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Data mining is most commonly used in attempts to induce association rules from transaction data. In the
past, we used the fuzzy and GA concepts to discover both useful fuzzy association rules and suitable
membership functions from quantitative values. The evaluation for fitness values was, however, quite
time-consuming. Due to dramatic increases in available computing power and concomitant decreases
in computing costs over the last decade, learning or mining by applying parallel processing techniques
has become a feasible way to overcome the slow-learning problem. In this paper, we thus propose a par-
allel genetic-fuzzy mining algorithm based on the master–slave architecture to extract both association
rules and membership functions from quantitative transactions. The master processor uses a single pop-
ulation as a simple genetic algorithm does, and distributes the tasks of fitness evaluation to slave proces-
sors. The evolutionary processes, such as crossover, mutation and production are performed by the
master processor. It is very natural and efficient to run the proposed algorithm on the master–slave archi-
tecture. The time complexities for both sequential and parallel genetic-fuzzy mining algorithms have also
been analyzed, with results showing the good effect of the proposed one. When the number of genera-
tions is large, the speed-up can be nearly linear. The experimental results also show this point. Applying
the master–slave parallel architecture to speed up the genetic-fuzzy data mining algorithm is thus a fea-
sible way to overcome the low-speed fitness evaluation problem of the original algorithm.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As information technology (IT) progresses rapidly, its capacity
to store and manage data in databases is becoming important.
Though IT development facilitates data processing and eases
demands on storage media, extraction of available implicit infor-
mation to aid decision making has become a new and challenging
task. Vigorous efforts have thus been devoted to designing efficient
mechanisms for mining information and knowledge from large
databases. As a result, data mining, first proposed by Agrawal,
Imielinksi, and Swami (1993), has become a central field of study
in the database and artificial intelligence areas.

Deriving association rules from transaction databases is most
commonly seen in data mining (Chen, Han, & Yu, 1996; Famili,
Shen, Weber, & Simoudis, 1997; Han & Fu, 1995). It discovers rela-
tionships among items such that the presence of certain items in a
transaction tends to imply the presence of certain other items. In
the past, Agrawal and his co-workers proposed a method (Srikant
& Agrawal, 1996) for mining association rules from data sets using
quantitative and categorical attributes. Their proposed method
first determines the number of partitions for each quantitative
attribute, and then maps all possible values of each attribute onto
a set of consecutive integers.

Recently, the fuzzy set theory (Zadeh, 1965) has been used
more and more frequently in intelligent systems because of its
simplicity and similarity to human reasoning (Kandel, 1992). Many
fuzzy learning algorithms for inducing rules from given sets of data
have been designed and used to good effect with specific domains
(Hong & Lee, 1996; Yuan & Shaw, 1995). Several fuzzy mining algo-
rithms for managing quantitative data have also been proposed
(Cai, Fu, Cheng, & Kwong, 1998; Kaya & Alhajj, 2003; Luan, Sun,
Zhang, Yu, & Zhang, 2012; Mangalampall & Pudi, 2009; Mohamad-
lou, Ghodsi, Razmi, & Keramati, 2009; Ouyang & Huang, 2009;
Wang, Su, Liu, & Cai, 2012), where the membership functions were
assumed to be known in advance. The given membership functions
may, however, have a critical influence on the final mining results.
Genetic algorithms (GAs) Holland, (1975) have also recently been
used in the field of data mining since they are powerful search
techniques in solving difficult problems and can provide feasible
solutions in a limited amount of time. Hong et al. thus proposed
a GA-based fuzzy data-mining method (Hong, Chen, Wu, & Lee,
2006) for extracting both association rules and membership func-
tions from quantitative transactions. In that method, the fitness
evaluation is based on the suitability of derived membership
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functions and the number of large itemsets. The evaluation for fit-
ness values is, however, quite time-consuming.

Due to dramatic increases in available computing power and
concomitant decreases in computing costs over last decades, learn-
ing or mining by applying parallel processing techniques has be-
come a feasible way of overcoming the problem of slow learning
(Cordón, Herrera, & Villar, 2001; Herrera, Lozano, & Verdegay,
1997; Wang, Hong, & Tseng, 1998). Several parallel approaches
to speed up the process of data-mining were also proposed (Agra-
wal & Shafer, 1996; Chen, Wang & Chen, 2012; Joshi, Han, Karypis,
& Kumar, 2000; Veloso, Meira, & Parthasarathy, 2003). In addition,
some parallel methods with genetic algorithms were also sug-
gested (Abramson & Abela, 1992; Araujo, Lopes, & Freitas, 1999).
They have been applied to solving timetable scheduling and dis-
covering classification rules.

Among the parallel architectures, the master–slave architecture
is particularly easy to implement. It also usually promises substan-
tial gains in performance (Cantu-Paz, 1998). The master processor
allocates the tasks to the slave processors and collects the results
from them. It can also do its own work if necessary. As mentioned
before, the fitness evaluation in genetic-fuzzy data mining is usu-
ally very time-consuming. In this paper, we thus extend our previ-
ous work (Hong et al., 2006) by using the master–slave parallel
architecture to dynamically adapt membership functions and to
use them to deal with quantitative transactions in fuzzy data min-
ing. It is very natural and efficient to design a parallel GA-fuzzy
mining algorithm based on the master–slave architecture. The
master processor uses a single population as a simple genetic algo-
rithm does, and distributes the tasks of fitness evaluation for suit-
ability of membership functions and large itemsets to slave
processors. The evolutionary processes, such as crossover, muta-
tion and production are performed by the master processor. We
expect that by appropriately allocating the tasks among the differ-
ent types of processors, the efficiency of the proposed genetic-fuz-
zy mining algorithm can greatly be raised.

The remainders of this paper are organized as follows. Related
works about parallel processing applied to data mining and genetic
algorithms are reviewed in Section 2. A parallel genetic-fuzzy min-
ing framework based on the master–slave architecture is described
in Section 3. The adopted representation of chromosomes and the
genetic operators used in this paper are stated in Section 4. A par-
allel genetic-fuzzy mining algorithm is proposed in Section 5. A
simple example for demonstrating the proposed algorithm is given
in Section 6. The time complexity of the proposed algorithm is ana-
lyzed in Section 7. The experimental results are shown in Section 8.
Finally, conclusion and future work are given in Section 9.
2. Review of related works

Some related works about data mining and genetic algorithms
are first reviewed below.
2.1. Data mining

The goal of data mining is to discover important associations
among items such that the presence of some items in a transaction
will imply the presence of some other items. To achieve this pur-
pose, Agrawal and his co-workers proposed several mining algo-
rithms based on the concept of large itemsets to find association
rules in transaction data (Agrawal & Srikant, 1994; Agrawal et al.,
1993). They divided the mining process into two phases. In the first
phase, candidate itemsets were generated and counted by scan-
ning the transaction data. If the number of an itemset appearing
in the transactions was larger than a pre-defined threshold value
(called minimum support), the itemset was considered a large
itemset. Itemsets containing only one item were processed first.
Large itemsets containing only single items were then combined
to form candidate itemsets containing two items. This process
was repeated until all large itemsets had been found. In the second
phase, association rules were induced from the large itemsets
found in the first phase. All possible association combinations for
each large itemset were formed, and those with calculated confi-
dence values larger than a predefined threshold (called minimum
confidence) were output as association rules.

Srikant and Agrawal then proposed a mining method (Srikant &
Agrawal, 1996) to handle quantitative transactions by partitioning
the possible values of each attribute. Hong et al. proposed a fuzzy
mining algorithm to mine fuzzy rules from quantitative data
(Hong, Kuo, & Chi, 2001). They transformed each quantitative item
into a fuzzy set and used fuzzy operations to find fuzzy rules. Cai
et al. proposed weighted mining to reflect different importance
to different items (Cai et al., 1998). Each item was attached a
numerical weight given by users. Weighted supports and weighted
confidences were then defined to determine interesting association
rules. Yue et al. then extended their concepts to fuzzy item vectors
(Yue, Tsang, Yeung, & Shi, 2000). Fuzzy mining has also been
widely adopted in many research fields, such as sequential pattern
mining, intrusion detection, biological knowledge extraction, and
so on (Chen & Huang, 2008; Lopez, Blanco, Garcia, & Marin,
2007; Romsaiyud1 & Premchaiswadi, 2011; Tajbakhsh, Rahmati,
& Mirzaei, 2009; Wang et al., 2012; Watanabe & Fujioka, 2012).
In the above fuzzy mining approaches, the membership functions
were assumed to be known in advance. Wang et al. used GAs to
tune membership functions for intrusion detection systems based
on similarity of association rules (Wang & Bridges, 2000). Kaya and
Alhajj (2003) proposed a GA-based clustering method to derive a
predefined number of membership functions for getting a maxi-
mum profit within an interval of user specified minimum support
values.

As to parallel data mining, Agrawal and Shafer proposed three
parallel mining algorithms based on the Apriori algorithm for
speeding up the mining process (Agrawal & Shafer, 1996). The first
one was called count distribution, in which the counting task for
itemsets was distributed in different processors. The second one
was called data distribution, in which itemsets were distributed
in different processors and the results were broadcast to each pro-
cessor for generating globe candidate itemsets in the next phase.
The third one was called candidate distribution, which reduced
the problem of synchronization between processors by repartition-
ing transactions according to the itemsets allocated to distinct pro-
cessors. In addition, two parallel algorithms for mining frequent
itemsets were also proposed based on the data-distribution and
the candidate-distribution approaches by using the lattice data
structure (Veloso et al., 2003).

2.2. Genetic algorithms

Genetic algorithms (GAs) have become increasingly important
for researchers in solving difficult problems since they could pro-
vide feasible solutions in a limited amount of time (Homaifar,
Guan, & Liepins, 1993). They were first proposed by Holland
(1975) and have been successfully applied to the fields of optimi-
zation, machine learning, neural network, fuzzy logic controllers,
and so on (Alcala, Alcala-Fdez, Gacto, & Herrera, 2007; Gautam,
Khare & Pardasani, 2010). GAs are developed mainly based on
the ideas and the techniques from genetic and evolutionary theory
(Grefenstette, 1986). According to the principle of survival of the
fittest, they generate the next population by several operations,
with each individual in the population representing a possible
solution. There are three principal operations in a genetic
algorithm.
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1. The crossover operation generates offspring from two chosen
individuals in the population, by exchanging some bits in the
two individuals. The offspring thus inherit some characteristics
from each parent.

2. The mutation operation generates offspring by randomly
changing one or several bits in an individual. The offspring
may thus possess different characteristics from their parents.
Mutation prevents local searches of the search space and
increases the probability of finding global optima.

3. The selection operation chooses some offspring for survival
according to predefined rules. This keeps the population size
within a fixed constant and puts good offspring into the next
generation with a high probability.

On applying genetic algorithms to solving a problem, the first
step is to define a representation that describes the problem states.
The most common way used is the bit string representation. An ini-
tial population of individuals, called chromosomes, is then defined
and the three genetic operations (crossover, mutation, and selec-
tion) are performed to generate the next generation. Each chromo-
some in the population is evaluated by a fitness function to
determine its goodness. This procedure is repeated until a user-
specified termination criterion is satisfied.

As to parallel GA, three types were proposed as follows (Cantu-
Paz, 1998).

1. Single-population master–slave GAs: This type of parallel GAs
uses a single population as simple GAs do, but evaluates fitness
values by distributing chromosome among several processors.
In addition, genetic operators such as crossover and mutation
consider the entire population and are implemented in a main
processor.

2. Single-population fine-grained GAs: This type of parallel GAs
needs great amounts of parallel processors and consists of one
spatially structured population. Genetic operators are con-
strained to a small neighborhood.
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Fig. 1. A GA-based approach
3. Multiple-population coarse-grained GAs: This type of parallel
GAs consists of several subpopulations and their individuals
can occasionally be migrated.

Among the above three types, the type of master–slave parallel
GAs consists of a simple structure and uses less parameter to con-
trol the process of evolution. This type of parallel GAs has been suc-
cessfully applied for solving timetable scheduling and discovering
classification rules (Abramson & Abela, 1992; Araujo et al., 1999).
In this paper, we will use this parallel architecture to fuzzy data
mining due to its suitability.
3. A parallel genetic-fuzzy mining framework

In Hong et al. (2006), we used the fuzzy and GA concepts to dis-
cover both useful association rules and suitable membership func-
tions from quantitative values. The proposed approach in that
paper is shown in Fig. 1, where a genetic algorithm was proposed
for searching membership functions suitable for mining problems
and then the final best set of membership functions was used to
mine association rules.

In Fig. 1, the proposed approach maintains a population of sets
of membership functions, and uses the genetic algorithm to auto-
matically derive the resulting one. It first transforms each set of
membership functions into a fixed-length string. It then chooses
appropriate strings for ‘‘mating’’, gradually creating good offspring
membership function sets. The offspring membership function sets
then undergo recursive ‘‘evolution’’ until a good set of membership
functions has been obtained. The fitness evaluation is based on the
suitability of derived membership functions and the number of
large itemsets. The evaluation for fitness values is, however, quite
time-consuming since it must find large 1-itemsets for each chro-
mosome in each generation.

In this section, a parallel genetic-fuzzy framework based on the
master–slave architecture is thus proposed to speed up the mining
process. The proposed framework is shown in Fig. 2.
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Fig. 2. The proposed parallel genetic-fuzzy mining framework.
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In Fig. 2, there are p + 1 processors composed of one master and
p slaves. Each processor has an identical transaction database for
mining. Since the fitness evaluation process is the most time-con-
suming part in the entire genetic-fuzzy mining process, it is thus
processed in parallel by the slave processors. The other part is pro-
cessed by the master processor. The parallel genetic-fuzzy data
mining framework includes two phases, mining membership func-
tion and mining fuzzy association rules. In the first phase, the mas-
ter and the slaves cooperate to gradually discover a set of adaptive
membership functions. The master processor maintains a popula-
tion of sets of membership functions and performs the genetic
operators to select, mate and evolve chromosomes. The master
processor distributes the tasks of fitness evaluation for suitability
of membership functions and large itemsets to slave processors.
Each slave processor with an identical transaction database then
calculates the fitness value of a chromosome that is assigned by
the master. The evaluation results from the slaves are then sent
back to the master. The master processor then performs the evolu-
tionary processes, such as crossover, mutation and production
according to the evaluation results collected. After undergoing
recursive evolutions, a good set of membership functions can be
obtained. The good set of membership functions is then used in
the second phase by the master processor to mine fuzzy associa-
tion rules. The second phase is not necessary to be processed in
parallel since the most time-critical part is phase 1. The time com-
plexity analyzed later will show this.
4. Chromosome representation and fitness evaluation

It is important to encode membership functions as string repre-
sentation for GAs to be applied. Several possible encoding ap-
proaches have been described in Cordón et al. (2001), Parodi and
Bonelli (1993) and Wang et al. (1998). In this paper, each set of
membership functions is encoded as a chromosome and handled
as an individual with real-number schema.

In order to effectively encode the associated membership func-
tions, we use two parameters to represent each membership func-
tion, as Parodi and Bonelli (1993) did. Membership functions
applied to a fuzzy rule set are then assumed to be isosceles-triangle
functions as shown in Fig. 3, where Rjk denotes the membership
function of the k-th linguistic term of item Ij, cjk indicates the cen-
ter abscissa of fuzzy region Rjk, and wjk represents half the spread of
fuzzy region Rjk.

As Parodi and Bonelli did, we then represent each membership
function as a pair (c,w). Thus, all pairs of (c,w)’s for a certain item
are concatenated to represent its membership functions. Thus the
set of membership functions MF1 for the first item I1 is then repre-
sented as a substring of c11w11, . . . ,c1|I1|w1|I1|, where |I1| is the num-
ber of terms of I1. The entire set of membership functions is then
encoded by concatenating substrings of MF1,MF2, . . . ,MFj. Since c
and w are both numeric values, a chromosome is thus encoded
as a fixed-length real-number string rather than a bit string.

Note that other types of membership functions (e.g. non-isosce-
les trapezes) can also be adopted in our method. For coding non-
isosceles triangles and trapezes, three and four points are needed
instead of two for isosceles triangles.

According to the proposed representation, each chromosome
thus consists of a set of membership functions for all the items.
This representation allows genetic operators (defined later) to
search for appropriate solutions.

In order to develop a good set of membership functions from an
initial population, the genetic algorithm selects parent member-
ship function sets with high fitness values for mating. Note that
the selection of membership function sets is performed by the
master processor, and the evaluation of each membership function
set is processed by the slave processors. An evaluation function is
defined to qualify the derived membership function sets. The eval-
uation results are then sent back to the master processor to control
how the solution space is searched to promote the quality of the
membership functions. The fitness value of a chromosome Cq is de-
fined as follows:

f ðCqÞ ¼
jL1j

suitability ðCqÞ
;

where suitability (Cq) is the suitability of the membership functions
in a chromosome Cq and |L1| is the number of large 1-itemsets ob-
tained by using the set of membership functions. The suitability is
defined according to the two factors – overlap ratio and coverage
ratio. The overlap ratio of two membership functions is defined as
the overlap length divided by half the minimum span of the two
functions. The coverage ratio of a set of membership functions for
an item is defined as the coverage range of the functions divided
by the maximum quantity of that item in the transactions. The suit-
ability factor used in the fitness function can reduce the occurrence
of the two bad kinds of membership functions shown in Fig. 4,
where the first one is too redundant, and the second one is too sep-
arate. Details can be referred to in Hong et al. (2006).

Besides, using the number of large 1-itemsets can achieve a
trade-off between execution time and rule interestingness. Usu-
ally, a larger number of 1-itemsets will result in a larger number
of all itemsets with a higher probability, which will thus usually
imply more interesting association rules. The evaluation by 1-
itemsets is, however, faster than that by all itemsets or interesting
association rules. It can be further speeded up by the parallel pro-
cessing approach proposed in this paper.

Two genetic operators, the max–min–arithmetical (MMA) cross-
over proposed in Herrera et al. (1997) and the one-point mutation,
are used in the genetic fuzzy mining framework. Note that the ge-
netic operations are performed by the master processor.
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5. The proposed parallel genetic-fuzzy mining algorithm

According to the above description, the proposed parallel algo-
rithm for mining both fuzzy association rules and membership
functions is described below.

5.1. The proposed parallel genetic-fuzzy mining algorithm

INPUT: One master processor, p slave processors (p is the max-
imum number of individuals to be evaluated in each generation), a
body of n quantitative transaction data stored in each processor, a
set of m items, a support threshold a, and a confidence threshold k.

OUTPUT: A set of fuzzy association rules with its associated set
of membership functions.

STEP 1: Randomly generate a population of individuals by the
master processor; each individual is a set of member-
ship functions for all the m items.

STEP 2: Encode each set of membership functions into a string
representation by the master processor.

STEP 3: Distribute the individuals from the master processor to
the slave processors.

STEP 4: Calculate the fitness value of each chromosome by each
corresponding slave processor by the following
substeps:

STEP 4.1: For each transaction datum Di, i = 1 to n, and for each
item Ij, j = 1 to m, transfer the quantitative value v ðiÞj

into a fuzzy set f ðiÞj represented as:

f ðiÞj1

Rj1
þ

f ðiÞj2

Rj2
þ � � � þ

f ðiÞjl

Rjl

 !
;

using the corresponding membership functions represented by the
chromosome, where Rjk is the k-th fuzzy region (term) of item Ij, f ðiÞjl

is v ðiÞj ’s fuzzy membership value in region Rjk, and l(=|Ij|) is the num-
ber of linguistic terms for Ij.
STEP 4.2: For each item region Rjk, calculate its scalar cardinality

countjk on the transactions as follows:
countjk ¼
Xn

i¼1

f ðiÞjk :
STEP 4.3: For each Rjk, 1 6 j 6m and 1 6 k 6 |Ij|, check whether its
countjk is larger than or equal to the minimum support
threshold a. If Rjk satisfies the above condition, put it in
the set of large 1-itemsets (L1). That is:

L1 = {Rjk|countjk P a, 1 < j < m and 1 < k < |Ij|}.
STEP 4.2: Set the fitness value of the chromosome as the number

of large itemsets in L1 divided by suitability (Cq). That is:
f ðCqÞ ¼
jL1j

suitabilityðCqÞ
:

STEP 1: Send the fitness value f(Cq) of each chromosome Cq from
each slave processor to the master processor.

STEP 2: Execute the crossover operations on the population by
the master processor.

STEP 3: Execute the mutation operations on the population by
the master processor.

STEP 4: Distribute the individuals to be evaluated from the
master processor to the slave processors.

STEP 5: Calculate the fitness value of each chromosome by each
corresponding slave processor as in STEP 4.

STEP 6: Send the fitness value f(Cq) of each chromosome Cq from
each slave processor to the master processor.

STEP 7: Use the defined selection criteria to choose suitable
individuals for the next generation by the master slave.

STEP 8: If the termination criterion is not satisfied, go to Step 3;
otherwise, do the next step.

STEP 9: Use the set of membership functions with the highest
fitness value for finding all fuzzy large itemsets by the
master processor.

STEP 10: Find the fuzzy association rules from the fuzzy large
itemsets by the master processor.

In Steps 13 and 14, our fuzzy mining algorithm proposed in
Hong et al. (2001) can be used to find the results.

6. An example

In this section, an example is given to illustrate the proposed
parallel fuzzy mining algorithm. The data set in this example in-
cludes six transactions shown in Table 1. This is a simple example
to show how the proposed algorithm can be used to mine member-
ship functions and fuzzy association rules from data.

STEP 1: Ten individuals are randomly generated as the initial
population by the master processor. Each individual rep-
resents a set of membership functions for all the four
items including milk, bread, cookies, and beverage.

STEP 2: Each set of membership functions is encoded into a chro-
mosome according to the representation proposed in
Section 4. Assume the ten individuals are generated as
follows:

C1: 5, 5, 10, 5, 15, 5, 6, 6, 12, 6, 18, 6, 3, 3, 6, 3, 9, 3, 4, 4, 8, 4, 12,
4;
C2: 5, 5, 10, 5, 15, 5, 4, 6, 10, 6, 16, 6, 4, 3, 7, 3, 10, 3, 4, 4, 8, 4, 12,
4;
C3: 4, 3, 7, 3, 10, 3, 6, 6, 12, 6, 18, 6, 6, 5, 11, 5, 16, 5, 6, 4, 10, 4,
14, 4;
C4: 5, 2, 7, 2, 9, 2, 5, 4, 9, 4, 13, 4, 6, 5, 11, 5, 16, 5, 6, 4, 10, 4, 14,
4;
C5: 4, 3, 7, 3, 10, 3, 6, 6, 12, 6, 18, 6, 5, 3, 8, 3, 11, 3, 3, 4, 7, 4, 11,
4;
C6: 6, 3, 9, 3, 12, 3, 5, 5, 10, 5, 15, 5, 4, 4, 8, 4, 12, 4, 6, 4, 10, 4, 14,
4;



Table 1
Six transactions in this example.

TID Items

T1 (Milk, 5); (bread, 10); (cookies, 7), (beverage, 7)
T2 (Milk, 7); (bread, 14); (cookies, 12).
T3 (Bread, 15); (cookies, 12)
T4 (Milk, 2); (bread, 5); (cookies, 5).
T5 (Bread, 9)
T6 (Milk, 13); (beverage, 12)

bread
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Fig. 5. The membership functions for bread in the first slave processor.

Table 2
The fuzzy sets transformed from the data in Table 1.

TID Fuzzy set

T1 1:0
milk:Low

� �
0:33

bread:Lowþ
0:67

bread:Middle

� �
0:67

cookies:Middleþ
0:33

cookies:High

� �
0:25

beverage:Lowþ
0:75

beverage:Middle

� �
T2 0:6

milk:Lowþ
0:4

milk:Middle

� �
0:67

bread:Middleþ
0:33

bread:High

� �
1

cookies:High

� �
T3 0:5

bread:Middleþ
0:5

bread:High

� �
1

cookies:High

� �
T4 0:4

milk:Low

� �
0:83

bread:Low

� �
0:33

cokkies:Lowþ
0:67

cokkies:Middle

� �
T5 0:5

bread:Lowþ
0:5

bread:Middle

� �
T6 0:4

milk:Middleþ
0:6

milk:High

� �
1

beverage:High

� �

Table 3
The counts of the fuzzy regions.

Item Count Item Count

milk.Low 2.00 cookies.Low 0.33
milk.Middle 0.80 cookies.Middle 1.33
milk.High 0.60 cookies.High 2.33
bread.Low 1.67 beverage.Low 0.25
bread.Middle 2.33 beverage.Middle 0.75
bread.High 0.83 beverage.High 1.00

Table 4
The set of the large 1-itemsets (L1) in this example.

Itemset Count

milk.Low 2.0
bread.Middle 2.33
cookies.High 2.33

Table 5
The fitness value of each chromosome in each slave processor.

Chromosome f Chromosome f

C1 0.75 C6 0.54
C2 0.53 C7 0.32
C3 0.27 C8 0.54
C4 0.3 C9 0.31
C5 0.58 C10 0.32
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C7: 3, 3, 6, 3, 9, 3, 6, 2, 8, 2, 10, 2, 6, 5, 11, 5, 16, 5, 4, 4, 8, 4, 12, 4;
C8: 4, 3, 7, 3, 10, 3, 6, 6, 12, 6, 18, 6, 5, 6, 11, 6, 17, 6, 6, 4, 10, 4,
14, 4;
C9: 3, 3, 6, 3, 9, 3, 6, 3, 9, 3, 12, 3, 6, 5, 11, 5, 16, 5, 6, 2, 8, 2, 10, 2;
C10: 4, 3, 7, 3, 10, 3, 6, 2, 8, 2, 10, 2, 6, 5, 11, 5, 16, 5, 6, 3, 9, 3, 12,
3.

Each chromosome represents the membership functions of the
four items and each item has three membership functions.

STEP 3: The ten individuals are distributed to the slave proces-
sors. Each slave processor then has its own chromosome
to process.

STEP 4: The fitness value of each chromosome is then calculated
by a slave processor by the following substeps:

STEP 4.1: The quantitative values of each transaction datum are
transformed into a fuzzy set according to the member-
ship functions in each chromosome. Take the first slave
processor as an example. Its membership functions for
bread in C1 are represented as (6,6,12,6,18,6), which
are shown in Fig. 5.

For transaction T5, the amount ‘‘9’’ of item bread is converted
into the fuzzy set 0:5

bread:Lowþ 0:5
bread:Middle

� �
using the above membership

functions. The results for all the transactions are shown in Table 2,
where the notation item.term is called a fuzzy region.

STEP 4.2: The scalar cardinality of each fuzzy region in the trans-
actions is calculated as the count value. Take the fuzzy
region milk.Low as an example. Its scalar cardinal-
ity = (1.0 + 0.6 + 0.0 + 0.4 + 0.0 + 0.0) = 2.0. The counts
for all the fuzzy regions are shown in Table 3.

STEP 4.3: The count of any fuzzy region is checked against the
predefined minimum support value a. Assume in this
example, a is set at 0.2. The minimum count is then
10 � 0.2(=2). Since all the count values of milk.Low,
bread.Middle and cookies.High are larger than 2.0, these
items are then put in L1 as shown in Table 4.

STEP 4.4: Since there are three large 1-itemsets for the member-
ship functions of C1 and its suitability is calculated as 4
according to the formula for the membership functions.
The fitness value of C1 is thus 3/4(=0.75). The fitness
values of all the chromosomes in the slave processors
are shown in Table 5.
STEP 5: The fitness value of each chromosome is sent from each
slave processor to the master processor.

STEP 6: After collecting all the fitness values from the slave pro-
cessors, the master processor executes the crossover
operations on the population.

STEP 7: The master processor the mutation operator to gener-
ate possible offspring. The operation is the same as
the traditional one except that rearrangement may
need to be done.

STEP 8: The master processor distributes all the possible off-
spring to the slave processors.

STEP 9: The fitness value of each possible offspring is then cal-
culated by a slave processor as in STEP 4.

STEP 10: Each slave processor sends its fitness value to the mas-
ter processor.

STEP 11: The master processor then selects ten chromosomes
according to the given selection criteria. For example,
the best ten chromosomes can be selected from the
mix of the parents and the offspring.

STEP 12: The same procedure is then executed until the termina-
tion criterion is satisfied. The best chromosome (with
the highest fitness value) is then output as the mem-
bership functions for deriving fuzzy rules.
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STEP 13: The fuzzy large itemsets are then derived by the fuzzy
mining method proposed in Hong and Lee (1996).

STEP 14: The fuzzy association rules are then derived from the
fuzzy large itemsets.

7. Time complexity analysis

The time complexities of both the sequential and the parallel
genetic-fuzzy mining algorithms are first analyzed. The speed-up
of the parallel mining algorithm is then derived. Some notation is
first defined as follows:
p:
 the number of slave processors (individuals);

n:
 the number of generations;

f:
 the average execution time of calculating the fitness

value of an individual in each generation;

g:
 the average execution time of processing all genetic

operations during a generation;

c:
 the average communication time between a master

processor and a slave processor during a generation;

s:
 the average execution time of mining the association

rules in the second phase;

Ts

ave:
 the average execution time of the sequential GA-fuzzy
mining algorithm;
Fig. 7. The experimental results for speed-up without transaction I/O time.
Tp
ave:
 the average execution time of the parallel GA-fuzzy

mining algorithm;

Save:
 the average speed-up calculated by Ts

ave over Tp
ave.
The average time complexity of the sequential mining algo-
rithm is:

Ts
ave ¼ n� p�f þ gð Þ þ s:

The parallel mining algorithm can distribute the fitness-evalua-
tion tasks to the slave processors. Therefore, the execution time for
the fitness evaluation in each generation needs only f. The parallel
algorithm, however, needs additional computation time c between
a master processor and slave processors. The average time com-
plexity of the paralleled mining algorithm is thus:

Tp
ave ¼ n�ðf þ g þ cÞ þ s:

The average speed-up is thus:

Save ¼
Ts

ave

Tp
ave

¼ n p�f þ gð Þ þ s
n f þ g þ cð Þ þ s

:

In this paper, the fitness evaluation is based on the suitability of
derived membership functions and the number of large 1-itemsets.
The entire database must be scanned to find the large 1-itemsets.
The average evaluation time f is thus much larger than the average
execution time for genetic operations g, especially when the pro-
cessed dataset is large. In addition, since the master only distrib-
utes the code of a chromosome to a slave and receives a number
(the evaluation value) from the slave, the communication time is
thus very little. Therefore, the speed-up can be further simplified
as the following:

Save ¼
n p�f þ gð Þ þ s

nðf þ g þ cÞ þ s
� n�p�f þ s

n�f þ s
:

The average evaluation time f includes the time of finding large
1-itemsets. The average execution time s of mining association
rules in the second phase includes finding all large itemsets and
deriving rules from them. s is thus larger than f. However, because
the number of items in the longest large itemsets is usually small,
some pruning techniques may be used to reduce the mining time s,
and the number of generations is usually set at more than one hun-
dred, s may thus be much smaller than n � f, especially when n is
large. In this case, the above speed-up can be further simplified as:
Save �
n�p�f þ s
n�f þ s

� n�p�f
n�f

¼ p:

Thus, when the number of generations is large, the speed-up is
nearly linear.
8. Experimental results

In this section, the experiments made to show the performance
of the proposed approach are described. They were simulated in
Java on a personal computer with Intel Pentium IV 3.2 GHz and
512 MB RAM. 64 items and 10,000 transactions were used in the
experiments. In each data set, the numbers of purchased items in
transactions were first randomly generated. The purchased items
and their quantities in each transaction were then generated. An
item could not be generated twice in a transaction. The crossover
rate pc is set at 0.8, and the mutation rate pm is set at 0.01. The min-
imum support a is set at 400. Experiments with different popula-
tion sizes from 10 to 50 were made to show the speed-up trend
of the proposed algorithm. The communication time was not con-
sidered. Note that by the genetic-fuzzy mining algorithm proposed
in Hong et al. (2006), the maximum number p of individuals to be
evaluated in each generation was 2.6 � r, where r is the number of
individuals in a population. The experimental results with and
without transaction I/O time are shown respectively in Figs. 6
and 7.

It can be easily observed from the above two figures that the
speed-up increases nearly linearly along with the number of slave
processors. The speed-up is also close to the number of slave pro-
cessors. It is quite consistent with our analysis in Section 6. Also
note that the speed-up with I/O is larger than that without I/O. This
is due to the increased evaluation time in slave processors when
transactions must be read. Speed-up will thus be more apparent
according to the speed-up analysis.
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9. Conclusions and future works

In this paper, we have proposed a parallel genetic-fuzzy mining
algorithm based on the master–slave architecture to extract both
association rules and membership functions from quantitative
transactions. The master and the slaves first cooperate to discover
a set of suitable membership functions. The set of membership
functions found is then used by the master processor to mine fuzzy
association rules. The second phase is not necessary to be pro-
cessed in parallel since the most time-critical part lies in phase 1.
The time complexities for both sequential and parallel genetic-fuz-
zy mining algorithm have been analyzed, with results showing the
good effect of the proposed approach. When the number of gener-
ations is large, the speed-up can be nearly linear. The experimental
results have also shown this point. Applying the master–slave par-
allel architecture to speed up the genetic-fuzzy data mining algo-
rithm is thus a feasible way to overcome the low-speed fitness
evaluation problem of the original algorithm. The proposed parallel
mining algorithm can also be easily modified for execution on a
bounded number of processors to meet real-world requirements.
In the future, we will continuously attempt to enhance the GA-
based framework for more complex mining problems.
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