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Reducing  energy  consumption  is  a  critical  step  in lowering  data  center  operating  costs  for  various  insti-
tutions.  As  such,  with  the  growing  popularity  of  cloud  computing,  it is  necessary  to  examine  various
methods  by  which  energy  consumption  in cloud  environments  can  be reduced.  We  analyze  the effects
of  global  virtual  machine  allocation  on energy  consumption,  using  a variety  of  real-world  policies  and  a
eywords:
loud
irtual machine
ynamic allocation
etwork performance

realistic  testing  scenario.  We  found  that  by using  an allocation  policy  designed  to  minimize  energy,  total
energy  consumption  could  be  reduced  by  up to  14%,  and  total  monetary  energy  costs  could  be  reduced
by  up  to 26%.  Further,  we  have  begun  performance  qualification  of  our energy  cost  driven  allocation
policies  through  network  capability  tests.  Our  results  indicate  that  performance  and  IaaS  provider  imple-
mentation  costs  have  a significant  influence  on  selection  of  optimal  virtual  machine  allocation  policies.
. Introduction

As adoption of virtualization services increases, cloud com-
uting platforms are becoming increasingly popular. Demand for
xisting cloud infrastructures such as Amazon’s Elastic Compute
loud [1] is steadily rising [2], and the use of private compute clouds

s becoming more popular among a variety of institutions [3].
While virtualization has in many cases facilitated IT infrastruc-

ure consolidation for individual organizations, expanding demand
or IT services via cloud technology drives growth. As virtualiza-
ion on various cloud platforms becomes more prevalent, the rising
umber of virtual machine requests in any given cloud necessitates

 proportionally increasing number of physical host servers to fulfill
hem. As such, data center sizes are expanding, generating a grow-
ng concern over energy consumption and electricity costs among
usinesses and hosting providers alike.

The energy cost incurred in running a data center has been
teadily rising for years. Data center energy costs in the United
tates accounted for nearly 1.5% of all electricity costs in 2006,

eaching up to approximately $4.5 billion per year, and trend
ata estimates that this cost will jump to an annual cost of $7.6
illion for 2011 [4]. According to recent report by Koomey [5],
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the growth in electricity used by data centers worldwide was  in
fact lower than previously predicted. It was mainly affected by
two factors–slowdown of growth in the installed base of servers
because of virtualization and the financial crisis of 2008 with its
associated economic inhibition. Nevertheless, the energy issue is
still an important concern as the high density computing facilities
keep expanding and, as a result, require more and more power.

With this in mind, it is worthwhile to attempt to minimize
energy consumption through any means available. In this paper,
we will examine various cloud allocation policies used to match
virtual machines to physical hosts in a cloud environment. We  will
simulate each policy independently and analyze its effectiveness in
a number of categories, with a focus on energy consumption.

Related work by Garg et al. [6] focuses on deploying high-
performance computing (HPC) services across a cluster while
minimizing carbon emissions, using a combination of minimization
algorithms and CPU voltage scaling. Additionally, Kim et al. [7] has
focused on developing a similar system that combines scheduling
and CPU voltage scaling to achieve reduced energy consumption
across a cluster. Such methods reduce energy costs, but their focus
is on power consumption at the CPU level as opposed to the cluster
level. More akin to our scheduling analysis is a system developed
by Chase et al. [8] in which services bid on host machines and
are scheduled to minimize energy costs, while properly allocat-
ing services to handle varying web loads. Unlike our research, their

approach relies on an outside scheduling framework. Further, work
by Mazzuco et al. [9] develops dynamic scheduling of servers local
to one data center to maximize user experience while minimizing
the energy costs of cloud providers. Their work differs from ours in
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Table 1
Physical host specifications.

Cluster

Physical
server

US East
server counts

US West
server counts

Asia server
counts

Europe
server counts

server.A1 0 24 0 0
server.A2 0 8 0 0
server.B1 24 0 0 0
server.B2 16 0 0 0
server.C1 0 0 8 0
server.C2 0 0 8 0
server.D1 0 0 0 16
 P. Raycroft et al. / Sustainable Compu

hat it addresses the scheduling policies of local physical servers as
pposed to globally distributed VMs. In addition, Beloglazov et al.
10] focus on virtual machine reallocation by taking into account
uality of Service and cost minimization. However, their work con-
entrates solely on a single data center, contrasting our global
ethodology. Finally, work by Aikema et al. [11] takes a global
igration approach, similar to our migration policies originally

iscussed by Jansen et al. [12]. However, we differ by consider-
ng multiple experimental network performance tests as well as
nergy cost optimization.

A different approach, focusing on optimizing the allocation pro-
ess, is described by Srikantaiah et al. [13]. Their strategy involves
odeling the cloud as a bin packing problem, with physical hosts as

ins and virtual machines as objects to fit inside of them. Using this
odel, they attempt to consolidate the virtual machines to as few

osts as possible, in an effort to minimize overall energy usage.
s we will see later on, this approach is akin to (although much
ore advanced than) the Packing allocation policy defined in our

imulation.
Zheng et al. [14] created an optimal energy-aware load dis-

atching model to minimize the electricity and network costs for
nline Service Providers. They selected end-to-end response time
s the metric of performance, which consists of network delay and
esponse time inside an Internet Data Center. Geographic distance
as used as a rough measure of network latency. The round trip

ime for a request from user group to data center is a linear func-
ion of its distance. However, this approach is not accurate. As our
xperiments indicate, the latency and throughput of a network
onnection cannot be always calculated in this simple manner.
oreover, network bandwidth changes throughout the day, being

ffected by network congestion and load on servers. For this reason
ur simulation is based on real results from experiments measuring
etwork efficiency between selected data centers.

The allocation policies presented in this paper are either already
vailable on two  popular cloud platforms (OpenNebula [15] and
ucalyptus [16]), or they are straightforward to implement using
ither platform’s scheduling policy syntax. In this paper, we will
ttempt to analyze how various allocation policies affect energy
onsumption, as well as CPU load and overall energy costs, in a
ealistic environment based on dynamic website loads.

Of the seven allocation policies we tested, four are currently
vailable by default in existing open-source cloud platforms. The
our existing policies tested include Round Robin, Striping, Packing,
nd free-CPU-count-based Load Balancing. One of the remaining
hree, ratio-based Load Balancing is a variation on the original
ount-based load balancing, and the other two, the Watts per Core
nd Cost per Core policies, are experimental, intended to minimize
verall data center energy consumption and energy costs respec-
ively. These policies are described in depth by Jansen et al. [12]
nd are summarized in Section 2.

. Simulation scenario

Via our simulation, we tested seven different cloud allocation
olicies: Round Robin, Striping, Packing, Load Balancing (free CPU
ount), Load Balancing (free CPU ratio), Watts per Core, and Cost
er Core.

Round Robin:  This allocation policy iterates sequentially through
available hosts. When a host is found that has sufficient resources,

the VM is matched to the host. On the next iteration, the policy
starts its iterations where it previously left off.
Striping: This policy first discards all hosts that do not have suffi-
cient available resources to host the machine. It then selects from
server.D2 0 0 0 16
server.D3 0 0 0 16

the remaining hosts the one that is currently hosting the fewest
number of VMs  and matches the virtual machine to that host.

• Packing: The Packing policy is the opposite of Striping. After
discarding all hosts similarly to Striping, it selects from the
remaining hosts the one that is currently hosting the greatest
number of VMs  and matches the virtual machine to that host.

• Load Balancing (free CPU count):  Similarly to the other policies, the
count-based Load Balancing policy first discards all hosts that do
not have sufficient available resources. From the remaining hosts,
it then selects the one with the greatest number of free CPU cores
and matches the virtual machine to that host.

• Load Balancing (free CPU ratio): This policy is similar to the count-
based Load Balancing; however, it instead selects the host with
the greatest ratio of free CPU cores to allocated CPU cores and
matches the virtual machine to that host.

• Watts per Core: From the pool of hosts that have sufficient avail-
able resources, this policy selects the host that would result in
using the least additional wattage per CPU core if chosen, based
on each host’s power supply, and matches the virtual machine to
that host.

• Cost per Core: This policy is similar to the Watts per Core policy
above; however, it instead selects the host that would result in
using the least additional cost per CPU core if chosen, based on
each host’s power supply and electricity costs, and matches the
virtual machine to that host.

Our simulation scenario attempts to accurately simulate a large-
scale website–the social media site Reddit.com. Reddit.com [17]
shifted their entire infrastructure to Amazon EC2 virtual machine
instances, and, as of February, 2011, the site serves up to 1 billion
users monthly [18].

In the scenario, we  define four clusters of physical hosts, each
representing a geographical location around the world as well as
an existing Amazon EC2 data center [19]. As mentioned above, the
website is hosted entirely on a set of virtual machines, which will be
distributed among the clusters as necessary to deal with dynamic
server loads. The load structure was chosen specifically to imitate
typical web server loads based on the time of day at the different
geographical locations.

In this section, we  will state the specification of each of our phys-
ical hosts, the requirements of each of our virtual machines, and the
website load scheme used in our simulation.

2.1. Physical hosts

The physical hosts in our simulation are based off of commodity
servers available from IBM. Server specifications are based off of the

specifications and power requirements provided by IBM’s Power
Configurator tool [20]. The different servers used in our simulation
are defined in Table 1.
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Table  2
Cluster allocations.

Name IBM model Cores Memory
(GB)

Min  power
usage (W)

Max power
usage (W)

server.A1 x3550 M3  8 16 200 410
server.A2 x3550 M3  12 32 210 430
server.B1 x3455 4 8 125 260
server.B2 x3455 8 16 180 375
server.C1 x3550 M2  4 8 170 280
server.C2 x3550 M2  8 16 250 410
server.D1 x3650 M2 4  8 180 300
server.D2 x3650 M2  8 16 260 430
server.D3 x3650 M3  12 32 230 470

Table 3
Virtual machine specifications.

Name EC2 instance type Cores Memory (GB) Size (GB)

vm.Application c1.xlarge 8 7 1690
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vm.Frontend m1.large 2 7 850
vm.Database m1.xlarge 4 15 1690

The physical hosts are divided up amongst four individual clus-
ers. Each cluster contains a different number of one to three
ifferent types of servers.

Each of the four clusters represents a different geographical
ocation. Those locations are defined as:

US East–represents a data center in Ashburn, Virginia in the
United States.
US West–represents a data center in Los Angeles, California in the
United States.
Asia–represents a data center in Singapore.
Europe–represents a data center in Dublin, Ireland.

Each cluster hosts a varying number of physical host servers.
able 2 defines the server allocation of the clusters.

.2. Virtual machines

For the simulation, 108 virtual machines, representing the EC2
nstance makeup of Reddit.com, were used for testing. Each virtual

achine is based off of an existing EC2 instance type, with similar
ore, memory, and size requirements. The virtual machines and
heir specifications are shown in Table 3.

Each cluster has a number of virtual machines of each type that
re meant to handle the base load at any given time. As such, these
irtual machines are persistent and will always be allocated on their
espective clusters. Alternatively, there are some virtual machines
hat are meant to help handle additional load at any given cluster.
s such, these virtual machines are allocated based on each cluster’s
oad each hour. Table 4 shows the virtual machine allocation across
he clusters.

able 4
irtual machine allocations.

Cluster

Virtual machine US East VM
counts

US West
VM counts

Asia VM
counts

Europe
VM
counts

Load
VM
counts

vm.Application 8 8 2 6 20
vm.Frontend 5 5 1 3 10
vm.Database 8 8 2 6 16
formatics and Systems 4 (2014) 1–9 3

2.3. Dynamic load

The simulation emulates dynamic website loads coming from
the different clusters at different times of the day. Over the course
of 24 h, the load for each cluster is determined as a percentage of the
total load on all clusters. The load percentage Loadc for each cluster
is calculated as the ratio between the number of users accessing
the website from the cluster’s region Usersc to the total number of
users accessing the site across all regions UsersT. This calculation is
represented by the following equation:

Loadc = Usersc/UsersT

Once the load percentage for each cluster is determined, the
simulation uses each load percentage to assign a proportional num-
ber of virtual machines to each of the clusters. Each cluster has a
designated number of persistent hosts that always remain in their
respective clusters. These are meant to handle hosting of the web-
site in each region without any additional load. The regional VM
counts in Table 4 represent these persistent virtual machines.

The remaining virtual machines that are not persistent, or the
“load-handling” virtual machines, are transferred from cluster to
cluster as the load changes, each cluster receiving a number of
load-handling virtual machines proportional to its load percent-
age. For example, if, at a single iteration, the US  East cluster had a
load percentage of 25% and the US West cluster had a load percent-
age of 75%, then 25% of the load-handling virtual machines would
be assigned to the US East cluster, and 75% would be assigned to
the US West cluster. Note that these load handling virtual machines
would be assigned to the cluster in addition to its persistent virtual
machines. If a cluster does not have the resources to host all of its
assigned load-handling virtual machines, they are assigned to other
clusters instead. The Load VM counts in Table 4 represent the types
and quantities of the load-handling virtual machines.

The load is simulated as changing on an hourly basis, over a
24 h period. It assumes that users are most active from 6 PM to 3
AM in their local time zone. Additionally, we  are assuming that the
majority of users visiting the site are American, that there are a
smaller number of Europeans users, and that there is a very small
population of Asian users. The allocated cluster servers shown in
Table 1 reflect such a setup. Fig. 1 shows the load percentage of
each cluster over a 24 h period.

2.4. Simulation process

The simulation process is relatively straightforward, but we will
outline it here. At each iteration over a 24 h period, we perform the
following steps:

• Allocate load-handling virtual machines: First, we used the
current load percentages for each cluster to divide up the load-
handling virtual machines.

• For each cluster, match its load handling machines to its hosts
using a scheduling policy: Next, we use the scheduling policy to
match each cluster’s set of load-handling virtual machines.

• For virtual machines that could not be matched, match each to
all of the remaining hosts using the scheduling policy: For each
virtual machine that could not be matched to its preferred cluster,
we match it against all of the physical hosts, on any cluster.
During the simulation, virtual machine allocations are logged
and later analyzed to determine the overall performance of the
scheduling policy that was  used.
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instead try to naively use as many hosts as possible.
The Round Robin policy performed, in the middle, worse than

any of the packing-based policies and better than striping or load
balancing. Fig. 2 shows the hourly consumption of each policy.
Fig. 1. Luster load p

.5. Assumptions

A number of assumptions are made in our simulation to both
implify the simulation process and mimic  a real world scenario.
hese assumptions are as follows.

.5.1. Non-idle hosts use a fraction of their maximum power
sage

Hosts that are hosting a number of virtual machines are assumed
o use a fraction of their maximum power. This fraction is calculated
sing the minimum and maximum power usage values for the host
Pmin and Pmax respectively), found in Table 2, as well as the ratio of
llocated CPU cores Coresalloc to total CPU cores Corestotal of the host
n question. At any given time, the current power consumption P is
alculated using:

 = Pmin + (Pmax − Pmin)∗ (
Coresalloc/Corestotal

)

.5.2. Idle hosts use no power
We  also assume that idle machines are in a low-power state of

ome sort (hibernating, off, etc.), and, as such, we  evaluate their
ower consumption to 0.0 W.

.5.3. When allocating load-handling virtual machines, local
achines are always allocated first

When load-handling virtual machines are allocated, each clus-
er chooses machines already on its cluster before remote virtual

achines.
For example, if during the first iteration, the US West Clus-

er required 2 vm.Application machines, they would be allocated
o it as needed. If during the next iteration, the cluster needed 3
m.Application machines, it would choose the 2 that it is already
osting first, and then proceed to retrieve 1 more from a remote

ocation.

.5.4. Each cluster has its own shared SAN
Each cluster has shared storage, and can migrate machines

etween hosts instantaneously.

. Results and analysis
In this section, we will examine the results of our simulation,
hich are shown in Table 5. In the tables, energy consumption is
easured by the average total kilowatts used per hour across all

osts. Cost is the average total cost per hour, based on our estimated

able 5
imulation results.

Scheduling policy kW/hr Cost/hr (USD) CPU Load (%)

Round Robin 30.33 $6.17 72.45%
Striping 32.47 $6.84 67.19%
Packing 30.01 $5.68 76.33%
Load balance (Count) 31.27 $6.51 70.25%
Load balance (Ratio) 32.43 $6.84 67.13%
Watts per core 27.89 $5.03 79.51%
Cost per core 28.04 $5.05 79.05%
tages per hour [12].

server costs specified in part B of this section. And finally, CPU load is
the average hourly ratio of allocated cores total cores among active
hosts.

3.1. Energy

Energy consumption is measured in average kilowatts per hour
over the 24 h simulation period.

Unsurprisingly, the Watts per Core policy did the best from an
energy-saving standpoint, achieving an average energy usage of
approximately 27.9 kW per hour. Cost per core did well also, which
is expected considering the direct correlation between energy and
cost.

Packing and Round Robin did reasonably well, averaging
approximately 30.0 and 30.3 kW per hour, respectively. The Load
Balancing and Striping policies did significantly worse, each aver-
aging between 31.2 and 32.4 kW per hour. Fig. 2 shows the hourly
energy consumption of each policy.

Based on our assumption that inactive hosts can be placed in a
low power state and require no energy, packing the hosts should
provide the best energy efficiency, as such a strategy minimizes the
number of hosts that are powered on. With this in mind, we can
see that the Watts per Core and Cost per Core policies are actually
optimizations of the Packing policy. Whenever the Packing policy
fills up a host machine, it arbitrarily chooses a new one. The Watts
per Core and Cost per Core policies will always choose the most
energy-efficient or cost-efficient host to begin packing next, and,
in this way, they perform better than basic packing.

Load balancing and striping are expected to perform the worst
in this category, as they both involve starting up as many hosts as
necessary, and, in turn, use more energy. The Load Balancing pol-
icy performs better than the Striping policy, because it adds more
virtual machines to larger hosts, whereas the Striping policy will
Fig. 2. Average energy consumption per hour vs. scheduling policy.
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Fig. 3. Average cost per hour vs. scheduling policy.

.2. Cost

Cost is the average cost (in USD) per hour to run all active hosts
cross the cluster.

The cost of electricity for each cluster is based on actual indus-
rial electricity costs for each geographic location. United States
lectricity costs are based on reports from the U.S. Energy Informa-
ion Administration [21], European costs are based off of reports
rom Europe’s Energy Portal [22], and Asian costs are based off
f a report from the Senate of the Philippines [23]. The cost per
ilowatt-hour for each cluster is defined as:

US East–$0.1105
US West–$0.0674
Asia–$0.1058
Europe–$0.1602

Additionally, each cluster has an associated Power Usage Effec-
iveness (PUE) value. This value is essentially a measure of how
fficient a given data center is at using its electricity, as is deter-
ined by the following equation [24]:
PUE = Total Facility Power/IT Equipment Power
The PUE values for each cluster are defined as follows:

US East–1.2
US West–1.4
Asia–1.8
Europe–1.6

For each cluster, we calculate the true cost per kilowatt-hour by
ultiplying the cluster’s cost by its PUE value.
Based on these true costs, our simulation determined the cost

f hosting virtual machines for each allocation policy. As expected,
he costs are directly related to energy consumption. Striping is the
orst, at a price of $6.84 per hour, while the Watts per Core and
ost per Core policies are the best, at $5.03 and $5.05 per hour,
espectively. Fig. 3 shows the hourly costs of each policy.

.3. CPU load

We  define CPU load as the ratio of a host’s allocated cores to
ts total cores. The averages only take into account hosts that are
ctively hosting virtual machines.

The Load Balancing policies and the Striping policy perform

est in this category, each achieving an average CPU load between
pproximately 65% and 70%. Striping and ratio-based Load Balanc-
ng should always result in a very similar allocation, as they will
llocate virtual machines to the same hosts until every host in a
Fig. 4. Average CPU load vs. scheduling policy.

cluster is already active. At that point, they will begin to choose dif-
ferent hosts, which accounts for the slight deviation between the
two policies.

The count-based Load Balancing policy, on the other hand, will
choose larger hosts with more free CPU cores, allowing it to better
pack virtual machines on to its selected hosts. As such, it sees bet-
ter energy efficiency, but poorer load-balancing performance than
ratio-based Load Balancing.

Unsurprisingly, because the Packing, Watts per Core, and Cost
per Core algorithms all minimize active hosts, the average load
between those active hosts is significantly higher.

Again, the Round Robin policy performed in the middle of the
pack, doing better than any of the packing policies, but worse than
the load balancing policies. Fig. 4 shows the average CPU load for
each policy.

4. Performance considerations

In order to provide a more robust analysis of VM migration, we
evaluate the impact of moving VMs  across different global regions.
In this section, we  discuss the network performance between Ama-
zon EC2 instances and the impact that these results have on VM
migration.

4.1. Migration overhead

Because our main simulation assumes a dynamic website load
at any given time, we move virtual machines around to vari-
ous clusters to properly handle changing cluster demands. In any
real-world scenario, storage transfer costs must be taken into
consideration. There are two ways to store data in a virtual envi-
ronment.

First, using instance storage,  data is stored in the virtual machine
instances themselves. Using this approach would require that each
time a virtual machine is transferred, all of its accompanying data
is transferred as well, incurring the penalties (time, cost, etc.) to do
so.

Second, using shared storage, data is stored in some sort of shared
filesystem between the hosts, such as a distributed file system or
a SAN. Using this method, instead of transferring virtual machines
to handle load, a website could merely shut down existing virtual
machines and start new ones in the appropriate clusters. Because
the data is not stored on the machines themselves, the virtual

machines do not need to be transferred and can be run as inde-
pendent processes interacting with the data at any location. While
such an approach eliminates transfer costs, it also necessitates a
large shared storage pool with access from all physical hosts.
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Table  6
Specifications of EC2 instance types.

EC2 instance type Memory EC2 compute units I/O performance

t1.micro 613 MB Up to 2 Low
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the distance from Ashburn in Virginia to Dublin in Ireland is more
than 40% higher than to Palo Alto in California, the average band-
width drops only by 15% from the Virginia-California connection to
m1.small 1.7 GB 1 Moderate
m1.large 7.5 GB 4 High

Our original simulation assumed that each cluster used shared
torage between its hosts, but not between all of the hosts. That is,

 host could transfer virtual machines to another host in its cluster
t no penalty, but transferring a virtual machine to a different clus-
er would incur various transfer costs. Additionally, we assumed
hat each virtual machine had to transfer to a cluster in order to
erve users in that cluster, and, as the load changed, virtual machine
lacement strictly adhered to the needs of each cluster. As such, we
oved virtual machines when necessary, but we tried to minimally

ransfer between clusters.

.2. Network considerations

A real-world scenario needs to take into account the network
erformance in order to estimate the transfer times of virtual
achines. We  decided to analyze the real bandwidth between

elected Amazon data centers. Below are presented the datacenters
xamined in our experiments–we performed bidirectional tests to
nalyze the connections between:

Virginia, US
California, US
Ireland
Singapore
Tokyo, Japan
Sao Paolo, Brazil

To accurately measure the bandwidth and latency between dif-
erent data centers, we installed one virtual machine on each cluster
sing Amazon Elastic Compute Cloud. We  decided to choose the
efault VM,  the t1.micro (“micro”) instance type [25], to test every
onnection between each cluster.

To measure bandwidth results for different EC2 instance types,
e also installed an m1.small (“small”) and an m1.large (“large”)

nstance on both the Virginia and California clusters. Specifications
or the three instance types used are shown in Table 6.

The input/output performance of the three different instance
ypes varies upon size. While not affecting latency results, this spec-
fication does affect the bandwidth levels of the different instances.
n order to demonstrate how these I/O performance specifications
ffect bandwidth results, we conducted a 24-hour test to mea-
ure bandwidth levels between micro, small, and large instances
n Virginia and California. The results can be seen in Figs. 5 and 6.

As can be seen, the variation and standard deviation of band-
idth results increase significantly with larger VM sizes. Thus, the
icro instance type provides a suitable baseline of small variability

n which we center the subsequent analysis.
Despite bandwidth results varying between instance types,

nstance size does not appear to have an effect on network latency;
ound-trip times were reasonably uniform across different VM
izes (see Section 4.2.2).

.2.1. Bandwidth
An Iperf application was used in measurements, one host serv-
ng as a server and the second one as a client. A connection between
osts in different data centers was established every 30 min  for 5
ays. Each connection lasted for 10 s, during which data was trans-
erred at the maximum rate over 5 two-second intervals. Using
Fig. 5. Bandwidth using micro, small, and large instances: Virginia to California (in
Mb/s).

this approach, each connection yielded 5 different samples spec-
ifying current throughput at the time. Of these 5 samples, the first
was always discarded to take into account the Slow Start algorithm
used by TCP. Because TCP gradually increases the amount of data
sent over time to assess the maximum bandwidth of a connection,
it could not be guaranteed that the first sample in each connection
was sending the maximum amount of data possible at the time.
As such, to calculate the throughput at any given time, we  used
the remaining 4 samples to compute an average. For comparison,
we collected data without discarding first samples to check how
it affected the results–values were 6% to 17% lower, depending on
selected data centers.

Fig. 7 shows bandwidth results between micro instances on clus-
ters located in Virginia and the other five data center locations listed
above (data is transferred outbound from Virginia). Despite a very
small number of large deviations, the majority of bandwidth tests
between Virginia and each location appeared stable.

Fig. 8 presents bandwidth as well as latency results between
data centers in Singapore and Sao Paolo. Although this connection
represents the lowest bandwidth and highest latency averages, the
results demonstrate a rather stable connection between these two
locations.

Table 7 shows the average bandwidth of each connection exam-
ined using the micro instances. It is important to notice that the
bandwidth is not proportional to geographical distance. Although
Fig. 6. Bandwidth using micro instances: Virginia Outbound (in Mb/s).



P. Raycroft et al. / Sustainable Computing: Informatics and Systems 4 (2014) 1–9 7

Fig. 7. Connection between Singapore and Sao Paolo.

V
T
l
i

t
b
a
t
i
5

a
b
g
b
f

T
A

Fig. 8. Latency: Virginia Outbound in (ms).

irginia to Ireland. This trend is also visible in the next two results.
he bandwidth between Virginia and Singapore is more than 65%
ower than between Virginia and Tokyo (Table 7), but the difference
n distance is only 25%.

Our experiments showed, using micro instances, that the direc-
ion of data flow does not have a significant impact on bandwidth
etween micro instances. The highest difference in bandwidth
verages of experiments examining connections of opposite direc-
ion is between Singapore and Sao Paolo; this difference, however,
s still less than 10%. Most other differences remain at or less than
%.

However, results from the Virginia–California tests using small
nd large instances indicate that the direction of data flow does
egin to have a significant effect on bandwidth as instance size

rows. Using small instances instead of micro instances, the average
andwidth from Virginia to California is nearly 45% higher than that
rom California to Virginia.

able 7
verage bandwidth results in (Mb/s).

Destination

VA CA IRE SIN TOK SP

Source Virginia 25.6 22.3 8.64 11.6 15.3
California 25.4 13.8 12.1 18.6 11.6
Ireland 23.6 13.8 6.17 7.96 10.7
Singapore 8.46 11.9 6.03 24.9 5.94
Tokyo 11.2 18.2 7.68 24.4 7.37
Sao Paulo 14.4 10.4 9.82 5.44 7.22
Fig. 9. Energy and cost improvement of Watts per Core.

4.2.2. Latency
A ping application was used to calculate the latency between

the six data centers. Similar to the bandwidth experiments, a con-
nection was created between each of the data centers every 30 min
for 5 days, and the round trip time was  recorded.

Fig. 9 presents latency data collected between micro instances
on clusters in Virginia and the other five data center locations in the
same period of time. As expected, based on the bandwidth results,
the average round-trip time between Virginia and California was
the lowest of all connections at 86.4 ms.  Additionally, connections
between the Virginia and California data center were also the most
stable, with very few recorded round trip times strongly deviating
(+/− 5 s) from the average.

An average round-trip time from Virginia to Ireland is only about
3.4% higher than to California–89.3 ms.  Note that the increase in
round-trip time is extremely low relative to the increase in geo-
graphical distance between these data centers. Table 8 presents
the averages of the latency experiments between all 6 data centers.

Despite having the highest average round-trip time of all con-
nections, Fig. 8 demonstrates that latency between Singapore and
Sao Paolo remains stable over time.

Unlike bandwidth, latency does not appear to be affected by the
EC2 instance type. There were no significant differences between
the results obtained from the experiments on micro, small, and
large instances.

4.2.3. Network conclusions
From both the bandwidth and latency experiments, we con-

cluded that network performance between the Amazon data
centers was not temporally variant on timescales of a day. Due to
the volatility of the bandwidth between larger instance types, how-
ever, bandwidth performance is time-dependent on timescales less
than one hour. This indicates that virtual machines can be moved

to the optimal data center location irrespective of the time-of-day
with the caveat that there exists an apparently random high devi-
ation in performance measures on the temporal order of an hour.

Table 8
Average latency results in (ms).

Destination

VA CA IRE SIN TOK SP

Source Virginia 86.4 89.3 249 197 147
California 86.5 159 184 128 199
Ireland 90.1 163 343 289 219
Singapore 249 184 343 89.2 367
Tokyo 197 128 287 89.8 289
Sao Paulo 147 199 219 367 289
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Table  9
Power ratings and average bandwidth by data center location.

Data center location Power rating (Power
costs) × (PUE)

Average outgoing
bandwidth (Mb/s)

California .0944 16.3
Virginia .1326 16.69
Singapore .1904 11.45
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as unique cluster load at different times of the day. To account for
Ireland .2563 12.45

The results also indicate that the localities of the data centers do
ffect network performance. With variations by as much as 300% of
oth latency and bandwidth results, network differences are signif-

cant. Thus, network performance must be taken into account when
onsidering migrating a VM to a different data center location.

Even with the higher bandwidth of the larger instance types,
oving infrastructure on the scale of terabytes and petabytes

etween data center locations is not practical. However, even with
 10 Mb/s worst-case bandwidth, moving a 1 GB virtual machine
ould only take roughly 2 h. This shows that moving small virtual
achines between different data centers across the world could

e practical. (Note: The study of alternative network paths–such
s re-routing the connection from Sao Paulo to Singapore to
oute through Virginia–is an interesting optimization opportunity
eyond the scope of this paper but is planned for future work).

With latency averages as high as 367 ms,  user experience must
lso be taken into account when considering moving a VM.  On sites
here users often download large files or where browser latency

ould cause significant issues, moving the host virtual machines to
ata centers across the world to which network performance is low
ould be highly unfeasible.

Finally, corporations, when considering our proposed migra-
ions, must also be concerned about their internal network
ontention and saturation. If an institution owns or leases physical
andwidth between any two locations, that bandwidth is finite,
s is the cost of maintaining it. On any such connection, there
re competing demands for bandwidth, such as customer data
ngest, customer’s inner services communication, corporation’s
aaS communications, and possibly our proposed VM migra-
ions. Corporations therefore must prioritize bandwidth usage and
etermine how much of their network they can allocate to VM
igrations.

.3. Network effects

Large, international hosting providers must consider not only
nergy consumption and cost efficiency of their clouds but also
ser experience and bit rate transmissions of their global applica-
ions. As such, global VM migration policies are directly affected by
etwork performance considerations, as well as by IaaS providers’
etwork costs and internal network saturation.

When determining where to migrate VMs  globally, providers
hould take into account energy, costs, and performance metrics.
n Table 9, we focus on data center power ratings–a metric derived
rom energy costs and PUE scores–and network performance val-
es. (Note: Data centers located in Tokyo and Sao Paulo were
xcluded from this table because adequate power rating data could
ot be found). As one can see, high network performance will not
lways be the location with the lowest operating costs. In this
xample of the network that supports Amazon’s EC2 instances, Vir-
inia maintains the highest outbound bandwidth while California
ossesses the best power rating value. Thus, institutions must be

ble optimize energy usage and operating costs while still taking
nto account network performance and how it affects their appli-
ations.
formatics and Systems 4 (2014) 1–9

4.4. Overall

Overall, it appears that the best policy, in terms of minimizing
energy costs, is the Watts per Core policy. It is the most energy-
efficient of all the scheduling policies in both simulation scenarios,
and its cost efficiency was similar to the Cost per Core policy in the
original scenario, and slightly better than it in the ideal simulation.

In our original simulation, the Watts per Core policy achieved
overall energy consumption 7.1% to 14.1% better than any of the
Round Robin, Striping, Packing, or Load Balancing policies. Addi-
tionally, it achieved a cost improvement of 11.4% to 26.5% over any
of the aforementioned policies. Fig. 10 shows the energy and cost
improvement of the Watts per Core policy over the other policies
(not including Cost per Core).

Out of the remaining four policies, the Striping and Load Balanc-
ing policies do the most poorly in conserving energy but excel at
minimizing CPU load, showing up to a 15.6% improvement in CPU
load over the other policies.

Additionally, it should be noted that the Round Robin pol-
icy offers a middle ground, consistently showing performance in
between that of the best and worst categories for all of the perfor-
mance categories.

5. Conclusion

By choosing a more energy efficient allocation policy, energy
consumption on cloud platforms can potentially be reduced by
approximately 7% to 14%, lowering overall energy costs by any-
where from 11% to 26%. Such an improvement comes at the cost,
however, of increased CPU load.

The effects displayed by the various cloud allocation policies
remained fairly constant in both our realistic and ideal scenarios,
implying that choosing an appropriate allocation policy will have
lasting benefits even as networks and cloud technologies continue
to improve in the future.

At greater level of detail, our work to capture current perfor-
mance metrics relative to an existing global cloud network provides
insights into correlations (or lack thereof) between site’s oper-
ational costs and network bound VM migrations. These insights
reveal opportunities to adjust allocation algorithms further with
network performance qualifications to avoid performance penal-
ties when minimizing operational costs. This can be seen in the
example of California versus Ireland: California maintains a low
power rating paired with high bandwidth values, while Ireland has
a much larger power rating with lower bandwidth performance.

It is also worth noting that the policies presented here can
be quickly and trivially implemented in existing cloud platforms,
without the need for external systems, providing cloud adminis-
trators with a convenient and simple way  of improving energy
efficiency and lowering energy costs across their data centers.

5.1. Future work

While our simulation outlines the basic effects of various virtual
machine allocation policies, there are a number of improvements
that could be made to make it more applicable to a real world sce-
nario. Currently, the simulation makes a number of assumptions
that might not hold true in an actual data center.

First, the simulation is centered on a single application, red-
dit.com. A real data center would host multiple applications, each
of which having a unique configuration of virtual machines as well
this, the simulation could be run against a larger, more diverse set
of virtual machines, and it could simulate different loads across
different subsets of those virtual machines.
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Second, the simulation does not consider communication
etween virtual machines across regions. In reality, this incurs a

arge performance cost and may  not be desirable. For example, in
ur scenario, an Application VM might need to talk to a Database
M,  but if they are located in separate regions, this could drasti-
ally degrade the performance of the application as a whole. In our
imulation, we make the assumption that each cluster has its own
hared storage. In such a case, VMs  in one region are not expected
o frequently access VMs  in another region.

That said, to combat this problem in practice, applications usu-
lly specify that certain resources or VMs  need be co-located,
epending on the specific performance needs of the application.
he simulation could be improved to allow for such co-location
pecifications, ensuring that certain VMs  will be grouped in the
ame region.

Third, the simulation currently moves VMs  between regions
s necessary. In reality, it is difficult to do this–depending on the
arameters of the connection between these data centers. On the
ther hand, as we noted in Section 4.2.3, moving small virtual
achines is practical. We  can also imagine a situation where some

edicated links with higher bandwidth are used to transfer VMs, in
uch case the transfer times would be lower.

Fourth and finally, our simulation does not take into account
uality of Service (QoS) agreements. In practice, data centers usu-
lly need to maintain Service Level Agreements (SLA) for virtual
achines, typically expressed as CPU or response time guarantees.

owering the operating costs by reducing the energy consumption
ithout increasing the number of SLA violations requires consid-

ration of some tradeoffs.
It is possible, however, to at least minimize SLA violations

y slightly modifying our algorithms. Our simulation could be
mproved to track and measure historical data and then forecast
uture demand. For example, in the case of Reddit, it is possible to
stimate the load percentage of each cluster by taking into account
he average number of users throughout the world and then observ-
ng that users are most active in the evening and night hours. The

igration of VMs  could then be scheduled for early morning hours
o minimize SLA impacts. Future work will involve exploring solu-
ions like this one, as well as specifying SLA guarantees in the
imulation itself.
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