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Abstract: The paper surveys various software fault 
tolerance techniques and methodologies. The 
techniques include traditional techniques: recovery 
blocks (RcB), n-version programming, n self-
checking Programming, retry blocks (RtB), n-copy 
programming and some new techniques: adaptive 
n-version systems, fuzzy voting, abstraction, 
parallel graph reduction, rejuvenation. The utility 
for each technique based on its attribution has also 
been presented. 
 
1. Introduction 

 
Software faults can be classified into two 

categories. Faults can be classified according to their 
phase of creation or occurrence, system boundaries 
(internal or external), domain (hardware or software), 
phenomenological cause, intent, and persistence.  The 
discussion below is focused on software fault 
classification based on their recovery strategies. Gray 
[1] classifies software faults into Bohrbugs and 
Heisenbugs.  

Software fault tolerance techniques are designed to 
allow a system to tolerate software faults that remain in 
the system after its development. Software fault 
tolerance techniques are employed during the 
procurement, or development, of the software. When a 
fault occurs, these techniques provide mechanisms to 
the software system to prevent system failure from 
occurring. 

Software fault tolerance techniques provide 
protection against errors in translating the requirements 
and algorithms into a programming language, but do 
not provide explicit protection against errors in 
specifying the requirements. Software fault tolerance 
techniques have been used in the aerospace, nuclear 
power, healthcare, telecommunications and ground 
transportation industries, among others. 

This paper includes four sections, major traditional 
software fault tolerance techniques are concluded in 
section2; and some new software fault tolerance 
techniques are discussed in section 3. This paper 
concludes in section 4. 
 
2. Traditional Software Fault Tolerance 

Techniques 
 
Software fault tolerance provides service 

complying with the relevant specification in spite of 

faults by typically using single version software 
techniques, multiple version software techniques, or 
multiple data representation techniques. 

Single Version Software Environment: Monitoring 
techniques, atomicity of actions, decision verification, 
and exception handling are used to partially tolerate 
software design faults.  

Multiple Version Software Environment: Design 
diverse techniques are used in a multiple version (or 
variant) software environment and utilize functionally 
equivalent yet independently developed software 
versions to provide tolerance to software design faults. 
Examples of such techniques include recovery blocks 
(RcB), N-version programming (NVP), and N self-
checking programming (NSCP). 

Multiple Data Representation Environment: Data 
diverse techniques are used in a multiple data 
representation environment and utilize different 
representations of input data to provide tolerance to 
software design faults. Examples of such techniques 
include retry blocks (RtB), N-copy programming 
(NCP) and N-selfchecking Programming.  

It has been studied that the redundancy alone is not 
sufficient for tolerance of software design faults, so 
some forms of diversity must accompany the 
redundancy.  

Diversity can be applied to several layers of the 
system- hardware, application software system 
software, operators, and the interfaces between these 
components. When Diversity is applied to more than 
one of these layers, it is generally termed multilayer 
diversity. 

The main design diversity and data diversity 
techniques have been summarized in Table 1. 

The environment diversity is to diversify the 
software operating circumstance temporarily. The 
typical examples of environment diversity technique 
are progressive retry, rollback rollforward recovery 
with checkpointing, restart, hardware reboot, etc.  

 
2.1. Design Diversity 
 

It is an identical service through separate design and 
implementations [2]. Since exact copies of software 
component redundancy cannot increase reliability in 
the face of software design faults, we need to provide 
diversity in the design and implementation of the 
software. Its goal is to make the modules as diverse 
and independent as possible to minimize the identical 



 

 
 

error causes. We want the reliability of each variant as 
high as possible, so at least one variant will be 
operational at all times. 

Design diversity begins with an initial requirements 
specification. The specification states the functional 
requirement of the software, when the decisions are to 
be made and upon which data the decision will be 
performed. 

The variants perform their operations using these 
inputs. Since there are multiple results, this redundancy 
requires a means to decide which result to use. The 
variant outputs are examined by a decider or 
adjudicator. The adjudicator determines which variant 
result is correct or acceptable to forward to the next 
part of the software system. There are a number of 
decider algorithms available. 

Recovery Blocks (RcB): The basic RcB scheme is 
one of the two original diverse software fault tolerance 
techniques. It was introduced in 1974 by Horning, et al. 
[3], with early implementations developed by Randell 
[A_3] in 1975 and Hecht [5] in 1981.The RcB is 
categorized as a dynamic technique. Its selection of a 
variant result to the output is made during program 
execution based on the result of the acceptance test 
(AT). The hardware fault-tolerant architecture related 
to the RcB scheme is stand-by sparing or passive 
dynamic redundancy.  

RcB uses an AT and backward recovery to 
accomplish fault tolerance. We know that most 
program functions can be performed in more than one 
way, using different algorithms and designs. These 
differently implemented function variants have varying 
degrees of efficiency in terms of memory management 
and utilization, execution time, reliability, and other 
criteria. RcB incorporates these variants such that the 
most efficient module is located first in the series, and 
is termed the primary alternate or primary try block. 
The less efficient variant(s) are placed serially after the 
primary try block and are referred to as (secondary) 
alternates or alternate try blocks. Thus, the resulting 
rank of the variants reflects the graceful degradation in 
the performance of the variants. 

The basic RcB scheme consists of an executive, an 
acceptance test, and primary and alternate try blocks 
(variants). Many implementations of RcB, especially 
for real-time applications, include a watchdog timer 
[6]. Figure 1 illustrates the structure and operation of 
the basic RcB technique with a watchdog timer. 

the general syntax: 
ensure       Acceptance Test 
by           Primary Alternate 
else by      Alternate 2 
else by      Alternate 3 
... 
else by      Alternate n 
else failure exception 
 

The RcB syntax above states that the technique will 
first attempt to ensure the AT (e.g., pass a test on the 
acceptability of a result of an alternate) by using the 

primary alternate (or try block). If the primary 
algorithm’s result does not pass the AT, then n-1 
alternates will be attempted until an alternate’s results 
pass the AT. If no alternates are successful, an error 
occurs. 

Figure 1: Recovery block structure and operation. 
 

N-Version Programming: The NVP is one of the 
original design diverse software fault tolerance 
techniques. NVP was suggested by Elmendorf in 1972 
[7] and developed by Avizienis and Chen [8, 9] in 
1977–1978. Compared with RcB, NVP is s a static 
technique. That means a task is executed by several 
processes or programs and a result is accepted only if it 
is adjudicated as an acceptable result, usually via a 
majority vote. The hardware fault tolerance 
architecture related to the NVP is N-modular. The 
processes can run concurrently on different computers 
or sequentially on a single computer.  

 
Figure 2: N-version programming structure. 
 
The NVP technique uses a decision mechanism 

(DM) and forward recovery to accomplish fault 



 

 
 

tolerance. The technique uses at least two 
independently designed, functionally equivalent 
versions (variants) of a program developed from the 
same specification. The variants are run in parallel and 
a DM examines the results and selects the “best” result, 
if one exists. There are many alternative decision 
mechanisms available for use with NVP. 
 
General syntax: 
run Version 1, Version 2, ..., Version n 
if (Decision Mechanism (Result1, Result2,...,Result n)) 
            return Result 

else failure exception 
 

The NVP syntax above states that the technique 
executes the n versions concurrently. The results of 
these executions are provided to the DM, which 
operates upon them to determine if a correct result can 
be adjudicated. If one can (i.e., the Decision 
Mechanism statement above evaluates to TRUE), then 
it is returned. If a correct result cannot be determined, 
then an error occurs. 

N Self-Checking Programming:NSCP is a design 
diverse technique developed by Laprie, et al. [10, 20]. 
The hardware fault tolerance architecture related to 
NSCP is active dynamic redundancy. A self-checking 
program uses program redundancy to check its own 
behavior during execution. It results from either the 
application of an AT to a variant’s results or from the 
application of a comparator to the results of two 
variants.  

The NSCP hardware architecture consists of four 
components grouped in two pairs in hot standby 
redundancy, in which each hardware component 
supports one software variant. NSCP software includes 
two variants and a comparison algorithm or one variant 
and an AT on each hardware pair. When the NSCP 
executes, one of the self-checking components is the 
“active” component. The other components are “hot 
spares.” Normally, the N in NSCP will be even, with 
the NSCP modules executed in pairs. But N can be 
odd, for instance, in the case where one variant is used 
in both pairs. Since the pairs are executed concurrently, 
there is an executive or consistency mechanism that 
controls any required synchronization of inputs and 
outputs. The self-checking group results are compared 
or otherwise assessed for correction. If there is no 
agreement, then the pair results are discarded. If there 
is agreement, then the pair results are compared with 
the other pair’s results. NSCP failure occurs if both 
pairs disagree or the pairs agree but produce different 
results. NSCP is thus vulnerable to related faults 
between the variants. 

The NSCP technique consists of an executive, n 
variants, and comparison algorithm(s). The executive 
orchestrates the NSCP technique operation, which has 
the general syntax (for n = 4):  

 
run Variants 1 and 2 on Hardware Pair 1,  
     Variants 3 and 4 on Hardware Pair 2 

compare Results 1 and 2    compare Results 3 and 4 
if not (match)              if not (match) 

     set NoMatch1               set NoMatch2 
else set Result Pair 1      else set Result Pair 2 

if NoMatch1 and not NoMatch2, Result = Result Pair 2 
else if NoMatch2 and not NoMatch1, Result = 

Result Pair 1 
else if NoMatch1 and NoMatch2, raise exception 
else if not NoMatch1 and not NoMatch2 

     then compare Result Pair 1 and 2 
     if not (match), raise exception 
     if (match), Result = Result Pair 1 or 2 

return Result 
 

Figure 3: N self-checking programming structure. 
 

The NSCP syntax above states that the technique 
executes the n variants concurrently, on n/2 hardware 
pairs. The results of the paired variants are compared. 
If any pair’s results do not match, a flag is set 
indicating pair failure. If a single pair failure has 
occurred, then the nonfailing pair’s results are returned 
as the NSCP result. If both pairs failed to match, then 
an exception is raised. If pair results match then the 
results of the pairs are compared. If they match, then 
the result is set as one of the matching values and 
returned as the NSCP result. If the result of the pair 
matches does not match, then an exception is raised. 
NSCP operation is illustrated in Figure 3.  

 
2.2. Data diversity 
 

Due to the limitations of some design diverse 
techniques, it led to the development of data diverse 
software fault tolerance techniques. The data diverse 



 

 
 

techniques are meant to complement, rather than 
replace, design diverse techniques. 

Ammann and Knight [A-11-23] proposed data 
diversity as a software fault tolerance strategy to 
complement design diversity. The employment of data 
diversity involves obtaining a related set of points in 
the program data space, executing the same software 
on those points, and then using a decision algorithm to 
determine the resulting output. Data diversity is based 
on a generalization of the works of Gray, Martin and 
Morris [15-17], which utilize data diverse approaches 
relying on circumstantial changes in execution 
conditions. These execution conditions can be changed 
deliberately to effect data diversity. This is done using 
data expressions to obtain logically equivalent variants 
of the input data. Data diversity use data re-expression 
algorithms (DRAs) to obtain their input data.  

Data re-expression Algorithm: The performance of 
data diverse software fault tolerance techniques 
depends on the performance of the re-expression 
algorithm used. There are several ways to perform data 
re-expression and provide some insight on actual re-
expression algorithms and their use. DRAs are very 
application dependent. Development of a DRA also 
requires a careful analysis of the type and magnitude of 
re-expression appropriate for each data that is a 
candidate for all re-expression. 

Data re-expression is used to obtain diverse input 
data by generating logically equivalent input data sets. 
Given initial data within the program failure region, the 
re-expressed input data should exist outside that failure 
region. A re-expression algorithm, R, transforms the 
original input x to produce the new input, y=R(x). The 
input y may either approximate x or contain x’s 
information in a different form. The program, P, and R 
determine the relationship between P(x) and P(y). 

Not all applications can employ data diversity. 
Those that cannot do so include applications in which 
an effective DRA cannot be found. This may include: 
applications that do not primarily use numerical data, 
some that use primarily integer data, some for which an 
exact re-expression algorithm is required, those for 
which a DRA that escapes the failure region cannot be 
developed, and those for which the known re-
expression algorithms that escape the failure region are 
resource-ineffective. 

Retry Blocks (RtB): The basic RtB technique is one 
of the two original data diverse software fault tolerance 
techniques developed by Ammann and Knight [18-29]. 
The RtB technique is also categorized as a dynamic 
technique. The hardware fault tolerance architecture 
related to the RtB technique is stand-by sparing or 
passive dynamic redundancy. It is the data diverse 
complement of the recovery block (RcB) scheme. 

The RtB technique uses acceptance tests (AT) and 
backward recovery to accomplish fault tolerance. A 
watchdog timer(WDT) is also used and triggers 
execution of a backup algorithm if the original 
algorithm does not produce an acceptable result within 
a specified period of time. The algorithm is executed 

using the original system input. The primary 
algorithm’s results are examined by an AT. If the 
algorithm results pass the AT, then the RtB is 
complete. However, if the results are not acceptable, 
then the input is re-expressed and the same primary 
algorithm runs again using the new, re-expressed, input 
data. This continues until the AT finds an acceptable 
result or the WDT deadline is violated. If the deadline 
expires, a backup algorithm may be invoked to execute 
on the original input data. 

  Figure 4: Retry block structure and operation. 
 

The RtB technique consists of an executive, an AT, 
a DRA, a WDT, and primary and backup algorithms. 
The executive orchestrates the operation of the RtB, 
which has the general syntax: 

 
ensure       Acceptance Test 
by           Primary Algorithm(Original Input) 
else by      Primary Algorithm(Re-expressed 

Input) 
else by      Primary Algorithm(Re-expressed 

Input) 
... 
...          [Deadline Expires] 
else by      Backup Algorithm(Original Input) 
else failure exception 
 

The RtB syntax above states that the technique will 
first attempt to ensure the AT (e.g., pass a test on the 
acceptability of a result of the algorithm) by using the 
primary algorithm. If the primary algorithm’s result 
does not pass the AT, then the input data will be re-
expressed and the same algorithm attempted until a 
result passes the AT or the WDT deadline expires. If 
the deadline expires, the backup algorithm is invoked 
with the original inputs. If this backup algorithm is not 
successful, an error occurs. 

N-Copy Programming: NCP, also developed by 
Ammann and Knight [18-29], is the other original data 



 

 
 

diverse software fault tolerance technique. NCP is a 
data diverse technique, and is further categorized as a 
static technique. The hardware fault tolerance 
architecture related to the NCP is N-modular or static 
redundancy. The processes can run concurrently on 
different computers or sequentially on a single 
computer, but in practice, they are typically run 
concurrently. NCP is the data diverse complement of 
N-version programming (NVP).  

The NCP technique uses a decision mechanism 
(DM) and forward recovery to accomplish fault 
tolerance. The technique uses one or more DRAs and 
at least two copies of a program. The system inputs are 
run through the DRA(s) to re-express the inputs. The 
copies execute in parallel using the re-expressed data 
as input. A DM examines the results of the copy 
executions and selects the “best” result, if one exists. 
There are many alternative DMs available with NCP. 

Distribute 
Inputs

DM

Exception
Failure

Enter

Select ouput 
Exit

Version1

Gather results

Version2 Versionn

Copy1 Copy2 Copyn

 
Figure 5: N-copy programming structure. 
 

The basic NCP technique consists of an executive, 
1 to n DRA, n copies of the program or function, and a 
DM. The executive orchestrates the NCP technique 
operation, which has the general syntax: 

 
run DRA 1, DRA 2, ..., DRA n 
run Copy 1(result of DRA 1),  
    Copy 2(result of DRA 2), ...,  
    Copy n(result of DRA n) 
if (Decision Mechanism (Result 1, Result 2, ...,  
              Result n)) 
    return Result 
else failure exception 
 

The NCP syntax above states that the technique 
first runs the DRA concurrently to re-express the input 
data, then executes the n copies concurrently. The 
results of the copy executions are provided to the DM, 
which operates upon the results to determine if a 
correct result can be adjudicated. If one can (i.e., the 
Decision Mechanism statement above evaluates to 

TRUE), then it is returned. If a correct result cannot be 
determined, then an error occurs. 
 
3. New Software Fault Tolerance Techniques 

 
The new software fault tolerance techniques could 

be either improvement versions of some traditional 
techniques (such as adaptive N-version systems, fuzzy 
voting and Byzantine fault tolerance with abstract 
specification encapsulation, graph reduction) or 
techniques based on new concepts that are not 
categorizable as redundancy or diversity (such as 
rejuvenation). 

Adaptive N-version programming: A modification 
of classical n-version systems was discussed in [12], 
which considers an adaptive approach to model and 
manage different quality levels of the versions by 
introducing an individual weight factor to each version 
of the n-version system. This weight factor is then 
included in the voting procedure, i.e. the voting is 
based on a weighted counting of the number of 
monitored events for the deviation behaviour of the 
individual version. The voting procedure can be 
adaptively modified and tailored to the fault state of the 
overall system (Figure 6). The philosophy is mainly 
adopted from the self-purging redundancy, so the 
developed approach is also called Adaptively-Purging 
Redundancy (APR).  

 
Figure 6: Adaptive voting for n-version programming: 
versions have dynamically changeable weights. 

 
The reliability of the n-version system with 

adaptively adjusted weight factors is given by 
 

)...)1)..(1((
0 ,..,..,1

11∑ ∑
=

+
−−=

K

k jjj
jjjjvc

nk

nkj
RRRRRR   

 
Where Rv is the reliability of the voter and the K = 
max{k} when the sum of the weights of the n-k correct 
versions is greater than that of the k faulty version, i.e., 
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The numerical simulation results (Figure 7) for the 
example of a satellite control system consisting of 
seven components which are all implemented by 3 
versions indicates that the change of weight improves 
the software reliability. 

 
Figure 7: Cumulated reliability of 7 components of a 
software system for a satellite control application [12]. 
a) classical 3-version system b) 3-version system with 
weight factors adapted to monitored failures. 
 

Additionally, the adaptive approach was extended 
to a component-based n-version system. Considering a 
system with a number of I tasks each of which assigned 
to each module i (i=1,…,I) and each module has n 
versions, the selected n versions of module I together 
form the module stage i of the system. The reliability 
of the I-stage modular n-version system is 
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where Rmi,n is the reliability of module stage i 
comprising n version modules. 

 
By introducing adaptive voting to the output of 

each module stage, the reliability can be further 
increased (Figure 8). 

 

 
Figure 8: Cumulated reliability of 7 components of a 
software system for a satellite control application [12]. 
a) 3-version system with modular construction of the 
versions b) 3-version system with modular 
construction of the version and additional adaptive 
adjustment of module weights. 

 

Fuzzy Voting: Voting strategies are used to select 
the correct output from different outputs obtained from 
different redundant software versions. Traditional 
voting methods are based on an output classification or 
partitioning of the outputs into disjoint subsets. 
Elements within these subsets are “equal” within 
certain tolerance. N version programming with 
majority voting (NVP-MV) selects the correct answer 
based on majority number of members. N version 
programming with consensus voting (NVP-CV) selects 
the correct answer based on largest number of 
members. Maximum likelihood voting (MLV) selects 
the output with the largest success likelihood.  

Methods not based on output classification use 
convergence functions: midpoint, median, average, 
weighted average etc..  

All concepts assume the independence of faults in 
redundant software and sufficiently small probability 
of coincidental faults. In traditional voting, equality 
relation regards two real numbers as equal if their 
difference is smaller than fixed tolerance ε.  For 
different version outputs that are “closer” to each other 
than the fixed threshold there is no gradual 
comparison. As a result, certain interconnection of 
faults could incur incorrect selection. [22] proposed a 
fuzzy extension of classical numerical equivalence 
relation to overcome those potential problems of 
traditional equivalence relation, applied to real 
numbers. 

The equality relation of a version output set can be 
represented by the agreement matrix, which is a 
Boolean matrix with each element is defined as 
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The fuzzy logic maps the input vector into an 

output nonlinearly (Figure 9), which can be defined as: 
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Figure 9: Triangular shape of fuzzy set outputs. 



 

 
 

 
Fuzzy relation is the degree of interconnecting 

elements of sets that comprise the relation. A fuzzy 
relation is a fuzzy equivalence relation if and only if all 
three properties of fuzzy relations are satisfied: 
reflexivity, symmetry and transitivity.  

Fuzzy equivalence relation results in more reliable 
systems [22]. 

Reconfiguration and Rejuvenation: 
Reconfiguration and Rejuvenation are complementary 
ways of software fault tolerance (Figure 10). 
Reconfiguration is reactive, analogous to event-driven 
interruption process in computer communications; 
Rejuvenation is proactive, analogous to polling 
process. 

Software reconfiguration can use redundant 
resources for real-time recovery while dynamically 
considering a large number of factors (operating 
system services, processor load, and memory variables 
among others). 
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Aging
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Reconfiguration
Rejuvenation

 
Figure 10: Complementary nature of reconfiguration 
and rejuvenation [23]. 
 

Rejuvenation: A novel approach to handle transient 
software failures due to software aging is called 
software rejuvenation, which can be regarded as a 
preventive and proactive solution that is particularly 
useful for counteracting the aging phenomenon. It 
involves stopping the running software occasionally, 
cleaning its internal state and restarting it. Cleaning the 
internal state of a software system might involve 
garbage collection, flushing operating system kernel 
tables, reinitializing internal data structures, etc. An 
extreme, but well known example of rejuvenation 
which has been around as long as computers 
themselves is a hardware reboot.  

A fault-tolerant software system with two-version 
redundant structure and random rejuvenation schedule 
was studied in [15] and the steady-state system 
availability was evaluated quantitatively based on the 
familiar Markovian analysis. Figure 11 demonstrated a 
Markov transition diagram for a single-version 
software system with rejuvenation proposed by Huang 
et al. [6]. The states are defined as: 

State 0: highly robust state (normal operation state) 
State 1: failure probable state 
State 2: system failure state 

State 3: software rejuvenation state. 
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Figure 11: Markovian transition diagram for a single 
version software system with rejuvenation [15]. 
 

The steady-state system availability was derived as: 
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Figure 12 shows the numerical simulation results 

which indicate that the steady-state system availability 
increases with software rejuvenation rate for a single 
version software system. 

 

 
Figure 12: The steady-state system availability versus 
software rejuvenation rate for a single version software 
system [15]. 

 
Similarly, the results for a two version software 

system show that its steady-state system availability 
increases with software rejuvenation rate (Figure 13). 

 



 

 
 

 
Figure 13: Dependence of software rejuvenation rate 
on the steady-state system availability for two version 
software system [15]. 
 

Abstraction: Software fault tolerance using 
replication is expensive to deploy. [17] proposed a 
replication technique, Byzantine fault tolerance (BFT) 
with Abstract Specification Encapsulation (BASE), 
which uses abstraction to reduce the cost of Byzantine 
fault tolerance and to improve its ability to mask 
software errors.  

Byzantine fault tolerance allows a replicated 
service to tolerate arbitrary behaviour from faulty 
replicas—behaviour caused by a software bug or an 
attack. Abstraction hides implementation details to 
enable the reuse of off-the-shelf implementations of 
important services (e.g., file systems, databases, or 
HTTP daemons) and to improve the ability to mask 
software errors. 

BASE reduces cost because it enables reuse of off-
the-shelf service implementations. It improves 
availability because each replica can be repaired 
periodically using an abstract view of the state stored 
by correct replicas, and because each replica can run 
distinct or nondeterministic service implementations, 
which reduces the probability of common mode 
failures.  

There is also a proactive recovery mechanism for 
BFT that recovers replicas periodically even if there is 
no reason to suspect that they are faulty. This allows 
the replicated system to tolerate any number of faults 
over the lifetime of the system provided fewer than 
one-third of the replicas become faulty within a 
window of vulnerability. 

A global view of all BASE functions and upcalls 
that are invoked is shown in Figure 14. 

BASE implements a form of state machine 
replication that requires replicas to behave 
deterministically. Our methodology uses abstraction to 
hide most of the nondeterminism in the 
implementations it reuses. 

 

Figure 14: A global view of all BASE functions and 
upcalls that are invoked. 
 

However, many services involve forms of 
nondeterminism that cannot be hidden by abstraction. 
For instance, in the case of the NFS service, the time-
lastmodified for each file is set by reading the server’s 
local clock. If this were done independently at each 
replica, the states of the replicas would diverge. 

Instead, BASE allows the primary replica to 
propose values for non-deterministic choices by 
providing the propose value upcall, which is only 
invoked at the primary. The call receives the client 
request and the sequence number for that request; it 
selects a non-deterministic value and puts it in non-det. 
This value is going to be supplied as an argument of 
the execute upcall to all replicas. 

The protocol implemented by the BASE library 
prevents a faulty primary from causing replica state to 
diverge by sending different values to different 
backups. However, a faulty primary might send the 
same, incorrect value to all backups, subverting the 
system’s desired behavior. The solution to this problem 
is to have each replica implement a check value 
function that validates the choice of non-deterministic 
values that was made by the primary. If one-third or 
more non-faulty replicas reject a value proposed by a 
faulty primary, the request will not be executed and the 
view change mechanism will cause the primary to be 
replaced soon after. 

Proactive recovery periodically restarts each replica 
from a correct, up-to-date checkpoint of the abstract 
state that is obtained from the other replicas. 
Recoveries are triggered by a watchdog timer. When 
this timer fires, the replica reboots after saving to disk 
the abstract service state, and the replication protocol 
state, which includes abstract objects that were copied 
by the incremental checkpointing mechanism. The 
library could invoke get obj repeatedly to save a 
complete copy of the abstract state to disk but this 
would be expensive. It is sufficient to ensure that the 
current concrete state is on disk and to save a small 
amount of additional information to enable 
reconstruction of the conformance representation when 
the replica restarts. Since the library does not have 
access to this representation, the service state is saved 
to a file by an additional upcall, shutdown, that is 
implemented by the conformance wrapper. The 
conformance wrapper also implements a restart upcall 
that is invoked to reconstruct the conformance 
representation from the file saved by shutdown and 



 

 
 

from the concrete state of the service. This enables the 
replica to compute the abstract state by calling get obj 
after restart completes. 

The performance results indicate that the overhead 
introduced by this abstraction technique is low [17]. 

Parallel Graph Reduction: Recently, parallel 
computing is popularly applied to many systems. 
Functional programming is suitable for parallel 
programming because of its referential transparency 
and the independency among each program. 
Referential transparency means that all references to 
the value are therefore equivalent to the value itself and 
the fact that the expression may be referred to from 
other parts of the program is of no concern. It is 
applied to symbol processing systems and parallel 
database systems. Programs of some functional 
programming can be regarded as graphs and are 
processed in terms of reduction of the corresponding 
graphs.  

A fault tolerance scheme based on parallel graph 
reduction in functional programming was proposed. 
The method is a class of receiver-based message 
logging and time overhead of fault tolerance is reduced 
by taking advantage of referential transparency. 

This new approach based on the graph reduction 
stores the received graph as a message log and the 
erroneous task is recovered by using the checkpoint 
and the stored graph.  

The program is executed by reducing the graph, 
which is divided into subgraphs. The subgraph is 
assigned to each node and is reduced in parallel. Figure 
below shows an example of parallel graph reduction.  
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Figure 15: An example of parallel graph reduction. 
 
The model assumes that  
• There exists at most one faulty task each time. 
• The faulty task can be detected. 
• Only tasks can be faulty. Network is error 

free. 
 

Each task not only reduces the assigned graph but 
also has the backup of other nodes. The backup of the 
subgraph corresponds to the log in the message logging 
method. However, the order of the received subgraph 
needs not to be registered because of referential 
transparency. 
(1) Transmission. A task transmits a subgraph of its 

graph to another task for parallel reduction. The 
task receiving the subgraph recognized the 
transmitted messages as a subgraph by the tag 
included in the message. 

(2) Backup. The task sends the received subgraph to 
its backup task. The task stores the received 
subgraph into its storage area. 

(3) Reduction. The task begins to reduce the received 
subgraph. 

 
In addition to the backup, each task takes its check-

point constantly. The checkpoint consists of all graphs 
reduced by the task, information about the reduction 
process and the relationship between its graphs and the 
one in the other tasks. The check  point is sent to the 
backup task of the task. 

An error recovery uses a checkpoint and a subgraph 
stored in the erroneous task. The erroneous task is 
restored by the checkpoint and the subgraph is 
retransmitted to the restored task. Then the restored 
task begins to reduce the subgraph. 
(1) Roll back. The checkpoint stored in the backup 

task of the erroneous tasks is sent to the erroneous 
task and the erroneous task is restored. 

(2) Retransmission. The backup of the subgraphs for 
the erroneous tasks is transmitted by the backup 
task. The subgraphs are the ones which the 
erroneous tasks received after the last checkpoint 
was taken. 

(3) Checkpointing. The checkpoint of the restored task 
is taken and sent to the backup task. 

(4) Reduction. The restored task begins to reduce the 
subgraph. 

 
4. Conclusions 

 
We surveyed and compared various software fault 

tolerant techniques. First, we summarized traditional 
techniques with diversity implementations.  Then, we 
addressed some new techniques which either improved 
the traditional techniques or took a new approach to 
solve the problem of software fault tolerance. 

In conclusion, a lot of techniques have been 
developed for achieving fault tolerance in software. 
The application of all of these techniques is relatively 
new to the area of fault tolerance. Furthermore, each 
technique will need to be tailored to particular 
applications. This should also be based on the cost of 
the fault tolerance effort required by the customer. The 
differences between each technique provide some 
flexibility of application. 
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