

A SURVEY OF SOFTWARE FAULT TOLERANCE TECHNIQUES

Zaipeng Xie*, Hongyu Sun* and Kewal Saluja*
*University of Wisconsin-Madison/Department of Electrical and Computer Engineering

1415 Engineering Drive, Madison WI 53706 USA

zxie2@wisc.edu, hongyusun@wisc.edu

Abstract: The paper surveys various software fault
tolerance techniques and methodologies. The
techniques include traditional techniques: recovery
blocks (RcB), n-version programming, n self-
checking Programming, retry blocks (RtB), n-copy
programming and some new techniques: adaptive
n-version systems, fuzzy voting, abstraction,
parallel graph reduction, rejuvenation. The utility
for each technique based on its attribution has also
been presented.

1. Introduction

Software faults can be classified into two

categories. Faults can be classified according to their
phase of creation or occurrence, system boundaries
(internal or external), domain (hardware or software),
phenomenological cause, intent, and persistence. The
discussion below is focused on software fault
classification based on their recovery strategies. Gray
[1] classifies software faults into Bohrbugs and
Heisenbugs.

Software fault tolerance techniques are designed to
allow a system to tolerate software faults that remain in
the system after its development. Software fault
tolerance techniques are employed during the
procurement, or development, of the software. When a
fault occurs, these techniques provide mechanisms to
the software system to prevent system failure from
occurring.

Software fault tolerance techniques provide
protection against errors in translating the requirements
and algorithms into a programming language, but do
not provide explicit protection against errors in
specifying the requirements. Software fault tolerance
techniques have been used in the aerospace, nuclear
power, healthcare, telecommunications and ground
transportation industries, among others.

This paper includes four sections, major traditional
software fault tolerance techniques are concluded in
section2; and some new software fault tolerance
techniques are discussed in section 3. This paper
concludes in section 4.

2. Traditional Software Fault Tolerance

Techniques

Software fault tolerance provides service

complying with the relevant specification in spite of

faults by typically using single version software
techniques, multiple version software techniques, or
multiple data representation techniques.

Single Version Software Environment: Monitoring
techniques, atomicity of actions, decision verification,
and exception handling are used to partially tolerate
software design faults.

Multiple Version Software Environment: Design
diverse techniques are used in a multiple version (or
variant) software environment and utilize functionally
equivalent yet independently developed software
versions to provide tolerance to software design faults.
Examples of such techniques include recovery blocks
(RcB), N-version programming (NVP), and N self-
checking programming (NSCP).

Multiple Data Representation Environment: Data
diverse techniques are used in a multiple data
representation environment and utilize different
representations of input data to provide tolerance to
software design faults. Examples of such techniques
include retry blocks (RtB), N-copy programming
(NCP) and N-selfchecking Programming.

It has been studied that the redundancy alone is not
sufficient for tolerance of software design faults, so
some forms of diversity must accompany the
redundancy.

Diversity can be applied to several layers of the
system- hardware, application software system
software, operators, and the interfaces between these
components. When Diversity is applied to more than
one of these layers, it is generally termed multilayer
diversity.

The main design diversity and data diversity
techniques have been summarized in Table 1.

The environment diversity is to diversify the
software operating circumstance temporarily. The
typical examples of environment diversity technique
are progressive retry, rollback rollforward recovery
with checkpointing, restart, hardware reboot, etc.

2.1. Design Diversity

It is an identical service through separate design and
implementations [2]. Since exact copies of software
component redundancy cannot increase reliability in
the face of software design faults, we need to provide
diversity in the design and implementation of the
software. Its goal is to make the modules as diverse
and independent as possible to minimize the identical

error causes. We want the reliability of each variant as
high as possible, so at least one variant will be
operational at all times.

Design diversity begins with an initial requirements
specification. The specification states the functional
requirement of the software, when the decisions are to
be made and upon which data the decision will be
performed.

The variants perform their operations using these
inputs. Since there are multiple results, this redundancy
requires a means to decide which result to use. The
variant outputs are examined by a decider or
adjudicator. The adjudicator determines which variant
result is correct or acceptable to forward to the next
part of the software system. There are a number of
decider algorithms available.

Recovery Blocks (RcB): The basic RcB scheme is
one of the two original diverse software fault tolerance
techniques. It was introduced in 1974 by Horning, et al.
[3], with early implementations developed by Randell
[A_3] in 1975 and Hecht [5] in 1981.The RcB is
categorized as a dynamic technique. Its selection of a
variant result to the output is made during program
execution based on the result of the acceptance test
(AT). The hardware fault-tolerant architecture related
to the RcB scheme is stand-by sparing or passive
dynamic redundancy.

RcB uses an AT and backward recovery to
accomplish fault tolerance. We know that most
program functions can be performed in more than one
way, using different algorithms and designs. These
differently implemented function variants have varying
degrees of efficiency in terms of memory management
and utilization, execution time, reliability, and other
criteria. RcB incorporates these variants such that the
most efficient module is located first in the series, and
is termed the primary alternate or primary try block.
The less efficient variant(s) are placed serially after the
primary try block and are referred to as (secondary)
alternates or alternate try blocks. Thus, the resulting
rank of the variants reflects the graceful degradation in
the performance of the variants.

The basic RcB scheme consists of an executive, an
acceptance test, and primary and alternate try blocks
(variants). Many implementations of RcB, especially
for real-time applications, include a watchdog timer
[6]. Figure 1 illustrates the structure and operation of
the basic RcB technique with a watchdog timer.

the general syntax:
ensure Acceptance Test
by Primary Alternate
else by Alternate 2
else by Alternate 3
...
else by Alternate n
else failure exception

The RcB syntax above states that the technique will
first attempt to ensure the AT (e.g., pass a test on the
acceptability of a result of an alternate) by using the

primary alternate (or try block). If the primary
algorithm’s result does not pass the AT, then n-1
alternates will be attempted until an alternate’s results
pass the AT. If no alternates are successful, an error
occurs.

Figure 1: Recovery block structure and operation.

N-Version Programming: The NVP is one of the
original design diverse software fault tolerance
techniques. NVP was suggested by Elmendorf in 1972
[7] and developed by Avizienis and Chen [8, 9] in
1977–1978. Compared with RcB, NVP is s a static
technique. That means a task is executed by several
processes or programs and a result is accepted only if it
is adjudicated as an acceptable result, usually via a
majority vote. The hardware fault tolerance
architecture related to the NVP is N-modular. The
processes can run concurrently on different computers
or sequentially on a single computer.

Figure 2: N-version programming structure.

The NVP technique uses a decision mechanism

(DM) and forward recovery to accomplish fault

tolerance. The technique uses at least two
independently designed, functionally equivalent
versions (variants) of a program developed from the
same specification. The variants are run in parallel and
a DM examines the results and selects the “best” result,
if one exists. There are many alternative decision
mechanisms available for use with NVP.

General syntax:
run Version 1, Version 2, ..., Version n
if (Decision Mechanism (Result1, Result2,...,Result n))
 return Result

else failure exception

The NVP syntax above states that the technique
executes the n versions concurrently. The results of
these executions are provided to the DM, which
operates upon them to determine if a correct result can
be adjudicated. If one can (i.e., the Decision
Mechanism statement above evaluates to TRUE), then
it is returned. If a correct result cannot be determined,
then an error occurs.

N Self-Checking Programming:NSCP is a design
diverse technique developed by Laprie, et al. [10, 20].
The hardware fault tolerance architecture related to
NSCP is active dynamic redundancy. A self-checking
program uses program redundancy to check its own
behavior during execution. It results from either the
application of an AT to a variant’s results or from the
application of a comparator to the results of two
variants.

The NSCP hardware architecture consists of four
components grouped in two pairs in hot standby
redundancy, in which each hardware component
supports one software variant. NSCP software includes
two variants and a comparison algorithm or one variant
and an AT on each hardware pair. When the NSCP
executes, one of the self-checking components is the
“active” component. The other components are “hot
spares.” Normally, the N in NSCP will be even, with
the NSCP modules executed in pairs. But N can be
odd, for instance, in the case where one variant is used
in both pairs. Since the pairs are executed concurrently,
there is an executive or consistency mechanism that
controls any required synchronization of inputs and
outputs. The self-checking group results are compared
or otherwise assessed for correction. If there is no
agreement, then the pair results are discarded. If there
is agreement, then the pair results are compared with
the other pair’s results. NSCP failure occurs if both
pairs disagree or the pairs agree but produce different
results. NSCP is thus vulnerable to related faults
between the variants.

The NSCP technique consists of an executive, n
variants, and comparison algorithm(s). The executive
orchestrates the NSCP technique operation, which has
the general syntax (for n = 4):

run Variants 1 and 2 on Hardware Pair 1,
 Variants 3 and 4 on Hardware Pair 2

compare Results 1 and 2 compare Results 3 and 4
if not (match) if not (match)

 set NoMatch1 set NoMatch2
else set Result Pair 1 else set Result Pair 2

if NoMatch1 and not NoMatch2, Result = Result Pair 2
else if NoMatch2 and not NoMatch1, Result =

Result Pair 1
else if NoMatch1 and NoMatch2, raise exception
else if not NoMatch1 and not NoMatch2

 then compare Result Pair 1 and 2
 if not (match), raise exception
 if (match), Result = Result Pair 1 or 2

return Result

Figure 3: N self-checking programming structure.

The NSCP syntax above states that the technique
executes the n variants concurrently, on n/2 hardware
pairs. The results of the paired variants are compared.
If any pair’s results do not match, a flag is set
indicating pair failure. If a single pair failure has
occurred, then the nonfailing pair’s results are returned
as the NSCP result. If both pairs failed to match, then
an exception is raised. If pair results match then the
results of the pairs are compared. If they match, then
the result is set as one of the matching values and
returned as the NSCP result. If the result of the pair
matches does not match, then an exception is raised.
NSCP operation is illustrated in Figure 3.

2.2. Data diversity

Due to the limitations of some design diverse
techniques, it led to the development of data diverse
software fault tolerance techniques. The data diverse

techniques are meant to complement, rather than
replace, design diverse techniques.

Ammann and Knight [A-11-23] proposed data
diversity as a software fault tolerance strategy to
complement design diversity. The employment of data
diversity involves obtaining a related set of points in
the program data space, executing the same software
on those points, and then using a decision algorithm to
determine the resulting output. Data diversity is based
on a generalization of the works of Gray, Martin and
Morris [15-17], which utilize data diverse approaches
relying on circumstantial changes in execution
conditions. These execution conditions can be changed
deliberately to effect data diversity. This is done using
data expressions to obtain logically equivalent variants
of the input data. Data diversity use data re-expression
algorithms (DRAs) to obtain their input data.

Data re-expression Algorithm: The performance of
data diverse software fault tolerance techniques
depends on the performance of the re-expression
algorithm used. There are several ways to perform data
re-expression and provide some insight on actual re-
expression algorithms and their use. DRAs are very
application dependent. Development of a DRA also
requires a careful analysis of the type and magnitude of
re-expression appropriate for each data that is a
candidate for all re-expression.

Data re-expression is used to obtain diverse input
data by generating logically equivalent input data sets.
Given initial data within the program failure region, the
re-expressed input data should exist outside that failure
region. A re-expression algorithm, R, transforms the
original input x to produce the new input, y=R(x). The
input y may either approximate x or contain x’s
information in a different form. The program, P, and R
determine the relationship between P(x) and P(y).

Not all applications can employ data diversity.
Those that cannot do so include applications in which
an effective DRA cannot be found. This may include:
applications that do not primarily use numerical data,
some that use primarily integer data, some for which an
exact re-expression algorithm is required, those for
which a DRA that escapes the failure region cannot be
developed, and those for which the known re-
expression algorithms that escape the failure region are
resource-ineffective.

Retry Blocks (RtB): The basic RtB technique is one
of the two original data diverse software fault tolerance
techniques developed by Ammann and Knight [18-29].
The RtB technique is also categorized as a dynamic
technique. The hardware fault tolerance architecture
related to the RtB technique is stand-by sparing or
passive dynamic redundancy. It is the data diverse
complement of the recovery block (RcB) scheme.

The RtB technique uses acceptance tests (AT) and
backward recovery to accomplish fault tolerance. A
watchdog timer(WDT) is also used and triggers
execution of a backup algorithm if the original
algorithm does not produce an acceptable result within
a specified period of time. The algorithm is executed

using the original system input. The primary
algorithm’s results are examined by an AT. If the
algorithm results pass the AT, then the RtB is
complete. However, if the results are not acceptable,
then the input is re-expressed and the same primary
algorithm runs again using the new, re-expressed, input
data. This continues until the AT finds an acceptable
result or the WDT deadline is violated. If the deadline
expires, a backup algorithm may be invoked to execute
on the original input data.

 Figure 4: Retry block structure and operation.

The RtB technique consists of an executive, an AT,
a DRA, a WDT, and primary and backup algorithms.
The executive orchestrates the operation of the RtB,
which has the general syntax:

ensure Acceptance Test
by Primary Algorithm(Original Input)
else by Primary Algorithm(Re-expressed

Input)
else by Primary Algorithm(Re-expressed

Input)
...
... [Deadline Expires]
else by Backup Algorithm(Original Input)
else failure exception

The RtB syntax above states that the technique will
first attempt to ensure the AT (e.g., pass a test on the
acceptability of a result of the algorithm) by using the
primary algorithm. If the primary algorithm’s result
does not pass the AT, then the input data will be re-
expressed and the same algorithm attempted until a
result passes the AT or the WDT deadline expires. If
the deadline expires, the backup algorithm is invoked
with the original inputs. If this backup algorithm is not
successful, an error occurs.

N-Copy Programming: NCP, also developed by
Ammann and Knight [18-29], is the other original data

diverse software fault tolerance technique. NCP is a
data diverse technique, and is further categorized as a
static technique. The hardware fault tolerance
architecture related to the NCP is N-modular or static
redundancy. The processes can run concurrently on
different computers or sequentially on a single
computer, but in practice, they are typically run
concurrently. NCP is the data diverse complement of
N-version programming (NVP).

The NCP technique uses a decision mechanism
(DM) and forward recovery to accomplish fault
tolerance. The technique uses one or more DRAs and
at least two copies of a program. The system inputs are
run through the DRA(s) to re-express the inputs. The
copies execute in parallel using the re-expressed data
as input. A DM examines the results of the copy
executions and selects the “best” result, if one exists.
There are many alternative DMs available with NCP.

Distribute
Inputs

DM

Exception
Failure

Enter

Select ouput
Exit

Version1

Gather results

Version2 Versionn

Copy1 Copy2 Copyn

Figure 5: N-copy programming structure.

The basic NCP technique consists of an executive,
1 to n DRA, n copies of the program or function, and a
DM. The executive orchestrates the NCP technique
operation, which has the general syntax:

run DRA 1, DRA 2, ..., DRA n
run Copy 1(result of DRA 1),
 Copy 2(result of DRA 2), ...,
 Copy n(result of DRA n)
if (Decision Mechanism (Result 1, Result 2, ...,
 Result n))
 return Result
else failure exception

The NCP syntax above states that the technique
first runs the DRA concurrently to re-express the input
data, then executes the n copies concurrently. The
results of the copy executions are provided to the DM,
which operates upon the results to determine if a
correct result can be adjudicated. If one can (i.e., the
Decision Mechanism statement above evaluates to

TRUE), then it is returned. If a correct result cannot be
determined, then an error occurs.

3. New Software Fault Tolerance Techniques

The new software fault tolerance techniques could

be either improvement versions of some traditional
techniques (such as adaptive N-version systems, fuzzy
voting and Byzantine fault tolerance with abstract
specification encapsulation, graph reduction) or
techniques based on new concepts that are not
categorizable as redundancy or diversity (such as
rejuvenation).

Adaptive N-version programming: A modification
of classical n-version systems was discussed in [12],
which considers an adaptive approach to model and
manage different quality levels of the versions by
introducing an individual weight factor to each version
of the n-version system. This weight factor is then
included in the voting procedure, i.e. the voting is
based on a weighted counting of the number of
monitored events for the deviation behaviour of the
individual version. The voting procedure can be
adaptively modified and tailored to the fault state of the
overall system (Figure 6). The philosophy is mainly
adopted from the self-purging redundancy, so the
developed approach is also called Adaptively-Purging
Redundancy (APR).

Figure 6: Adaptive voting for n-version programming:
versions have dynamically changeable weights.

The reliability of the n-version system with

adaptively adjusted weight factors is given by

)...)1)..(1((
0 ,..,..,1

11∑ ∑
=

+
−−=

K

k jjj
jjjjvc

nk

nkj
RRRRRR

Where Rv is the reliability of the voter and the K =
max{k} when the sum of the weights of the n-k correct
versions is greater than that of the k faulty version, i.e.,

∑∑
+==

<
n

kr
j

K

r
j rr

ww
11

The numerical simulation results (Figure 7) for the
example of a satellite control system consisting of
seven components which are all implemented by 3
versions indicates that the change of weight improves
the software reliability.

Figure 7: Cumulated reliability of 7 components of a
software system for a satellite control application [12].
a) classical 3-version system b) 3-version system with
weight factors adapted to monitored failures.

Additionally, the adaptive approach was extended
to a component-based n-version system. Considering a
system with a number of I tasks each of which assigned
to each module i (i=1,…,I) and each module has n
versions, the selected n versions of module I together
form the module stage i of the system. The reliability
of the I-stage modular n-version system is

∏
=

=
I

i
nminI RR

1
,,mod,

where Rmi,n is the reliability of module stage i
comprising n version modules.

By introducing adaptive voting to the output of

each module stage, the reliability can be further
increased (Figure 8).

Figure 8: Cumulated reliability of 7 components of a
software system for a satellite control application [12].
a) 3-version system with modular construction of the
versions b) 3-version system with modular
construction of the version and additional adaptive
adjustment of module weights.

Fuzzy Voting: Voting strategies are used to select
the correct output from different outputs obtained from
different redundant software versions. Traditional
voting methods are based on an output classification or
partitioning of the outputs into disjoint subsets.
Elements within these subsets are “equal” within
certain tolerance. N version programming with
majority voting (NVP-MV) selects the correct answer
based on majority number of members. N version
programming with consensus voting (NVP-CV) selects
the correct answer based on largest number of
members. Maximum likelihood voting (MLV) selects
the output with the largest success likelihood.

Methods not based on output classification use
convergence functions: midpoint, median, average,
weighted average etc..

All concepts assume the independence of faults in
redundant software and sufficiently small probability
of coincidental faults. In traditional voting, equality
relation regards two real numbers as equal if their
difference is smaller than fixed tolerance ε. For
different version outputs that are “closer” to each other
than the fixed threshold there is no gradual
comparison. As a result, certain interconnection of
faults could incur incorrect selection. [22] proposed a
fuzzy extension of classical numerical equivalence
relation to overcome those potential problems of
traditional equivalence relation, applied to real
numbers.

The equality relation of a version output set can be
represented by the agreement matrix, which is a
Boolean matrix with each element is defined as

otherwise
xxif

r ji
ji

ε≤−

⎩
⎨
⎧

=
||

,0
,1

,

The fuzzy logic maps the input vector into an

output nonlinearly (Figure 9), which can be defined as:

otherwise
axifxa

x ii
ii

iAi

2/||

,0

,
2/

||1)(
ε

εμ
≤−

⎪⎩

⎪
⎨
⎧ −
−=

()A xμ

iA

2ia ε−
2ia ε+a0

x

Figure 9: Triangular shape of fuzzy set outputs.

Fuzzy relation is the degree of interconnecting

elements of sets that comprise the relation. A fuzzy
relation is a fuzzy equivalence relation if and only if all
three properties of fuzzy relations are satisfied:
reflexivity, symmetry and transitivity.

Fuzzy equivalence relation results in more reliable
systems [22].

Reconfiguration and Rejuvenation:
Reconfiguration and Rejuvenation are complementary
ways of software fault tolerance (Figure 10).
Reconfiguration is reactive, analogous to event-driven
interruption process in computer communications;
Rejuvenation is proactive, analogous to polling
process.

Software reconfiguration can use redundant
resources for real-time recovery while dynamically
considering a large number of factors (operating
system services, processor load, and memory variables
among others).

Operation
State

Failure
probable

state
Fail state

Aging

Bug manifestation

Reconfiguration
Rejuvenation

Figure 10: Complementary nature of reconfiguration
and rejuvenation [23].

Rejuvenation: A novel approach to handle transient
software failures due to software aging is called
software rejuvenation, which can be regarded as a
preventive and proactive solution that is particularly
useful for counteracting the aging phenomenon. It
involves stopping the running software occasionally,
cleaning its internal state and restarting it. Cleaning the
internal state of a software system might involve
garbage collection, flushing operating system kernel
tables, reinitializing internal data structures, etc. An
extreme, but well known example of rejuvenation
which has been around as long as computers
themselves is a hardware reboot.

A fault-tolerant software system with two-version
redundant structure and random rejuvenation schedule
was studied in [15] and the steady-state system
availability was evaluated quantitatively based on the
familiar Markovian analysis. Figure 11 demonstrated a
Markov transition diagram for a single-version
software system with rejuvenation proposed by Huang
et al. [6]. The states are defined as:

State 0: highly robust state (normal operation state)
State 1: failure probable state
State 2: system failure state

State 3: software rejuvenation state.

0

2 31
1μ

12λ

11λ

1r3r

Figure 11: Markovian transition diagram for a single
version software system with rejuvenation [15].

The steady-state system availability was derived as:

1112

1

3112

12

11211

11211

)()(
11

11

rr

A

μλ
μ

μλ
λ

μλλ

μλλ

+
+

+
+

+
+

+
+

=

Figure 12 shows the numerical simulation results

which indicate that the steady-state system availability
increases with software rejuvenation rate for a single
version software system.

Figure 12: The steady-state system availability versus
software rejuvenation rate for a single version software
system [15].

Similarly, the results for a two version software

system show that its steady-state system availability
increases with software rejuvenation rate (Figure 13).

Figure 13: Dependence of software rejuvenation rate
on the steady-state system availability for two version
software system [15].

Abstraction: Software fault tolerance using
replication is expensive to deploy. [17] proposed a
replication technique, Byzantine fault tolerance (BFT)
with Abstract Specification Encapsulation (BASE),
which uses abstraction to reduce the cost of Byzantine
fault tolerance and to improve its ability to mask
software errors.

Byzantine fault tolerance allows a replicated
service to tolerate arbitrary behaviour from faulty
replicas—behaviour caused by a software bug or an
attack. Abstraction hides implementation details to
enable the reuse of off-the-shelf implementations of
important services (e.g., file systems, databases, or
HTTP daemons) and to improve the ability to mask
software errors.

BASE reduces cost because it enables reuse of off-
the-shelf service implementations. It improves
availability because each replica can be repaired
periodically using an abstract view of the state stored
by correct replicas, and because each replica can run
distinct or nondeterministic service implementations,
which reduces the probability of common mode
failures.

There is also a proactive recovery mechanism for
BFT that recovers replicas periodically even if there is
no reason to suspect that they are faulty. This allows
the replicated system to tolerate any number of faults
over the lifetime of the system provided fewer than
one-third of the replicas become faulty within a
window of vulnerability.

A global view of all BASE functions and upcalls
that are invoked is shown in Figure 14.

BASE implements a form of state machine
replication that requires replicas to behave
deterministically. Our methodology uses abstraction to
hide most of the nondeterminism in the
implementations it reuses.

Figure 14: A global view of all BASE functions and
upcalls that are invoked.

However, many services involve forms of
nondeterminism that cannot be hidden by abstraction.
For instance, in the case of the NFS service, the time-
lastmodified for each file is set by reading the server’s
local clock. If this were done independently at each
replica, the states of the replicas would diverge.

Instead, BASE allows the primary replica to
propose values for non-deterministic choices by
providing the propose value upcall, which is only
invoked at the primary. The call receives the client
request and the sequence number for that request; it
selects a non-deterministic value and puts it in non-det.
This value is going to be supplied as an argument of
the execute upcall to all replicas.

The protocol implemented by the BASE library
prevents a faulty primary from causing replica state to
diverge by sending different values to different
backups. However, a faulty primary might send the
same, incorrect value to all backups, subverting the
system’s desired behavior. The solution to this problem
is to have each replica implement a check value
function that validates the choice of non-deterministic
values that was made by the primary. If one-third or
more non-faulty replicas reject a value proposed by a
faulty primary, the request will not be executed and the
view change mechanism will cause the primary to be
replaced soon after.

Proactive recovery periodically restarts each replica
from a correct, up-to-date checkpoint of the abstract
state that is obtained from the other replicas.
Recoveries are triggered by a watchdog timer. When
this timer fires, the replica reboots after saving to disk
the abstract service state, and the replication protocol
state, which includes abstract objects that were copied
by the incremental checkpointing mechanism. The
library could invoke get obj repeatedly to save a
complete copy of the abstract state to disk but this
would be expensive. It is sufficient to ensure that the
current concrete state is on disk and to save a small
amount of additional information to enable
reconstruction of the conformance representation when
the replica restarts. Since the library does not have
access to this representation, the service state is saved
to a file by an additional upcall, shutdown, that is
implemented by the conformance wrapper. The
conformance wrapper also implements a restart upcall
that is invoked to reconstruct the conformance
representation from the file saved by shutdown and

from the concrete state of the service. This enables the
replica to compute the abstract state by calling get obj
after restart completes.

The performance results indicate that the overhead
introduced by this abstraction technique is low [17].

Parallel Graph Reduction: Recently, parallel
computing is popularly applied to many systems.
Functional programming is suitable for parallel
programming because of its referential transparency
and the independency among each program.
Referential transparency means that all references to
the value are therefore equivalent to the value itself and
the fact that the expression may be referred to from
other parts of the program is of no concern. It is
applied to symbol processing systems and parallel
database systems. Programs of some functional
programming can be regarded as graphs and are
processed in terms of reduction of the corresponding
graphs.

A fault tolerance scheme based on parallel graph
reduction in functional programming was proposed.
The method is a class of receiver-based message
logging and time overhead of fault tolerance is reduced
by taking advantage of referential transparency.

This new approach based on the graph reduction
stores the received graph as a message log and the
erroneous task is recovered by using the checkpoint
and the stored graph.

The program is executed by reducing the graph,
which is divided into subgraphs. The subgraph is
assigned to each node and is reduced in parallel. Figure
below shows an example of parallel graph reduction.

f

@

x

@

g y

Figure 15: An example of parallel graph reduction.

The model assumes that
• There exists at most one faulty task each time.
• The faulty task can be detected.
• Only tasks can be faulty. Network is error

free.

Each task not only reduces the assigned graph but
also has the backup of other nodes. The backup of the
subgraph corresponds to the log in the message logging
method. However, the order of the received subgraph
needs not to be registered because of referential
transparency.
(1) Transmission. A task transmits a subgraph of its

graph to another task for parallel reduction. The
task receiving the subgraph recognized the
transmitted messages as a subgraph by the tag
included in the message.

(2) Backup. The task sends the received subgraph to
its backup task. The task stores the received
subgraph into its storage area.

(3) Reduction. The task begins to reduce the received
subgraph.

In addition to the backup, each task takes its check-

point constantly. The checkpoint consists of all graphs
reduced by the task, information about the reduction
process and the relationship between its graphs and the
one in the other tasks. The check point is sent to the
backup task of the task.

An error recovery uses a checkpoint and a subgraph
stored in the erroneous task. The erroneous task is
restored by the checkpoint and the subgraph is
retransmitted to the restored task. Then the restored
task begins to reduce the subgraph.
(1) Roll back. The checkpoint stored in the backup

task of the erroneous tasks is sent to the erroneous
task and the erroneous task is restored.

(2) Retransmission. The backup of the subgraphs for
the erroneous tasks is transmitted by the backup
task. The subgraphs are the ones which the
erroneous tasks received after the last checkpoint
was taken.

(3) Checkpointing. The checkpoint of the restored task
is taken and sent to the backup task.

(4) Reduction. The restored task begins to reduce the
subgraph.

4. Conclusions

We surveyed and compared various software fault

tolerant techniques. First, we summarized traditional
techniques with diversity implementations. Then, we
addressed some new techniques which either improved
the traditional techniques or took a new approach to
solve the problem of software fault tolerance.

In conclusion, a lot of techniques have been
developed for achieving fault tolerance in software.
The application of all of these techniques is relatively
new to the area of fault tolerance. Furthermore, each
technique will need to be tailored to particular
applications. This should also be based on the cost of
the fault tolerance effort required by the customer. The
differences between each technique provide some
flexibility of application.

References

[1] GRAY, J. (1986): ‘Why Do Computers Stop and

What Can Be Done About It?’, Proc. Fifth Symp.
Reliability in Distributed Software and Database
Systems, Jan. 1986, pp. 3-12

[2] AVIZIENIS, A., and J. P. J. KELLY, “Fault
Tolerance by Design Diversity: Concepts and
Experiments,” IEEE Computer, Vol. 17, No. 8,
1984, pp. 67–80.

[3] HORNING, J. J., et al., “A Program Structure for
Error Detection and Recovery,” in E. Gelenbe and

C. Kaiser (eds.), Lecture Notes in Computer
Science, Vol. 16, New York: Springer-Verlag,
1974, pp. 171–187.

[4] RANDELL, B., “System Structure for Software
Fault Tolerance,” IEEE Transactions on Software
Engineering, Vol. SE-1, No. 2, 1975, pp. 220–232.

[5] HECHT, M., AND H. HECHT, “Fault Tolerant
Software Modules for SIFT,” SoHaR, Inc. Report
TR-81-04, April 1981.

[6] HECHT, H., “Fault Tolerant Software for Real-
Time Applications,” ACM Computing Surveys,
Vol. 8, No. 4, 1976, pp. 391–407.

[7] ELMENDORF, W. R., “Fault-Tolerant
Programming,” Proceedings of FTCS-2, Newton,
MA, 1972, pp. 79–83.

[8] AVIZIENIS, A., “On the Implementation of N-
Version Programming for Software Fault-
Tolerance During Execution,” COMPSAC ’77,
Chicago, IL, 1977, pp. 149–155.

[9] CHEN, L., and A. AVIZIENIS, “N-Version
Programming: A Fault-Tolerance Approach to
Reliability of Software Operation,” Proceedings of
FTCS-8, Toulouse, France, 1978, pp. 3–9.

[10] LAPRIE, J. -C., et al., “Hardware and Software
Fault Tolerance: Definition and Analysis of
Architectural Solutions,” Proceedings of FTCS-17,
Pittsburgh, PA, 1987, pp. 116–112.

[11] LAPRIE, J. -C., et al., ‘Definition and Analysis of
Hardwareand Software-Fault-Tolerant
Architectures’, IEEE Computer, Vol. 23, No. 7,
1990, pp. 39–51.

[12] KANOUN, K., et al., “Reliability Growth of Fault-
Tolerant Software,” IEEE Transactions on
Reliability, Vol. 42, No. 2, 1993, pp. 205–129.

[13] TOMEK, L. A., J. K. MUPPALA, and K. S. Trivedi,
“Modeling Correlation in Software Recovery
Blocks,” IEEE Transactions on Software
Engineering, Vol. 19, No. 11, 1993, pp. 1071–
1086.

[14] LYU, M. R. (ed.), Software Fault Tolerance, New
York: John Wiley & Sons, 1995.

[15] TRIVEDI, T. S., Probability and Statistics with
Reliability, Queuing, and Computer Science
Applications, Englewood Cliffs, NJ: Prentice-Hall,
1982.

[16] DEB, A. K., and A. L. GOEL, “Model for
Execution Time Behavior of a Recovery Block,”
Proceedings COMPSAC ’86, Chicago, IL, 1986,
pp. 497–502.

[17] DEB, A. K., “Stochastic Modeling for Execution
Time and Reliability of Fault-Tolerant Programs
Using Recovery Block and N-Version Schemes,”
Ph.D. thesis, Syracuse University, 1988.

[18] AMMANN, P. E., “Data Diversity: An Approach to
Software Fault Tolerance,” Proceedings of FTCS-
17, Pittsburgh, PA, 1987, pp. 113–117.

[19] AMMANN, P. E., “Data Diversity: An Approach to
Software Fault Tolerance,” Ph.D. dissertation,
University of Virginia, 1988.

[20] AMMANN, P. E., and J. C. KNIGHT, “Data
Diversity: An Approach to Software Fault
Tolerance,” IEEE Transactions on Computers, Vol.
37, No. 4, 1988, pp. 418–416.

[21] GROSSPIETSCH, K.E. and SILAYEVA, T.A. (2003):
‘An adaptive approach for n-version systems’,
Parallel and Distributed Processing Symposium,
2003. Proceedings. International 13-17, April 2003

[22] MANIC, M. and FRINCKE, D. (2001): ‘Towards the
fault tolerant software: fuzzy extension of crisp
equivalence voters’, Industrial Electronics Society,
2001. IECON '01. The 18th Annual Conference of
the IEEE Vol. 1, 29 Nov.-2 Dec. 2001 pp.84 - 89.

[23] YURCIK, W. and DOSS, D. (2001): ‘Achieving
Fault-Tolerant Software with Rejuvenation and
Reconfiguration’, IEEE software, July/August
2001, pp.48-52.

[24] RINSAKA, K. and AND DOHI, T. (2005):
‘Behavioral Analysis of a Fault-Tolerant Software
System with Rejuvenation’, Autonomous
Decentralized Systems, 2005. ISADS 2005.
Proceedings, 4-8 April 2005, pp. 159 – 166.

[25] HUANG, Y., KINTALA, C., KOLETTIN, N., and
FUNTON, N. D. (1995): ‘Software rejuvenation:
analysis, module and applications’, Proc. 16th Int’l
Symp. on Fault Tolerant Computing, IEEE CS
Press, 1995, pp. 381-390.

[26] CASTRO, M., RODRIGUES, R., and LISKOV, B.
(2003): ‘BASE: Using Abstraction to Improve
Fault Tolerance’, ACM Transactions on Computer
Systems, Vol. 12, No. 3, August 2003, pp.236-179.

Table 1. Summary of Traditional Software Fault
Tolerant Techniques

