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Abstract 

Intruder detection and border surveillance are amongst the most promising applications of wireless sensor networks. 
Barrier coverage formulates these problems as constructing barriers in a long-thin region to detect intruders that cross the 
region. Existing studies on this topic are not only based on simplistic binary sensing model but also neglect the 
collaboration employed in many systems. In this paper, we propose a solution which exploits the collaboration of sensors to 
improve the performance of barrier coverage under probabilistic sensing model. First, the network width requirement, the 
sensor density and the number of barriers are derived under data fusion model when sensors are randomly distributed. Then, 
we present an efficient algorithm to construct barriers with a small number of sensors. The theoretical comparison shows 
that our solution can greatly improve barrier coverage via collaboration of sensors. We also conduct extensive simulations 
to demonstrate the effectiveness of our solution. 
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1  Introduction   

The growing techniques of wireless sensor networks 
have enabled people to observe the physical world more 
closely. Detecting intruders and surveilling borders are 
amongst the most promising applications. In such 
applications, lots of sensors are deployed along the 
boundaries of protected areas to perform intruder detection, 
as illustrated in Fig. 1. Typical protected areas include 
nuclear fuel factories, airport runway pavements, military 
restricted area, mountain landslide area, and critical 
infrastructures. The problem of reducing the number of 
deployed sensors while achieving sufficient detection 
accuracy is of vital importance to enable such applications. 

Barrier coverage [1] has been proposed to formulate this 
problem as constructing barriers, each of which can detect 
the intruder at least once no matter which crossing path the 
intruder follows. Lots of studies have investigated various 
aspects of barrier coverage. The minimum number of 
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sensors needed to provide barrier coverage is derived in 
Refs. [1–3]. The critical dimension for achieving barrier 
coverage is analyzed in Ref. [3]. In sensor scarcity case, 
node mobility is exploited to enhance barrier coverage [4]. 
Solutions [5–6] are designed to construct barriers for 
camera sensor network, which is quite different from 
scalar sensor networks. Multi-round deployment strategy 
is analyzed in Ref. [7]. One-way barrier coverage is 
explored in Ref. [8]. Coverage preserving and scheduling 
algorithms are designed in Ref. [3]. 

However, existing studies exhibit their inefficiency in 
two aspects. First, all of these studies are based on the 
simplistic binary disc sensing model, which cannot capture 
the stochastic nature of sensing capability of real   
sensors [9]. Second, they neglect the collaboration 
amongst sensors. In fact, various collaborative signal 
processing techniques have been adopted to improve 
performance in many systems [10–13], but previous 
studies on barrier coverage still assume that the sensors 
perform detection independently. Although some work has 
proposed to use data fusion to improve the performance of 
point coverage [14–15], but their results cannot not be 

 
 

 



  
Issue 1     ZHANG Zhao-liang, et al. / Leveraging data fusion to improve barrier coverage in wireless sensor networks     27 

 

directly used to resolve the problem of barrier coverage 
which is distinct from point coverage. Recently, a 
contributive work [16] explores the adoption of data fusion 
under probabilistic sensing model, leading to a distinct 
performance improvement of barrier coverage. But their 
work mainly focuses on weak barrier coverage which can 
only guarantee the detection of targets that follow 
perpendicular crossing paths. The more challenging 
problem of strong barrier coverage in networks adopting 
data fusion still remains open. Since strong barrier 
coverage can guarantee the detection of targets no matter 
which path it follows, it reflects better the real detection 
capability of a system.  

In this paper, we take the first step in exploring 
performance of strong barrier coverage after exploiting 
data fusion under probabilistic sensing model. However, 
this problem is rather challenging. Fig. 1(b) gives snapshot 
of covered area before and after employment of data fusion 
respectively. As can be seen that collaboration amongst 
sensors greatly complicates the analysis of barrier 
coverage. This is because whether a point is covered no 
longer depends only on the position of the nearest sensor, 
but on both the number of collaborating sensors and the 
position of all the collaborating sensors. 

 
(a) An example of intruder detection system 

 
(b) Without data fusion, no barrier exists in the upper case; while a 

barrier is formed in the lower case that employs data fusion 
Fig. 1  Illustrations of an intruder detection system and barrier 
coverage 

We address the above challenge as follows. Firstly, we 
analyze the maximal distance between neighboring sensors 
in a barrier before and after data fusion. Secondly, based 
on percolation theory, we analyze the network width and 
sensor density requirement for barrier coverage, and the 
relationship amongst the number of barriers, the network 
width, the sensor density, and the number of collaborating 
sensors when sensors are randomly deployed. Finally, an 

efficient algorithm is designed to construct barriers. 
The rest of the paper is organized as follows. Sect. 2 

presents the models and problem definition. In Sect. 3, we 
first analyze the maximal distance between neighboring 
sensors, and then we prove deployment requirement and 
barrier quantity of barrier coverage under data fusion 
model. Finally, a barrier construction algorithm is 
presented. Simulation results are presented in Sect. 4, and 
Sect. 5 concludes the paper. 

2  Models and problem definition 

2.1  System model 

We consider a set of N sensors uniformly and 
independently distributed in a two-dimensional rectangle 
of length l and width w. As proved in Ref. [17], such an 
uniform deployment is essentially a Poisson process of 
intensity λ , i.e., the ratio of N to the area of the region. 
We use || ||R  to represent the area of any subregion R. So, 
the number of sensors in subregion R, N(R), is Poisson 
distributed with mean || ||Rλ . Also, we assume the 
positions of sensor are known. 

We define a barrier as a subset of sensors which can 
detect any target attempting to cross the rectangle along 
any crossing path. To facilitate discussion, we assume that 
the identity of sensors are sorted from left to right and 
denote the sensor with id i as si. Two sensors in a barrier 
are said to be neighboring sensors if they have identity 
with a difference of 1. The detection line represents the 
concatenation of all straight line segments connecting any 
two neighboring nodes. Fig. 2 is an illustration of these 
concepts. All nodes in the example form a barrier. 

 
Fig. 2  Illustrations of some concepts 

Suppose the target t appears in the network, we assume 
the signal strength, xi(t), at the position of sensor si is [18]: 
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where S is the original signal amplitude of the target, d0 is 
a small constant, and d(si,t) is the distance between the 
sensor si and the target t. In addition, γ  is the signal 
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decay exponent, typical between 1 and 5. Since d0 can be 
chosen arbitrarily small, for convenience, we only 
concentrate on the case d(si, t)>d0 in latter derivations. 

Depending on the hypothesis whether the target is 
present H1 or not H0, the measurement of sensor si, 
denoted by yi, is given by 

0  

1

:           
: ( )

i i

i i i

H y n
H y x t n

=⎧
⎨ = +⎩

                            (2) 

where ni is additive random noise and xi(t) is the decayed 
signal strength described above. We assume the noise ni at 
each sensor independently and identically follows a 
normal distribution of mean μi and variance σ2, i.e., ni~N(μi, 
σ2). 

2.2  Detection model 

We assume there is a fusion head collecting the 
measurements of multiple sensors near the possible target. 
Then, it compares the weighted sum of sensor 
measurements ∑ wiyi, where wi is the weight of si, against 
a predefine threshold T. It decides that a target is present if 
∑ wiyi≥T; otherwise, it decides that no target is present. 
Note that only sensors in the same barrier should 
participate in a detection process, since barriers may be 
scheduled to work in turn. 

For such fusion scheme of weighted sum stated above, G. 
Xing et al. [14] proved that the optimal fusion rule is to 
compare the weighted sum [ ]{ }* ( )i iY x t yσ= ∑  against 

a threshold T. However, since the sensor’s measurement 
contains both the signal xi(t) and the noise ni, it is 
impossible to derive the weight [ ]( )ix t σ . In this paper, 

we adopt a constant weight fusion rule. Suppose sensor sj 
and sj+1 are the two sensors connected by the line segment 
L(sj,sj+1) which is the line segment in the detection line 
nearest to the possible target t. Sensors with smaller 
identity than sensor sj (or with larger identity than sensor 
sj+1) usually have larger distance from the target than 
sensor js  (or sensor sj+1), as illustrated in Fig. 2. Inspired 

by this observation, we set the weight of the ith sensor, i.e., 
wi, on the left/right of L(sj,sj+1) to 1 (2 1)i γ− . For example, 
the weight of the sensor sj and sj+1 in Fig. 2 is 1 (2 1)γ− , 
the weight of the sensor sj-1 and sj+2 is 1 (4 1)γ− . 
Moreover, we only allow h sensors on each side of L(sj,sj+1) 
to participate in a data fusion process in order to exclude 
the measurements with low signal noise ratio (SNR)s from 
data fusion. 

In summary, the weighted sum of sensor measurements 
is 

1 1
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= =
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where wi=1 (2 1)i γ−  and yli (or yri) is the measurement of 
the ith sensor in the barrier on the left (or right) side of the 
target. To assist the decision making process, we utilize 
existing signal source estimation methods to find the line 
segment nearest to the possible target, which is also 
adopted in Ref. [14]. Apparently, if more efficient fusion 
models are used, the results of this paper still hold. 

2.3  Problem definition 

Detection probability PD(p) is the probability of 
detection of a target when the target is present at position p. 
False alarm probability PF is the probability of detection of 
a target when there is no target, so it is location 
independent. 

Definition 1 ((α, β)-coverage) Given two constants α 
and β, a point p in the rectangle is (α, β)-covered iff the 
false alarm probability PF and detection probability PD(p) 
satisfy 
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Definition 2 (Barrier coverage) A network is said to be 
barrier covered if there exists a barrier such that for any 
crossing path, there are at least one point on the path that 
will be (α, β)-covered by sensors in the barrier.  

If k disjoint barriers exist in a network, the network is 
said to be k barrier covered. For convenience, we use 
coverage to refer to (α, β)-coverage. Whether a barrier is 
formed depends on the shape of the covered area of 
sensors. The latter depends not only on the number of 
sensors but also the relative positions of sensors. Therefore, 
it is rather difficult to precisely analyze the relationship 
between the density of sensors and barrier coverage. Hence, 
we make an assumption to derive a lower bound of the 
impact of data fusion. 

Assumption AS The maximal distance between any 
neighboring sensors in a barrier is no larger than a value d, 
which satisfies the condition that a barrier is still formed 
when all sensors are placed at an interval of d along a 
straight line. 

The purpose of this assumption is only to simplify our 
analysis. Relaxation of this assumption will lead to better 
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results. And all results derived in this paper still hold. 

3  Fusion barrier coverage 

In this section, we analyze the maximal distance of 
neighboring sensors, deployment requirement and barrier 
quantity when data fusion is adopted. Moreover, we 
present the barrier construction algorithm. 

3.1  Analysis of maximal distance 

Now, we derive the maximal distance d satisfying the 
condition that a barrier is formed when all sensors are 
placed at an interval no larger than d. 

3.1.1  Non-collaborative barrier coverage 

In non-collaborative barrier coverage, each sensor 
performs target detection without collaboration. The 
optimal Bayesian fusion rule for a single sensor is rather 
straightforward [19]. For any sensor si, it makes a decision 
that a target appears if yi is larger than a predefined 
threshold T1; otherwise, it makes a decision that no target 
appears. So, we get 
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where ( )NF ⋅  is the cumulative distribution function of noise 
ni. Moreover, the detection probability of any point p is given 
by  

1 1( ) [ ( )] ) [ ( )]D i i i iP p P n x p T P n T x p= + = − =≥ ≥  

11 [ ( )]N iF T x p β− − ≥                          (6) 
1
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From Eq. (6), we know that PD(p) is a nonincreasing 
function of T1, since ( )NF ⋅  is a nondecreasing function. 
In order to maximize detection probability PD(p) and 
guarantee that false alarm probability is no larger than α, 
we should set the optimal value of T1 to the minimal value 
of T1 in Inequality (5), i.e., * 1

1 (1 )NT F α−= − . Replacing T1 
by *

1T  in Inequality (7), we can infer that the maximal 
coverage region of si is:  

* 1
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1 1          | ( ) (1 ) (1 )i N Np x p F Fα β− −− − −≥              (8) 
According to the expression of xi(p) and the relationship 
1 1( )  ( )NF q qμ σ Φ− −= + , where 1( )Φ − ⋅  is the inverse of 

cumulative distribution function of standard normal 
distribution, the above equation can be transformed into 
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So, the sensing radius of any sensor si is d0(S/A)1/γ, and 
thus the maximal distance between neighboring sensors, 
denoted by d1, in a barrier is no larger than 2 d0(S/A)1/γ. 

3.1.2  Fusion barrier coverage 

As described in Sect. 2.2, the data fusion scheme 
compares the weighted sum of 2h senor measurements, i.e., 

1
( )

h

i li ri
i

Y w y y
=

= +∑ , with a predefined threshold in order 

to decide whether a target appears. Here, we denote the 
predefined threshold as T2h. In the following discussion, 
we will prove that if the maximal distance between 
neighboring sensors in a barrier is no larger than a specific 
value d2h, then the detection line of the barrier is covered. 

First, we start from straight detection lines on which all 
sensors are placed at an interval of d2h, as shown in   
Fig. 3(a). Then, we analyze general detection lines on 
which neighboring sensors are placed with distance no 
larger than d2h, as shown in Figs. 3(b) and (c). In the 
following discussion, we temporarily ignore the boundary 
effects which will be dealt with later. 

 
(a) Straight detection line with equal interval 

 
(b) Straight detection line with interval no larger than d2h 

 
(c) General detection line with interval no larger than d2h 

Fig. 3  Some detection lines satisfying Assumption AS 

Case A  Straight detection line with equal interval 
Now, we analyze the straight detection lines with 

sensors equally spaced at an interval of d2h. To facilitate 
discussion, we suppose identity of the sensors is the same 
shown in Fig. 3(a). First, we analyze the necessary and 
sufficient condition for the midpoint of line segment L(sl1, 
sr1) being covered. Apparently, the random variable 
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If a barrier is formed, the false alarm probability is 

2
1

1
2 2

( )

1 ( ) (1 )

h

F i li ri h
i

h h

P P w n n T

F T T F

α

α α
=

−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
− ⇒ −

∑ ≥ ≤

≤ ≥

 

where ( )F ⋅  is the cumulative distribution function of 
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+∑ . Similar to the choice of T1, we set T2h to 

F–1(1–α), denoted by *
2hT . Accordingly, the detection 

probability of a point p is given by 
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Replacing T2h by *
2hT , we have the necessary and 

sufficient condition for a point p being covered: 
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where 2
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= ∑ . Let L(sl1,sr1) be any line segment on 

the detection line and p the midpoint of L(sl1,sr1). 
According to Inequality (9), we have the necessary and 
sufficient condition for point p being covered: 
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In order to maximize the distance, we set d2h to 
1/

02 ( / )d S B A γ⋅ . 
We proceed to show that the midpoints between any 

neighboring sensors must be covered if a barrier is formed. 
Lemma 1  If sensors are equally spaced at an interval 

of d2h along a straight line, the midpoints between any 
neighboring sensors being covered is a necessary condition 
for formation of a barrier. 

 

Proof  Suppose a barrier is formed. Without loss of 
generality, we assume that the midpoint p of line segment 
L(sl1,sr1) is not covered. According to Inequality (9), we 
get 
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Consider any other point q on the line that is 
perpendicular to L(sl1,sr1) and intersects with L(sl1,sr1) at 
point p. Since d(q,sli) > d(p,sli) and d(q,sri) > d(p,sri), we 
have 
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Hence, any other point q is not covered. Thus, no barrier 
can be formed, which contradicts the assumption. The 
lemma is proved. 

Lemma 2  The sufficient condition of formation of a 
barrier is that all midpoints between neighboring sensors 
are covered, for a sensor deployment satisfying the 
following conditions: 1) Assumption AS holds; 2) the 
detection line is straight; 3) the distance between any 
neighboring sensors is d2h. 

Proof Let q be any point on a line segment L(sl1,sr1) and 
p be the midpoint. We use Δd to represent the distance 
between q and p. 
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The last inequality holds because for any positive 
constant C, the function ( ) 1 ( ) 1 ( )f x C x C xγ γ= + + −  is 
monotonically increasing on the range [0, C]. We combine 
this inequality with Inequality (10) to deduce that 

1
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Hence, any point q is covered according to Inquality (9). 
This completes the proof. 

With Lemma 1, and 2, we have the following theorem. 
Theorem 1  The detection line is covered and a barrier 

is formed if the sensor deployment satisfies: 1) 
Assumption AS holds; 2) the detection line is a straight 
line; 3) the distance between any neighboring sensors is 
d2h. 
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Case B  General detection line 
Now, we consider the general detection lines on which 

neighboring sensors are placed with distance no larger than 
d2h, as shown in Fig. 3(b) and Fig. 3(c). In other words, we 
relax the assumption 2) and 3) in Theorem 1. 

Theorem 2 If a sensor deployment satisfies the 
condition that the distance between any neighboring 
sensors is no larger than d2h, the detection line is covered 
and a barrier is formed.  

Proof  We prove this by two steps. 
1) The detection line is a straight line, see Fig. 4(a). We 

can construct any such a deployment from a deployment 
satisfying the three conditions of Theorem 1 by contracting 
the detection line, i.e., moving sensors closer. In each 
contraction, the weighted sum of the signal, 

1
[ ( ) ( )]

h

i li ri
i

w x p x p
=

+∑ , of any point p on the detection line 

does not decrease. Since a detection line satisfying the 
three conditions of Theorem 1 is covered, the detection 
line is still covered after each contraction. 

 
(a) Contraction 

 
(b) Straighening 

Fig. 4  Illustration of detection line transformation 

2) The detection line is not a straight line, see Fig. 4(b). 
We can straighten any such a detection line. After the 
detection line is straightened, the distance from any point p 
on the detection line to h sensors on each side does not 
decrease. Thus, the weighted sum of the signal does not 
increase. We can infer that the weighted sum of point p on 
the original detection line is no less than that of point p on 
the straightened detection line. Apparently, the straightened 
detection line satisfies the conditions of step 1, so it is 
covered. Thus, the original detection line is also covered.  

Therefore, the theorem is proved. 
Now, we know the maximal distance between 

neighboring sensors is prolonged after adoption of data 
fusion. The improvement ratio of the maximal distance is 
given by 
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It is clear that the improvement ratio increases with h 
and decreases with γ . This means that when more sensors 
collaborate on performing target detection, the number of 
sensors required to form a barrier will be reduced. 

3.2  Deployment requirements and barrier quantity 

In this subsection, we first prove the critical dimension 
for fusion barrier coverage by converting the problem to a 
bond percolation problem. Then, we derive the relationship 
amongst number of barriers, network width, sensor density, 
and number of collaborating sensors. The boundary effect 
will be discussed at the end of this subsection. 

We divide the network area into squares of side length 

2 (2 2)hd  as depicted in Fig. 5(a). Since the random 
deployment of sensors follows Poisson distribution as 
described in Sect. 2.1, the probability that a square 
contains at least one sensor is given by 

2
2 / 81 e c hdP pγ−= − ≡                             (11) 

where cγ  is the sensor density, P is a square contains 
sensors. 

We define that a square is open if it contains at least one 
sensor; otherwise, it is closed. Then, we draw a horizontal 
edge or a vertical edge across each square as shown in  
Fig. 5(b). Each intersection point of the edges is called a 
vertex. A bond percolation model is constructed since a 
lattice is obtained whose edges are open, independently 
with each other, with probability p. The existence of a 
horizontal open path in the lattice means the existence of a 
barrier in the network, since two connected open edges 
means existence of at least two sensors within distance d2h 
from each other. 

We construct a virtual sensing disc of radius d2h/2 for 
every sensor in the network. Then, we get the width 
requirement for barrier coverage under probabilistic 
sensing model based on the results proved in Ref. [3] 
under disc model: 

Theorem 3  If w=Ω(lgl), the network is barrier covered 
when the sensor density λ  reaches a certain value. If 
w=o(lgl), the network cannot be barrier covered no matter 
what the sensor density is. 

Based on the density requirement derived under disc 
sensing model in Ref. [3], we can derive the required 
density under probabilistic sensing models. Specifically, 
for non-collaborative sensing model, if sensor density 

2
1 18(lg 6 2 / ) / dλ κ> + , where κ is a positive constant, there 
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exist barriers in the network. For data fusion sensing 
model, if sensor density of the network 2 8(lg 6hλ > +  

2 2 2
2 12 / ) / 8(lg 6 2 / ) /( )hd I dκ κ= + , barriers exist in the 

network. It is clear that the required density is reduced by 
I2 times when data fusion is employed. 

 
(a) Division of the network area 

 
(b) Construction of bond percolation model 

 
(c) Construction of dual lattice 

Fig. 5  Construction of the bond percolation model 

Apart from the sensor density and maximal distance 
between neighbors, the width of network is also a key 
factor in the formation of barriers, as shown by Theorem 3. 
However, its influence cannot be reflected by the density 
requirement and number of barriers proved in Ref. [3]. 
Therefore, we derive new results which take into account 

network width. 
Before giving the main result, we introduce some 

concepts. A realization means the set of resulted edges of a 
bond percolation model. We define the dual lattice of a 
lattice by placing a vertex in each square and add an edge 
between two vertices only when the corresponding squares 
share an edge in the lattice. See Fig. 5(c). In the dual 
lattice, we also construct the dual of a realization by 
adding an open edge in the dual if and only if the crossed 
edge in the original lattice is closed. In this way, we have 
constructed another bond percolation model. We use n and 
m to represent the number of vertices in a row and in a 
column respectively. Then, n=2l/d2h and m=2w/d2h. Based 
on this model, the follow theorem can be proved. 

Theorem 4  Suppose / lgm n a→  as n → ∞ , and 
a>0. If ( ) ( )[ ]2 1/

2 2 lg 38 2 1a
h hd eλ −> − , then 

lim  [number of barriers lg ] 0
n

P nδ
→∞

=≤  

where { } { }2
2 2 1// 8 2 lg[3 /(1 e )]lg[2 /(3e 1)] 1h h ada λδ −= −+ − . 

The proof of the theorem is given in the appendix. 
The result above reveals the relationship amongst the 

sensor density requirement, the network width, the number 
of sensors participating in data fusion (through d2h) and the 
relationship amongst the number of barriers, sensor density, 
the network width, and the number of participating 
sensors. 

In fact, we should expand the length of the original 
network by a small constant at both ends to ensure the 
existence of h sensors in each barrier beyond the boundary 
of network. Apparently, the expansion will not change the 
logarithmic relationship between the width and the length 
of the network, and thus will not contaminate the 
correctness of the result. 

3.3  Fusion barrier construction algorithm 

Network engineers can utilize the derived information in 
the previous subsection to deploy networks in order to 
meet specific requirement of barrier coverage for various 
applications. However, we still need an efficient algorithm 
to construct barriers for randomly deployed sensor 
networks. Such an algorithm is indispensable in both the 
initialization phase and barrier restoration phase, since 
barriers may be corrupted after some nodes run out of 
energy. 

As proved in Theorem 2, sensors form a barrier when 
the distance between any two neighboring sensors is no 
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larger than d2h. Hence, we can transform the barrier 
construction problem into the well-known maximum flow 
problem that is to find the maximum feasible flow through 
a single-source, single-destination flow network. 
Algorithm 1 gives the procedure of the barrier construction 
algorithm. 

Construction of the coverage graph needs O(V2) time 
and the maximum flow algorithm terminates in O(VE2) 
time. Hence, the computational complexity of barrier 
construction algorithm is O(V2+VE2), which is efficient 
considering the difficulty of the problem. 

Algorithm 1  Barrier Construction Algorithm 
Construct a coverage graph G=(V,E), in which V 

contains all sensor nodes, 1 2( , )s s E∈  if 1 2 2( , ) hd s s d≤  
for any two sensors s1 and s2; 

Add two virtual nodes u and v to V; 
Add an edge (u, si) to E if the distance between si and 

extended left boundary is smaller than d2h; 
Add an edge (si, v) to E if the distance between si and 

extended right boundary is smaller than d2h; 
Set the capacity of all edges to 1; 
Call a maximum flow algorithm (e.g. Ford-Fulkerson [20]) 

to find k disjoint paths between u and v in G:  
u-path1-v, u-path2-v,… , u-pathk-v; 
Return path1, path2,… , pathk as k barriers; 

4  Simulation 

In this section, we evaluate the impact of data fusion on 
the coverage area, the probability of barrier coverage, 
sensor density requirement, number of barriers, and 
network lifetime by extensive simulations. The results will 
help us get a sense of real benefits of our solution. We 
compare the fusion barrier coverage with the 
non-collaborative barrier coverage (NoFusion) and an 
approach proposed in Ref. [16] which is designed to 
provide weak barrier coverage. Since the approach 
proposed in Ref. [16] is originally developed to guarantee 
1 weak barrier coverage, we improve the approach to 
provide k weak barrier coverage and name it WeakBar. 

Since we cannot simulate networks of infinite length, the 
network length is configured to 1 200 units. The upper 
bound of false detection probability α is set to 0.05, and the 
lower bound of detection probability β is set to 0.9. Also, we 
set S to 30, γ  to 1, and d0 to 0.2 units. We assume the 
noise ni follows a normal distribution N(0, 1/2). Due to 
space limitation, we only give some important results. 

4.1  Barrier coverage performance 

First, we compare coverage area of fusion barrier 
coverage with NoFusion and WeakBar. Fig. 6 shows the 
results of a typical topology. In all schemes, NoFusion 
covers the smallest area. WeakBar is designed to detect 
any target that follows a perpendicular crossing path, so no 
barrier is formed in WeakBar in many cases, as can be seen 
in Fig. 6(b). Hence, a target can easily cross the network 
along a line that is not perpendicular without being 
detected. In contrast, a barrier is built up in our data fusion 
scheme, as shown in Fig. 6(c). The built barrier can 
guarantee detection of target no matter which crossing path 
the target follows. 

 

(a) NoFusion 

 

(b) WeakBar 

  

(c) Fusion (h=3) 
Fig. 6  Coverage area of different schemes 

Fig. 7 plots the probability of barrier coverage in a 
network of width 30 units. The probability in three 
schemes increases with the number of sensors, as expected. 
Moreover, we can see that fusion barrier coverage greatly 
outperforms NoFusion and WeakBar. When h=3, the 
fusion barrier coverage saves about 45.21% nodes to 
achieve barrier coverage with probability 1, as compared 
to WeakBar. This is because collaboration enhances 
detection capability of sensors. Furthermore, the 
probability increases with h, since more and more 
information are used to detect target when h increases. 

 
Fig. 7  Probability of barrier coverage vs. node number  
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For h=3 and different width of the network, as shown in 
Fig. 8, the critical density requirement of all three schemes 
decreases with the increase in the network width. This is 
because a crossing path has more chance to intersect the 
coverage area of sensors in a wide network than in a 
narrow one. Moreover, fusion barrier coverage 
outperforms the other two schemes. Compared with 
WeakBar and NoFusion, the required density in fusion 
scheme to achieve barrier coverage is reduced by about 
40.91% and 49.43% on average respectively. 

        
Fig. 8  Density requirement vs. network width 

Fig. 9 plots the number of barriers as a function of 
number of sensors when the network width is 30 units. 
Also, we set λ to 0.08 and evaluate the impact of network 
width on the number of barriers.  

 
Fig. 9  Number of disjoint barriers vs. number of sensors 

The results are shown in Fig. 10. We can observe that 
fusion barrier coverage greatly increases the number of 
formed barriers as compared to WeakBar and NoFusion. 
Specifically, when h=3, the number of barriers is nearly 
doubled by fusion barrier coverage in both sets of 
experiment. This is because barrier coverage based on data 
fusion cooperates to detect target, allowing a longer 
distance between neighboring sensors in a barrier than 
without it. Thus, the opportunity of sensors to form 
barriers increases. 

 
Fig. 10  Number of disjoint barriers vs. network width 

4.2  Network lifetime 

Data fusion improves barrier coverage at the expense of 
extra energy consumption for information change between 
sensors. So, it is beneficial to explore the overall network 
lifetime. We use a transmission range R of 15 units. We use 
a simple method to find the nearest line segment to the 
possible target. All nodes have sensor measurement larger 
than 0/( / 2 )S R d γ

 broadcast sensors. Then, nodes within 
the distance R/2 from the possible target will broadcast and 
overhear each others' measurement. The line segment 
nearest to the estimated signal source is computed as the 
nearest one. Then, the left sensor on the line segment 
collects 2h sensor measurement and make decision of 
target detection. We fix the number of sensors to 1800 and 
the network only needs to 1 barrier covered. In all schemes, 
only sensors that form the barrier stay active. When the 
barrier is corrupted after a node runs out of energy, a new 
barrier is constructed. We assume that the target   
appears rarely in the networks. The power consumption  
of receiving and transmitting (Telosb datasheet. 
http://www.xbow.com/) is set to 70 mW, and that of 
sensing is set to 2.5 mW, which is the power consumption 
of a typical low-power acoustic sensor (MP34DB01 
datasheet. http://www.st.com/).  We omit the routing 
overhead. 

Fig. 11 plots lifetime for different sensing frequencies, 
i.e., 0.25 Hz, 0.5 Hz, 1 Hz, and 2 Hz. The results are 
normalized to the lifetime of NoFusion scheme with 
sensing frequency of 0.25 Hz. As shown in the figure, 
fusion barrier coverage outperforms WeakBar and 
NoFusion in all considered cases. This means that the 
reduction of active nodes by data fusion prolongs the 
network lifetime despite some overhead of collaboration. 
Moreover, the advantage of fusion barrier coverage 
decreases as the sensing frequency increases. In addition, 
we find that when the sensing frequency is high, an h that 
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is larger than 3 almost leads to the the same performance 
as when h = 2. This implies that data fusion scheme works 
the best in sensor networks with low sensing frequency. 
Also, when the sensing frequency is high, an h of 2 or 3 
may be sufficient since larger h will not result in distinct 
improvement of network lifetime. 

 
Fig. 11  Network lifetime vs. sensing frequency 

5  Conclusions 

In this paper, we propose a solution which exploits data 
fusion to improve the performance of barrier coverage. We 
derive the required network width, the sensor density and 
the number of barriers under data fusion model when 
sensors are randomly deployed. Moreover, an efficient 
algorithm is designed to construct barriers. The theoretical 
comparison indicates that our solution can greatly improve 
barrier coverage. The effectiveness of our solution is also 
verified by extensive simulations. In the future, we plan to 
analyze the connectivity and coverage issues jointly when 
data fusion is adopted. Furthermore, we will implement the 
proposed data fusion scheme on sensor nodes equipped 
with acoustic and vibration sensors. 
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Appendix A  Proof of Theorem 4 

In order to prove Theorem 4, we introduce two 
inequalities proved in Ref. [21] Proposition 1 and Ref. [22] 
Theorem 2.45 to simplify our proof. Let B2m be a box of 
length 2m centered at the origin and 20 mB↔ ∂  be the 

event that the origin and the boundary of B2m are connected 
by an open path. 

Lemma 3  [21] For 1 3p < , ( )2(0 ) 4 3p mP B↔ ∂ ⋅≤  
lg 3em p . 
An event A is said to be an increasing event if A occurs 

in a realization of bond percolation and A still occurs after 
adding any edges in the realization. Ir(A) is a robust 
version of event A if A still occurs after changing the states 
of up to r arbitrary edges in a realization of bond 
percolation in which A occurs. 

Lemma 4 [22] If A is an increasing event and r is a 
positive integer, then  

1 [ ( )] [1 ( )]
r

p r p

p
P I A P A

p p ′
⎛ ⎞− −⎜ ⎟′−⎝ ⎠

≤              (A.1) 

when 0 1p p′≤ ≤ ≤ . 
Proof of Theorem 4: 
Proof  Let Nb represent the number of disjoint 

horizontal open crossing paths in the lattice. We use V to 
represent the event that vertical crossing paths exist in the 
dual lattice. Existence of horizontal open crossing paths in 
the lattice means that there is not any vertical crossing 
paths in the dual lattice. Hence, for any 2 / 3p′ > , we have  

1( 1) 1 ( )p b pP N P V′ ′−= −≥                        (A.2) 

Now, we order the vertices on the top side of the 
rectangle starting from the leftmost vertex to the rightmost 
vertex. Also, we use Ci to denote the event that there exists 
a crossing path starting from the ith vertex joining the top 
side and the bottom side. Apparently, there are at least one 
index ij so that 

1
1

( )
( )

1
p

p i

P V
P C

n
′−

′− +
≥                           (A.3) 

Then, we choose the first index i0 satisfying the above 
inequality as the origin of a box B2algn, see Fig. 12. Since 
any vertical crossing path starting from i0 will intersect the 
boundary of box B2algn, we have 

1 1 2 lg( ) (0 )p i p a nP C P B′ ′− − ↔ ∂≤                   (A.4) 

We combine Inequalities (13), (14) and (15) to obtain 
1 2 lg( 1) 1 ( 1) (0 )p b p a nP N n P B′ ′−− + ↔ ∂≥ ≥          (A.5) 

With Lemma 3, we get 

 
Fig. 12  Construction of Box B2algn 
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lg lg[3(1 )]

lg[3(1 )]

4( 1) 1 (   1)e
3
4                   1 (   1)
3

a n p
p b

a p

P N n

n n

′−
′

′−

− + =

− +

≥ ≥

 

For any probability 2 3p > , let ( ) ( )2 1 3p p′ = + , 
then 2 3 1p p′< < < . According to Lemma 4, we get 

/ 2 1/ 3 / 2 1/ 3

lg

lg
lg[3(1 )]

lg lg( ) lg[2 3 / 2]lg[2 3 / 2]

1 [ lg( )] [1 ( 1)]

4     [ lg( )] ( 1)
' 3

4 4     ( 1) ( 1)
3 3

p p
p p

n

p b p b

n
a p

p b

a pa p

p
P N n P N

p p

p
P N n n n

p p

n n n n n

δ

δ

δ δ

δ

δ

− −

′

′−

+ −−

⎡ ⎤− > − ⇒⎢ ⎥′−⎣ ⎦

⎡ ⎤ + =⎢ ⎥−⎣ ⎦

+ = +

≤ ≥

≤ ≤  

When ( )lg lg(2 3 / 2) 1/ 2 1/ 3p a ppδ + − < −⎡ ⎤−⎣ ⎦ , the 

right side of the above inequality approaches 0 as n → ∞ . 
If ( ) ( )[ ]2 1/

2 2 lg 38 2e 1a
h hdλ −> − , then 

( )2 12 2 / 8 21 e 2 e3
h h

a
dp λ− −= − > −  

according to Eq. (11). From the above inequality, we can 
infer that 

3lg 12
2
pa ⎛ ⎞ < −−⎜ ⎟

⎝ ⎠
                           (A.6) 

2
2 2 / 81 e h hdp λ− <                                (A.7) 

Since ( )
1

(2 e )2 3 ap −> − , then 
1//( / 2 1/ 3) 1/( / 2 1/ 3) 1/[(2 e ) / 3 1/ 3]ap p p −− < − < − −  

So,  
3lg lg

1 1/1 e
2 3

p
p a

δ δ<
−−−

                   (A.8) 

Then, according the assumption 

2
2 2 / 8

1/

2lg 1
3e 1

32lg
1 e

h hd

a

a
λ

δ
−

−
+=

−

 

and the above inequality,  we have  
3lg 12
2lg

1 2
2 3

pa
p

p
δ

⎛ ⎞ +−⎜ ⎟
⎝ ⎠< −

−
               (A.9) 

Hence, 
3lg 12

3 2lg lg 1 0.21 22
2 3

pa
p pa

p
δ

⎛ ⎞ +−⎜ ⎟⎛ ⎞ ⎝ ⎠+ + < <−⎜ ⎟
⎝ ⎠−

 

Therefore,  

3lg lg 121
22 3

p papδ
⎡ ⎤

⎛ ⎞⎢ ⎥ + < −−⎜ ⎟−⎢ ⎥ ⎝ ⎠
⎣ ⎦

. 

This completes the proof. 
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