addition to the
idle energy when no TCP or communication processes are triggered. The difference between the two measured values will
be the computational energy consumption. Obviously, the measurements are taken at the TCP sender side. Synchronization
is ensured between the communicating end points and the PC where the measurements were taken.

What we call the idle energy in the paper is the energy consumed at the CPU level when no TCP or communication
processes are triggered. This idle energy being not due to the TCP connection, it is not taken into account by our analysis
(it is subtracted from the total consumed energy). However, the additional energy (other than the idle one) that is consumed
at the CPU level once a TCP connection is running is taken into account. This includes the energy consumed by all the
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Fig. 7. Network congestion scenario.

communication mechanisms at the different layers of the protocol stack such as the energy consumed due to the use of
contention resolution schemes and in-between transmission idle time (timers).

In order to match this computational energy consumption to the TCP operations, we use a minimal Linux distribution in
which we turn off the display, the power manager and the x-server to minimize the effect of any other running applications
on the measured current. The reason for turning off the power management as described in [8] is the fact that it helps to
determine better the current draw that corresponds to the TCP code execution. Last but not least, all the processes/daemons
that are not necessary to TCP operations are simply removed from the Linux distributionmaking it strictlyminimal. By taking
all these precautions, we ensured that the remaining energy consumption is due to the TCP congestion control algorithm’s
execution and timer adjustments. Energy consumption is determined by measuring the input voltage and current draw
using two Agilent 34401A digital multimeters that have a resolution of one millisecond. We do not use the laptop’s battery
because avoiding the use of a battery allows for a more steady voltage to be supplied to the device [19]. In order to directly
measure the current and voltage draw of the wireless 802.11b PCMCIA card, the card was attached to a Sycard PCCextend
140A CardBus Extender [20] that in turn attaches to the PCMCIA slot in the laptop. In this way, we can separately but
simultaneously measure the current draw of the laptop and the current draw of the wireless 802.11b PCMCIA card.3 Fig. 7
describes this test-bed.

Actually, using PCMCIA card as the NIC for the laptopwas necessary tomeasure the communication energy consumption
through the SYCARD. We note that the PCMCIA interface introduces additional energy consumption not to be experienced
by embedded cards. However, at the level of the wireless chipsets that are used in both, these are the same and thus have a
similar behavior. As it is not straightforward to measure the energy of a component that is embedded in the motherboard,
the only way to do it is to relay on PCMCIA cards as NIC for the laptops. Then, we use the SYCARD, a neutral PC-extenders
card in terms of energy consumption tomeasure the NIC energy consumption.We strongly believe that the interpretation of
the results in both cases will not vary too much. Especially for the results concerning the computational energy cost of TCP.

4.2.2. TCP computational energy cost calculation
In order to calculate the TCP computational energy cost, we calculate first the total energy consumed at the laptop, and

then we subtract the wireless communication energy due to data transmission/reception over the wireless network card as
well as the idle energy (i.e. the energy consumed when TCP is not running). The following equations illustrate how the TCP
computational energy is calculated.

First, we calculate the radio communication energy consumption (ER):

ER = IR ∗ T ∗ VR (1)

where IR is the measured radio current (over the wireless network card), T is the time in seconds during which the
measurement are taken, and VR is the wireless card voltage (5 V).

Then, we calculate the system’s total energy consumption (ET ):

ET = IT ∗ T ∗ VT (2)

where IT is the measured total current going into the system (the power supply current), T is the time in seconds during
which the measurement are taken, and VT is the power supply voltage (20 V).

3 Sycard PCCextend 140 CardBus extender card is a debug tool for development and test of PC cards and hosts.
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Then, we calculate the system’s idle energy consumption when TCP is not running (Eidle):

Eidle = Iidle ∗ T ∗ VT (3)

where Iidle is the calculated idle current (deduced from the measurement data), T is the time in seconds during which the
measurement are taken, and VT is the power supply voltage (20 V).

Finally, we calculate the TCP’s computational energy cost (Ecomp):

Ecomp = ET − Eidle − ER. (4)

4.3. Evaluation scenarios and topologies

In order to have a wide range of results that help to better understand the behavior of TCP in front of different data loss
situations, we define different data loss scenarios that represent the most common data packet losses over wireless ad hoc
network environments. Our predefined data loss scenarios are: (i) network congestion, (ii) interference, (iii) link losses and
(iv) signal losses. Before describing the implemented scenarios, let us describe the reason behind the choice of AODV (Ad hoc
On-Demand Distance Victor [21]) as a routing protocol in our evaluations.

4.3.1. The implemented ad hoc routing protocol
The choice of the ad hoc routing protocol algorithm is important from two points of view: (i) its robustness and

promptness to recover from a link failure, (ii) the overhead and frequency of its routing information update messages
which might result in a congestion or traffic interference over the network links. For example, if the time needed by the
implemented ad hoc routing protocol to recover from link failures is longer than the TCP’s RTO, TCP triggers its congestion
control algorithm, and backs off for a certain period of time, then enters Slow-Start phase. Also, it might happen that the
routing protocol recovers from the link failure but TCP stays in the idle state, since TCP does not knowabout the link recovery.
On the other hand, if the time taken by the ad hoc routing protocol is lower than TCP’s RTO, TCPmay recover fromdata packet
loss without entering Slow-Start phase and decreasing its CWND to minimum. Moreover, the overhead of ad hoc routing
update messages could aggravate a congestion situation over the TCP connection. This leads to more congestion control
actions triggered to recover from the packet losses.

In order to compare the start-up and route recovery time of different ad hoc routing protocols, we have studied their
performance through simulations, and the results are shown in Table 1. Table 1 discusses the start-up time, i.e. the time
needed by the ad hoc routing protocol to build up its routing information table (in case of proactive protocol) or finding a
new route (in case of reactive protocol) in order to start communicating, as well as, the route recovery time needed after a
link failure. The comparison is shown for four main ad hoc routing protocols: Ad hoc On-Demand Distance Victor (AODV)
routing protocol [21], the Dynamic Source Routing (DSR) protocol [22], the Destination-Sequenced Distance Vector (DSDV)
routing protocol [23], and the Optimized Link State Routing (OLSR) protocol [24]. The values depicted in Table 1 allow us to
recall that in reactive ad hoc routing protocols (AODV andDSR), the routing protocol triggers its route discovery process only
when the sender has to send data towards the destination or when a route used is broken. Contrarily, proactive protocols
(DSDV and OLSR) need a longer time to build their routing table and also to recover from a route failure. This is due to the
fact that they build their routing tables for the whole network before any communication request can be triggered.

Our main concern is to evaluate TCP performance over MANETs. Therefore, we decided to run the best MANET
configuration. So, according to the table above, we choose to run our simulations using the Ad hoc On-Demand Distance
Victor (AODV) ad hoc routing protocol. Although the figures in the above table show that DSR has a shorter route recovery
time than AODV due to its caching feature, we found, through simulations, that it has a higher routing messages overhead
than AODV, since any intermediate node has the right to answer to the route discovery request. Also, the caching feature
on the intermediate nodes sometimes causes problems when responding by stale routes that are in their cache. Hence, our
decision to implement AODV since it has the lowest routingmessages overhead [21]. Extending our performance evaluation
to other routing protocols is outside the scope of this paper, though, this would constitute an interesting evaluation study.

We discuss in the following sections the simulations scenarios used by SEDLANE in order to emulate the behavior of a
wireless multi-hop ad hoc network environment in our experiments.

4.3.2. Simulation scenarios
The TCP simulation scenarios, using NS-2, are implemented as follows:

(1) Creating network congestion: In this packet-loss model, we create a congested node at themiddle of a five node topology.
This is done by generating three TCP data traffic flows that must pass by this intermediate node to reach the other
communicating end. Fig. 7 illustrates this simulation scenario. One should also note that, different levels of data
congestion can be generated by controlling the number of TCP data flows crossing this particular network node at a
certain time.

(2) Interference between neighboring nodes: Fig. 8 illustrates this scenario in which two TCP connections are on-going in
parallel. The main TCP connection (TCP data flow 1 in Fig. 8) is disturbed by the interferences generated by the second



A. Ghaleb-Seddik et al. / Pervasive and Mobile Computing 7 (2011) 60–77 69

Table 1
Comparative study of ad hoc routing protocols.

Ad hoc routing protocol Start-up time (s) Route recovery (s)

AODV ∼0.03 ∼1
DSDV ∼90 ∼31
DSR ∼0.07 ∼0.2
OLSR ∼6 ∼7

Fig. 8. Interference scenario.

TCP connection (TCP data flow 2 in Fig. 8). Indeed, the node acting as a forwarder for the main TCP connection is placed
within the interference range of the second TCP connection sender. This situation creates interference and thus data
packet drop.

(3) Link failure and communication route changes: In this model we force TCP to change its communication path by shutting
down the intermediate node between the communicating end points. In addition, we imply routes with different
numbers of hops (Fig. 9). Thus, once TCP changes the communication route, the characteristics of the path between
the communicating nodes change. It is obvious that the choice and the establishment delay of the new route will be
dependent on the implemented ad-hoc routing protocol. Packet losses and delay changes will also be implied by the
link loss and the characteristics of the new recovered route.

(4) Wireless signal loss: This scenario illustrates the situation where the wireless signal is not stable. The communicating
nodes lose the connection due to signal loss then they resume the communication when the signal comes back. As
shown in Fig. 10, signal losses are generated by moving one of the intermediate nodes out of the radio range of its
connection neighbor for a while and then moving it back.

5. TCP energy consumption results

Contrarily to previous works that concentrated on the operating system, hardware and device-level energy consumption
due to TCP [7], the objective of our analysis is to analyze the energy cost of each TCP function and variant in order to
facilitate improving their behavior in MANETs. So, in the following we first analyze the computational energy cost of the
main TCP functions: Slow-Start, Fast Retransmit/Fast Recovery and Congestion Avoidance. Then, we make a comparison
of the different TCP variants in terms of both computational and communication energy cost. This is realized according to
the different data packet loss scenarios applied: network congestion, interference, link loss, or signal loss. We note that the
computational energy cost is measured at the sender’s side, since most of TCP calculations (CWND and RTO calculations)
are done at the TCP sender node. Hence, the computational energy cost in this section is measured and calculated according
to the total number of transmitted data bytes.
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Fig. 9. Link failure and communication route changes.

Fig. 10. Wireless signal loss scenario.

Fig. 11. TCP New-Reno computational energy cost example.

5.1. TCP functions computational energy cost

Fig. 11, shows an example of TCP New Reno computational energy cost when faced with packet losses due to
network congestions. The Figure shows that, the computational energy cost, in joules, of the system is higher during Fast
Retransmit/Fast Recovery phase compared to that of both Slow Start and Congestion Avoidance phases for the reasons
mentioned above.

In order to obtain the energy consumption of the main TCP functions (Slow-start, Fast Retransmit/Fast Recovery, and
Congestion Avoidance), we use log files at the sender side to log the start and end times of each TCP function. Then, we use
this information to match the energy consumption by each function using the energy consumption measurement record.
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Fig. 12. TCP computational energy cost (J/s).

Fig. 13. TCP computational energy cost per sent byte (J/s).

Fig. 14. Data bytes transmitted per TCP function.

The results show that the computational energy cost of the Fast Retransmit/Fast Recovery phase is extremely high
compared to that of both the Slow-Start and Congestion Avoidance phases (Fig. 12). Indeed, Fig. 12 shows that the energy
consumption is almost doubled. However, this is no longer the case when the energy consumption is calculated per the
amount of data sent by TCP (Fig. 13). This is due to the fact that the TCP Fast Retransmit/Fast Recovery process consumes
an important amount of energy when triggered but it does so for a short period of time during which it may send several
TCP segments in one burst. During the Congestion Avoidance, TCP increases its transmission rate by one segment each
RTT. Here, TCP has a regular throughput and computational overhead that are lower than the one of Fast Retransmit/Fast
Recovery phase (Figs. 12 and 14). However, it has a higher energy consumption per each sent byte compared to the Fast
Retransmit/Fast Recovery phase (Fig. 13).

5.2. Computational and communication energy cost of TCP variants

This section aims at comparing the performance of the four TCP variants studied (NewReno, SACK, Vegas, andWestwood)
in terms of computational and communication energy cost. This comparison is conducted taking into consideration different
packet loss situations encountered in wireless multi-hop ad hoc networks as explained in Section 4.3.2. We use AODV as an
ad hoc routing protocol within our simulations and test-bed experiments as explained earlier.

5.2.1. Network congestion results
In order to isolate the effect of network congestion from the other packet loss reasons, we use a static ad hoc network

without route changes but in which network-access contentions are created. The results depicted in Fig. 15 demonstrate
that TCP Vegas has the highest computational energy cost per each sent byte among all the other variants. This is due to
the fact that TCP Vegas is a variant that tries to avoid congestion. In order to achieve this, TCP Vegas continuously performs
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Fig. 15. TCP computational energy cost (Congestion case study).

complex calculations in order to adapt its TCP transmission parameters with each received acknowledgement (ACK). This
certainly leads to some degree of reliability in some cases. However, this behavior costs a lot in terms of processing that
translates into a higher computational energy cost compared to all the other variants studied (Fig. 15).

On the other hand, we notice that TCP Westwood performs better in terms of computational energy cost, because it
modifies its transmission parameters only when there is a data packet loss over the connection and not continuously as
in TCP Vegas. This involves less computational overhead, despite the probable increase of the number of retransmissions
compared to TCP Vegas. We also note, in Fig. 15, that TCP Westwood and New Reno have almost the same performance
in terms of energy consumption per each sent byte despite that the loss ratio is higher with TCP New Reno in the case of
congestion. From that we can conclude that the light computational cost (i.e. the one due to Fast Recovery/Fast retransmit
process) of resending packets by TCP New Reno is neutralized by the computational overhead introduced by TCPWestwood
(i.e. loss analysis to identify the packet loss cause).

From Fig. 16, we can see that TCP Westwood has the best performance among the variants in terms of communication
energy cost. The ability of TCP Westwood to adapt its data transmission rate according to the estimated bandwidth leads
to savings in terms of energy consumption. Whereas, TCP New Reno and TCP SACK, both resume the communication, after
a congestion event, staring from the minimum data transmission rate (1 segment). The algorithm of TCP Vegas is based
on the principal that there are signs prior to congestion in the network. For example, an increase in RTT values is a sign
indicating that the router’s queue is building up and that congestion is about to happen, so it triggers its congestion avoidance
mechanisms. Thiswill lead to faster recovery frompacket losses. However, the high communication energy cost of TCPVegas
comes from the fact that TCP Vegas detects the would-be losses much sooner than TCP New Reno and the other variants,
then retransmits thewould-be lost packet after receiving the first duplicate acknowledgement. In some cases, such as during
congestion periods, the delay over the connection increases due to buffering, leading to a mistaken action, as the packet is
only delayed and not lost. In this case, retransmitting the assumed to be lost packet contribute to an unnecessary increase
in the communication energy consumption. Indeed, the simulations results show that, TCP Vegas has no lost bytes over
the connection compared to other variants. However, the precipitance of TCP Vegas to recover from losses results in a high
number of unnecessary retransmissions.

Finally, we note that though TCP SACK has the ability to resend the lost data packets faster than TCP New Reno due to
the Selective ACK option; Fig. 15 demonstrates that its cost is higher. Indeed, SACK implies an important overhead in terms
of processing and storage in order to extract the numbers of lost data packets at the sender side. This leads to high energy
consumption.

5.2.2. Traffic interference results
In order to isolate the effect of network traffic interference from the other packet loss reasons, we use a static ad hoc

network without route changes. Comparing Figs. 15 and 17, we can note that, in general, the computational energy cost is
increased in the case of interferences compared to the case of congestion. This is obvious since TCP had been designed to deal
with congestion situations. The misbehavior of TCP in front of data packet losses due to other effects such as interference
leads to a higher computational energy cost.

Referring to Fig. 17we can see that TCPVegas has theworst performance in terms of computational energy cost compared
to the other studied TCP variants. This is due to the same reasons as explained in the previous sections. As for TCPWestwood,
though it has the lowest loss ratio compared to other TCP variants; its computational energy consumption is higher than that
of both TCPNewReno and TCP SACK. This is due to the algorithms used by TCPWestwood to adapt its performance according
to network conditions and their continuous triggering by packet losses. TCP Westwood recalculates and modifies its data
transmission rate after each data packet loss; this is made often in case of interferences. Note that in case of congestion, TCP
Westwood has the same performance as TCP New Reno, while in case of losses due to wireless errors its behavior becomes
more complex without significant improvement to the throughput.

Interestingly, we found that TCP New Reno and TCP SACK have almost the same performance in terms of computational
energy cost. Although the number of retransmitted data with TCP SACK is less than that in TCP New Reno, the processing
overhead of TCP SACK neutralizes the advantages gained while using selective acknowledgements.
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Fig. 16. TCP communication energy cost (Congestion case study).

Fig. 17. TCP computational energy cost (Interference case study).

Fig. 18. TCP communication energy cost (Interference case study).

Fig. 19. TCP computational energy cost (Link loss case study).

For the communication energy cost results, both TCP Vegas and TCP Westwood outperform TCP New Reno in terms of
communication energy cost, since both variants have the ability to adapt their CWND after data packet loss according to the
network conditions as can be verified from Fig. 18. This makes them losing fewer data packets in the network.

5.2.3. Link failure and communication route changes results
Fig. 19, shows that the computational energy cost of most TCP variants increases compared to the two studied scenarios

above. This is an expected observation because TCP as it is nowadays was not designed to cope with network link failures.
In network link failure situations, we must expect burst packet losses to which TCP has an aggressive reaction.
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Fig. 20. TCP communication energy cost (Link loss case study).

In case of link failure, we notice that all TCP variants in almost all cases identify the data packet loss through TCP
Retransmission Time-Out (RTO). Since they are not designed to copewith such situations (link losses), they all react similarly:
i.e. consider the packet loss as if it were due to strong network congestion and trigger the Slow-Start process. As mentioned
earlier, the Slow- Start process is the least efficient one in terms of energy cost. Let us note here that, theoretically, triggering
the Slow-Start phase is not necessary as the packet loss cause is not strong congestion.

If we look now into each variant separately, we conclude that TCP Vegas and TCP Westwood can be considered as the
first and second most performing variants respectively. This is because both variants have the ability to rapidly readjust the
data transmission rate over the connection according to the characteristics of the new recovered route. However, TCP New
Reno or TCP SACK prove to be less rapid in that aspect and thus they consume more energy by staying in the Slow-Start
phase and slowly increasing their throughput.

In addition, simulation results also show that all TCP variants, in case of link failure events, detect data packet losses
through RTO. Thus, they all perform similarly by backing off and entering Slow-Start phase (even if they stay in this state
for different durations). This can be seen in Fig. 20. The four TCP variants are shown to have comparable performance levels
in terms of communication energy cost. The similar behavior of all the studied TCP variants confirms that none of them is
able to deal with link failure loss situations over the connection.

5.2.4. Wireless signal loss results
Intermittent loss of the radio signal is another cause for end-to-end communication disruption. Signal loss can be a result

of encountering geographical obstacles or unfavorable weather conditions. This results in data packet losses over the TCP
connections. Wireless signal loss can be considered as a special case of link failure. In fact, we consider here the special
case when the signal is lost between two communicating end points; there is no way to resume the communication session
unless the signal is restored. Thus, signal loss might be viewed as a network partitioning case where the communicating
end points are totally disconnected from each other. The main difference between link failure and signal loss models is the
ability to resume the communication session after the signal loss using the same route (that also has to be re-established
by the routing protocol). In the link loss case, both nodes, the sender and the receiver, would search for another route to
complete the session.While in the signal loss case, this is topologically not possible. After signal loss recovery, the TCP sender
will start the communication session from the beginning, (i.e. from Slow-Start phase). This will be the case, each time the
communicating nodes get disconnected in the absence of wireless signal. Recall that in this loss scenario, signal losses are
frequent. That implies that almost all TCP variants staymost of the connection’s lifetime in the Slow-Start phase. In addition,
TCP data packet losses would be identified through RTO expiration.

Fig. 21 demonstrates that TCP SACK is the worst performing variant in terms of computational energy cost, since it
requires calculations at the sender’s side to identify lost packets. In addition, the sender’s sidemust keep a copy of all the sent
data packets in case of a need to resend them. For TCPWestwood, after each data packet loss episode over the connection, it
calculates and adjusts its CWND and SSThreshold parameters. This, therefore, leads to more calculations at the sender’s side
and consequently more computational energy consumption than both TCP New Reno and even TCP Vegas in this case. TCP
Vegas identifies the losses as due to heavy congestion over the connection, and triggers its congestion control algorithm.
This could be considered the right action in this case. Abstaining from resending data packets that would never reach the
destination is an acceptable action. Thus, the trade-off between complexity and amount of data sent makes TCP Vegas the
most energy-efficient. TCP New Reno can be considered as the second most performing variant in terms of computational
energy cost due to its simplicity, since it stops data transmission and enters Slow-Start after signal recovery. In TCP New
Reno, no complex calculations are triggered.

Regarding the communication energy cost, Fig. 22, show that all TCP variants, studied in this work, have almost the same
performance in terms of communication energy consumption. They all back off for a certain period of time then restart the
communication (after the wireless signal comes back) from the Slow-Start phase.
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Fig. 21. TCP computational energy cost (Signal loss case study).

Fig. 22. TCP communication energy cost (Signal loss case study).

Finally, it is worth noting that we have studied the signal loss event using different levels of signal loss durations, ranging
from few seconds to few dozens of seconds, and in all cases, the four TCP variants had the same behavior as the one depicted
in Figs. 21 and 22.

We notice also, from the above results, that the computational energy consumption is higher than the communication
energy cost. Actually, it is not the first time that this result is proved. In [7], the authors (B. Wang and S. Singh) had
also concluded that. In fact, the communication energy cost becomes higher than the computational energy cost only
when the number of hops is high (i.e. the sum of communication energy consumed at each hop becomes higher that the
TCP-computational energy cost that is consumed only at the end points of the TCP connection).

6. Discussion

It was shown that the congestion control algorithm in TCP variants affects the energy consumptionwithinwirelessmulti-
hop ad hoc networks. In order to enhance the TCP’s performance within wireless multi-hop ad hoc networks, we proposed
to first identify the different types of data packet loss situations within such networks, and then to study the performance
of existing TCP variants when dealing with such data packet loss models. Our ultimate goal was to investigate the most
appropriate TCP reaction in order to recover from each different data packet loss cause, taking into consideration optimizing
the usage of limited and scarce network resources such as energy resources.

We found that the ability of TCP to differentiate the data packet loss cause over the connection (as in TCP Westwood)
helps to react better and recover from data packet loss according to the identified loss cause. Unfortunately, TCPWestwood
is only able to recognize congestion-related andwireless-related (e.g. interference) packet loss causes. In addition, the ability
to adjust TCP’s data transmission rate after a loss episode (as in TCP Vegas) can enhance its performance within wireless
multi-hop ad hoc networks.

The problem of TCP and its most existing variants within wireless multi-hop ad hoc networks resides in its inability
to distinguish between different data packet loss causes. Thus, TCP reaction is not always optimum which would lead
to network performance degradation and resource waste. From this perspective, we argue that designing a new Loss
Differentiation Algorithm (LDA) and a new Loss Recovery Algorithm (LRA) that are able to cope with most common data
loss causes within wireless multi-hop ad hoc network is necessary. These new algorithms should have the capability to
identify aswell as to dealwith these commonpacket lossmodelswithin suchnetworks environment, andhaving as objective
enhancing the performance of TCP in terms of energy consumption (both communication and computational).

Table 2 summarizes the results shown and described above in this paper.
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Table 2
Summary of the comparative study.

Test scenario TCP New Reno TCP SACK TCP Vegas TCP Westwood Comments/why

Network congestion Best Worst Worst Average The light computational overhead of TCP
New-Reno and its adequate reactions led to this
result.

Interference Best Average Worst Average The light computational overhead of TCP
New-Reno and its adequate reactions led to this
result.

Link failure Average Worst Best Average The ability of TCP Vegas to readjust its
performance parameters over the connection
according to the characteristics of the new
recovered route.

Signal loss Average Worst Best Average TCP Vegas identifies the losses as due to heavy
congestion over the connection, and triggers its
congestion control algorithm. This could be
considered the right action in this case.

7. Conclusion

In this paper, we conducted a complete performance study of four TCP variants (TCP New Reno, TCP SACK, TCP Vegas
and TCP Westwood), within wireless ad hoc multi-hop network environments. We started by identifying the different
data packet loss situations that TCP may confront within wireless multi-hop ad hoc networks: (i) network congestion,
(ii) interference, (iii) link failure, and (iv) signal loss. Our study concerns both TCP computational energy and communication
energy cost. The TCP’s communication energy cost results were obtained throughNS-2, while the computational energy cost
results were obtained through a hybrid approach (i.e. using simulation results to configure a realistic test-bed and perform
accurate experiments).

The obtained results show that TCP cannot copewith all data packet loss situations foundwithinwireless ad hoc network.
TCP’s behavior needs to be enhanced in order to handle the different loss causes other than congestion (link failure, signal
loss, and interference). When looking at the reaction of TCP when faced with non-congestion loss types, we can notice high
degradation in performance leading to waste of scarce network resources; such as nodes’ available energy (batteries). The
existing TCP variants that were originally developed for wired networks do not always behave optimally when confronted
with the different data packet causes that characterize wireless ad hoc networks. Some show good performance in certain
cases and bad performance in others. It is worth noting that, when these variants were developed caring about the nodes’
energy consumption was not a big concern. Also, the variants that were developed with loss differentiation capabilities, as
TCPWestwood, to enhance TCP performance within wireless networks do not take into consideration other data packet loss
situations that would be faced within wireless ad hoc networks, such as link failures.

We found, also, that the complexity of the implemented congestion control algorithms of TCP variant and their failure
to cope adequately with certain loss causes may lead to unnecessary energy wastage at the node’s level. The experiments’
results show that the phase Fast Retransmit/fast recovery is the most efficient in terms of computational energy cost with
respect to the transmitted data when compared to both Slow-Start and Congestion Avoidance phases. In addition, the
simulation results show that unnecessary data retransmissions due tomisinterpretation of the loss cause leads to increasing
the communication energy consumption.

Finally, we also identified some tracks to follow in order to create a novel TCP variant that is energy-efficient in MANETs.
Knowing where the most TCP energy consumption is spent is the main key to improving TCP functions and performance
within MANETs. For example, helping TCP to avoid unnecessary retransmissions or reducing TCP CPU calculations would
help tominimize TCP’s energy consumption. In futurework,wewill develop this newTCP variant forMANET. This one should
have an optimized behavior in regards of the different TCP performance parameters in such environments: throughput,
radio-energy cost and the computational energy cost.
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