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This  paper  overviews  the  design  and  implementation  of  three  neuromorphic  integrated  circuits  devel-
oped  for  the COLAMN  (“Novel  Computing  Architecture  for Cognitive  Systems  based  on  the  Laminar
Microcircuitry  of  the  Neocortex”)  project.  The  circuits  are  implemented  in a standard  0.35  �m  CMOS
technology  and  include  spiking  and  bursting  neuron  models,  and  synapses  with  short-term  (facilitat-
ing/depressing)  and  long-term  (STDP  and  dopamine-modulated  STDP)  dynamics.  They  enable  execution
of complex  nonlinear  models  in  accelerated-time,  as  compared  with  biology,  and  with  low  power
euromorphic
ilicon neuron
piking and bursting
ilicon synapse
eocortex
eural circuits

consumption.  The  neural  dynamics  are  implemented  using  analogue  circuit  techniques,  with  digital  asyn-
chronous  event-based  input  and  output.  The  circuits  provide  configurable  hardware  blocks  that  can  be
used  to simulate  a  variety  of  neural  networks.  The  paper  presents  experimental  results  obtained  from
the fabricated  devices,  and  discusses  the  advantages  and  disadvantages  of  the  analogue  circuit  approach
to computational  neural  modelling.

© 2012 Elsevier B.V. All rights reserved.

omputing architecture

. Introduction

The simulation of computational models of neural systems,
t various levels of abstraction, has become an established
ethod of scientific investigation in neuroscience (Destexhe and

runelli, 2008). The hardware platforms used to carry out these
imulations range from traditional desktop computers, provid-
ng adequate computer power for moderate-scale experiments,
hrough small computer clusters, possibly harnessing the com-
uter power of commodity parallel processors in modern graphics
rocessor units (GPUs) (Fidjeland and Shanahan, 2010; Brumby
t al., 2010), to large purpose-built computer clusters (Markram,
006; Ananthanarayanan et al., 2009), providing the performance
equired for larger-scale network simulations. The size of the net-
ork, and the complexity of the computational models of the

ndividual cells (e.g. simplified integrate and fire point neurons
ersus biophysically accurate multi-compartmental conductance-
ased neuron models with elaborate dendritic morphologies),
etermine the simulation time as well as memory/storage require-
ents on general-purpose devices. The performance of present

ay computers is often a limiting factor in the progress of com-
utational neuroscience research (e.g. simulating a relatively small

ortical network for several seconds of biological time may  take
everal hours or days, and/or require a large and power-hungry
upercomputing facility (Indiveri et al., 2011)).

∗ Corresponding author.
E-mail address: p.dudek@manchester.ac.uk (P. Dudek).

165-0270/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2012.01.019
For this reason, several special-purpose digital computer archi-
tectures have been proposed that sacrifice some flexibility – for
example, through optimising the performance of the execution
for a particular computational model (Jin et al., 2010), or provid-
ing specialised hardware implementing a specific neuron model
(Schoenauer et al., 2002; Merolla et al., 2011) – in order to provide
increased system performance. These systems aim to improve the
processing speed, or some other system implementation parameter
(e.g. lower power consumption, smaller physical size, etc.).

An even more radical approach is to construct application-
specific analogue Very Large Scale of Integration (VLSI) integrated
circuits (ICs), implementing directly in silicon the required com-
putational model of a neural system, exploiting the analogies
between the physics of ion transport in neural cells and the phys-
ical properties of microelectronic devices (Mead, 1990; Mahowald
and Douglas, 1991; Farquhar and Hasler, 2005), or using analogue
circuits to implement the equivalent model equations (Indiveri,
2003; Wijekoon and Dudek, 2008a,b; Millner et al., 2010). This
idea has been known as “neuromorphic engineering” (Mead, 1989),
although the term has been lately applied to many specialised dig-
ital architectures as well (Sharp et al., 2011; Merolla et al., 2011).
In practice, most of the neuromorphic systems are mixed-mode
implementations that combine the analogue circuit implementa-
tions of model equations and digital event-based read-out (Boahen,
2000) and spike routing sub-system (Lin et al., 2006; Vogelstein

et al., 2007; Serrano-Gotarredona et al., 2009; Schemmel et al.,
2010).

While the tailor-made mixed signal VLSI circuits are less flexi-
ble than digital computers, they can offer much higher processing

dx.doi.org/10.1016/j.jneumeth.2012.01.019
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:p.dudek@manchester.ac.uk
dx.doi.org/10.1016/j.jneumeth.2012.01.019
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peeds and orders-of-magnitude improvements in the energy con-
umption per operation (Indiveri et al., 2011). This technique
nables real-time (or faster) implementation of neural system sim-
lations. The neuromorphic approach also emphasises the practical
echnological applications of the neuroscientific knowledge. It is
nvisaged that the understanding of the biological brains will lead
o the construction of future brain-like computer systems, and
hat the overall architecture and principles of operation, as well
s the detailed circuitry of these future computing devices, could
e closely modelled on those of biological brains. The focus of
euromorphic circuit design is often on low-power, low-cost and
ompact system implementations, and it is hoped that the tech-
iques developed through the implementations of neural systems

n hardware could be directly applicable to the design of intelli-
ent machines, such as autonomous robots, or future “cognitive
upercomputers”.

Since the pioneering work on neuromorphic circuits in the late
980s (Mead, 1990), a number of CMOS implementations of ‘silicon
eurons’ (Mahowald and Douglas, 1991; Linares-Barranco et al.,
991; Schultz and Jabri, 1995; Patel and DeWeerth, 1997; Simoni
nd DeWeerth, 1999; Indiveri, 2003; Nakada et al., 2005; Rangan
t al., 2010; van Schaik et al., 2010; Indiveri et al., 2011) and ‘sili-
on synapses’ (Hafliger et al., 1997; Bofill-i Petit and Murray, 2004;
ndiveri et al., 2006; Koickal et al., 2007; Tanaka et al., 2007) have
een presented. Recently, a number of systems have been pro-
osed (Arthur and Boahen, 2004; Vogelstein et al., 2007; Merolla
t al., 2007, 2011; Giulioni et al., 2008; Schemmel et al., 2010;
harp et al., 2011) that attempt to facilitate the implementation
f large-scale hardware neural networks, through the integration
f thousands of silicon neurons and synapses in a single microelec-
ronic IC.

In this paper we present neuromorphic circuits developed in
he course of the COLAMN project (http://colamn.plymouth.ac.uk/
olamn-project/). Section 2 outlines the design principles, and
resents models and integrated circuit implementations. Section 3
resents experimental results obtained from the fabricated devices.
ection 4 discusses the results, and the advantages and the limita-
ions of the presented circuits, and the neuromorphic approach in
eneral, to large-scale neural modelling.

. Methods

.1. Design principles

The established practice, when constructing large scale micro-
lectronic devices, is to use, as much as possible, simple, regularly
onnected, repeatable circuit elements (e.g. basic logic gates or
emory cells in a traditional logic design). This makes it easier to

esign, fabricate, test, and use the device. However, when looking
t biological brains it is evident that specialised structures are built
ith complex, heterogeneous neural elements and with elaborate

nter-neuron connectivity. Although the main constituents of these
pecialised structures are neurons and synapses, distinct individ-
al neurons or synapses show diverse non-linear responses to the
ame inputs.

A trade-off exists between the biological plausibility of the
mplemented model and the complexity (and hence the size
nd power requirements) of the physical circuit implementa-
ion. Detailed analogue VLSI circuit implementations of complex
on-linear computational models are possible, but consume
xceedingly large silicon area and thus allow only a few neurons to

e implemented on a single silicon IC (Saighi et al., 2011). Similarly,
etailed multi-compartmental models of dendritic morphologies
ave been demonstrated, but allow only a very limited number of
eurons to be implemented on a single device (Wang and Liu, 2011).
science Methods 210 (2012) 93– 109

Due to the small size of the network that can be feasibly imple-
mented in hardware, these approaches are generally not providing
any advantage over more conventional implementations based on
a simulation on a general-purpose digital processor.

On the other hand, using simpler models such as integrate
and fire point neurons, fixed weight synapses ignoring synaptic
dynamics, and simplifying assumptions about the connectivity,
allows larger networks – up to several thousands of neurons –
to be implemented on a single IC (Vogelstein et al., 2007; Lin
et al., 2006), promising a large speed-up over a digital simula-
tion approach. However, the increased network size is obtained at
the cost of severely reduced biological plausibility of the model.
Such systems can be used to study computational properties
of more abstract spiking neural networks, but the applicabil-
ity of such hardware as a tool for neuroscience research is
limited.

Our goal in this work was  to develop circuits that can be used to
simulate a variety of cortical networks, with the ability to model the
heterogeneity of basic cortical neuron cell classes and responses,
and basic synaptic dynamics and plasticity mechanisms. To provide
a performance advantage over digital implementations, compact
circuits allowing thousands of basic cells to be integrated on a single
silicon IC were required. At the same time, a degree of generality
was desirable, so that the model parameters could be adjusted and
tuned, providing a flexible and versatile tool for simulating cortical
circuits.

Based on the above motivation, we  have decided to use some
established generic computational neural models (Abbott et al.,
1997; Bi and Poo, 1998; Tsodyks, 2002; Izhikevich, 2003) as
a guide to arrive at qualitatively similar circuit-based models
that mimic  the neural dynamics with the most compact physi-
cal implementations. The models we  have developed are therefore
less complex than the more detailed biophysical models used in
many studies, but at the same time more biologically plausible
than those provided by many other spiking neural network VLSI
devices.

The majority of neuromorphic devices described in the literature
operate in biological real-time (i.e. one second of neural activity on
a chip corresponds to one second of the neuronal activity of the
biological systems). This is partly motivated by the desire to pro-
vide compatibility with biological systems (LeMasson et al., 2002;
Vogelstein et al., 2007), and real-time sensory data (Liu et al., 2010;
Lichtsteiner and Delbruck, 2005; Zaghloul and Boahen, 2004, 2006),
and partly so that the requirements on the I/O and communication
sub-system are reduced. To leverage the inherently higher speeds
of modern microelectronic devices, we  design our circuits to oper-
ate in accelerated-time (approximately three orders of magnitude
faster than biology, i.e. one second of biological time corresponds to
approximately 1 ms  on a chip). A similar approach has been used
by Schemmel et al. (2010).  This approach provides considerable
computational speed up, especially important in the case where
the experiment requires extensive parameter sweeps, or multiple
runs needed for statistical analysis. At the same time, increasing
the operational speed can improve the total energy efficiency of
the system (provided the static currents dominate the power con-
sumption, as is usually the case).

In our prototype implementations, we have used a bulk-silicon
CMOS (Complementary Metal-Oxide-Semiconductor) technology,
which follows the industry-standard silicon device fabrication pro-
cess. The 0.35 �m feature size is several generations behind the
state-of-the-art in the microelectronic industry, however, it has the
advantage of a proven and stable fabrication process, low-cost pro-

totyping, and suitability for analogue designs. While the scaling of
the proposed designs to smaller device dimensions is not straight-
forward, the presented circuits provide some indication of what
would be feasible in other fabrication technologies.

http://colamn.plymouth.ac.uk/colamn-project/
http://colamn.plymouth.ac.uk/colamn-project/
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Fig. 1. Transistor-level schematics of the synapse and neuron circuits. (a) Sub-circuits of the STDP synapse: long-term depression (LTD) and long-term potentiation (LTP)
circuits generate the STDP weight, weight buffer circuit buffers the weight of the synapse and the STDP synaptic current generator circuit generates the weight dependent
excitatory post-synaptic current. (b) Sub-circuits of the short term plastic synapse: (i) and (ii) implement depressing or facilitating synaptic dynamics; (iii) and (iv) generate
weight  dependent excitatory and inhibitory synaptic currents. Two of these four sub-circuits are used to create a synapse: (i) and (iii), (i) and (iv), (ii) and (iii), (ii) and
(iv),  respectively, form excitatory depressing, inhibitory facilitating, excitatory facilitating, and an inhibitory depressing synapses (some synapse types use additional level
shifters). (c) Sub-circuits of the DA modulated synapse: long-term eligibility potentiation (LTEP) and long-term eligibility depression (LTED) circuits generate the eligibility
trace  in a similar way to the STDP circuit, but with weight leakage; the synaptic strength circuit generates the synaptic strength using the DA signal and the potentiation
and  depression parts of the eligibility trace; the DA STDP current generator circuit generates the synaptic strength dependent excitatory post-synaptic current. (d) The DA
generator circuit that produces global DA signal (Vda) to many synapses, where the pulse width of the DA signal represents the extracellular DA level. (e) Cortical neuron
circuit from Wijekoon and Dudek (2008a,b).  Note: suffix “ bar” indicates signal inversion, e.g., inverted signal pre is labelled as pre bar.
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.2. Circuits and models

The basic circuits presented in this paper include a generic
ortical neuron circuit and six different synaptic circuits. Two
f the six synaptic circuits mimic  long term synaptic dynam-
cs, which emulate Spike-Time Dependent Plasticity (STDP), and
opamine modulated STDP (DA-STDP). The remaining four synaptic
ircuits include short-term synaptic dynamics: excitatory depress-
ng, inhibitory facilitating, inhibitory depressing, and excitatory
acilitating synapses. These circuits are designed to implement
ualitative behaviours of phenomenological neural models while
ptimising circuit area and power consumption. Although the
esulting circuit models are simple (from a hardware perspec-
ive) and functionally close to their counterpart computational
euroscience models, they are elaborate in their mathematical for-
ulation. Approximated mathematical equations of the models are

resented in this section to provide an indication of the level of
bstraction represented by the circuits. The circuit diagrams are
resented for the illustration purposes, however, detailed circuit
escriptions and transistor-level analysis are beyond the scope of
his paper (for detailed circuit descriptions see (Wijekoon, 2011)).
.2.1. Neuron circuit
A cortical network consists of many types of neurons (Connors

nd Gutnick, 1990; Nowak et al., 2003; Toledo-Rodriguez et al.,
003; Markram et al., 2004; Ascoli et al., 2008). Different neuron

ig. 2. Simulation of the neuron circuit, showing a plot of membrane voltage, V, (red trac
tep  current injection into the soma (start of the current injection is at 20 �s), for differe
atterns: (a) chattering, (b)–(d) intrinsically bursting, (e) regular spiking, and (f) fast spik
eferred  to the web  version of the article.)
science Methods 210 (2012) 93– 109

types exhibit distinct responses to the same set of input stimuli
(Nowak et al., 2003; Ascoli et al., 2008), and this heterogeneity is
an important feature of cortical networks. Therefore, we incorpo-
rate the diverse neuron responses, similar to the biological neuron
responses, in the VLSI implementation. Our silicon neuron circuit
(Wijekoon and Dudek, 2008a,b), shown in Fig. 1e, is inspired by
the computational model proposed by Izhikevich (2003) and moti-
vated by the desire to achieve a single compact generic circuit that
can easily be tuneable to a desired cortical neuron type. The neuron
model has two  state variables: membrane potential (V) and mem-
brane recovery (U), whose evolution can be approximated by the
following equations:

dV

dt
=

{
k1V2 − k2V − k3U2+k4U+k5+k6I when V ≥ U − k7

−k8V2 − k9V + k10UV + k11 + k12I otherwise
(1)

dU

dt
= k13V2 − k14V − k15U2 + k16U + k17 (2)

with a reset after spike;

If V > Vth then

{
V ← c
U ← U + d

(3)
where I is the post-synaptic input current, k1 to k17 are constants
which depend on the neuron circuit parameters and the process
parameters of the CMOS technology; Vth sets the spike detection
threshold; c and d are tuning parameters of the neuron that can

e) and slow variable, U, (blue trace) against time, obtained in response to a 0.1 �A
nt neuron tuning parameters, Vc and Vd , resulting in different characteristic spike
ing. (For interpretation of the references to color in this figure legend, the reader is
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e set by applying two external voltages Vc and Vd (for a detailed
escription of the model see Wijekoon and Dudek, 2008a,b).

This silicon neuron circuit produces biologically plausible action
otentials (see Fig. 2) and is capable of mimicking spiking and
ursting firing patterns observed in cortical neurons. The circuit
an be easily configured to produce regular spiking, fast spiking,
hattering, intrinsically bursting, and other complex activity pat-
erns. The circuit is compact and low-power – it consumes about

 pJ per spike, i.e. orders of magnitude less than what is possible
sing digital technology to emulate the spiking/bursting behaviour
Wijekoon and Dudek, 2008a,b).

.2.2. Long-term synaptic dynamic circuits
The STDP plasticity rule has been proposed as the neuronal

echanism for learning and memory (Tsodyks, 2002; Morrison
t al., 2008), and the dopamine (DA) modulated STDP plasticity rule
s believed to be the mechanism for reinforcement learning in a cor-
ical network (Izhikevich, 2007). According to this rule, the synaptic

odification due to STDP is modulated by the level of extracellu-
ar DA concentration. That is, the extracellular DA level regulates
he long-term potentiation (LTP) and long-term depression (LTD)
f the synaptic weight (Fellous and Suri, 2003; Izhikevich, 2007).

The implemented STDP circuit is shown in Fig. 1a. The LTD and
TP circuits in Fig. 1a compute the STDP( ) and the capacitor CW
tores the weight of the synapse. This accelerated-time STDP circuit
s based on the biological-time STDP circuit proposed by Indiveri et
l. (2006).  It produces synaptic weight changes based on the timing
f pre-synaptic and post-synaptic spikes, following the STDP curve

typical shape of the STDP curve, using piecewise linear approxi-

ation, is shown in Fig. 3a). The amount of weight change due to
TP and LTD and the duration of the effect of the LTP and LTD can
e configured independently using externally controllable tuning

ig. 3. (a) Piece-wise linear approximation of the STDP curve implemented on chip; par
cheme (Morrison et al., 2007, 2008): each post-synaptic spike is paired with the last pre
ith  the last preceding post-synaptic spike (brown dotted line); the blue dotted line indic
otted lines indicate the pairings that contribute towards the depression. (c) Simulated ST
p and Vd; (d) simulated STDP curves for different values of long-term potentiation (Tp) 

lkd . (For interpretation of the references to color in this figure legend, the reader is referr
science Methods 210 (2012) 93– 109 97

voltages Vp, Vd, Vlkp, and Vlkd respectively.

STDP(�tpp)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ad × (�tpp + Tld)

(Td − Tld)

)
when − Td < �tpp ≤ −Tld

−Ad when − T1d < �tpp < 0

Ap when 0 < �tpp ≤ Tlp(
Ap × (�tpp − Tlp)

(Tp − Tlp)

)
when Tlp < �tpp < Tp

0 otherwise

(4)

where the values of Ap, Ad, Tp, Td, Tlp and Tld can be set to desired
constants using the tuning voltages Vp, Vd, Vlkp and Vlkd; Tp and Td
are time windows of long-term potentiation and long-term depres-
sion, these can be adjusted in the circuit to any value between 1 �s
and 100 �s; Tlp and Tld determine the linear region of the STDP
curve and depend on the circuit parameters, the process parame-
ters, and operational region of the transistors; tpost and tpre are the
times of the post-synaptic spike event and pre-synaptic spike event
respectively, �tpp = tpost− tpre.

The weight of the STDP synapse, w, evolves as in the equation
given below:

dw

dt
= −(w − wrest)

�l(w)
+ STDP(�tpp)ı(t − tpre/post) (5)

where ı(t) is the Dirac-delta function that provides a step-increase
or -decrease of w for immediate pairings of pre- and post-synaptic

neuron firing times; wrest is a resting weight dependant on circuit
parameters. The circuit holds the synaptic weight using a leaky
capacitor, � l(w) determines the speed of leakage (its average value
corresponds to a time constant of around 40 ms)  which limits the

ameters are explained in Eq. (4).  (b) Illustration of the implemented spike paring
ceding pre-synaptic spike (blue dotted line) and each pre-synaptic spike is paired
ates the pairings that contribute towards the potentiation of a synapse, and brown
DP curves for different values of Ap and Ad , obtained by varying tuning parameters

and depression (Td) time window, obtained by varying tuning parameters Vlkp and
ed to the web  version of the article.)
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perational time of an experiment. All times are scaled by 10−3

ith respect to the biological time.
The dopamine modulated synaptic dynamic circuit (Wijekoon

nd Dudek, 2011) shown in Fig. 1c and d is implemented based
n the computational model proposed by Izhikevich (2007).  This
ircuit has been designed by extending the STDP synapse circuit

o facilitate the synaptic weight change based on eligibility traces
nd the dopamine concentration signal. Similar to STDP synapse,
he changes in an eligibility trace due to LTP or LTD, and the time
indows of the LTP or LTD can be configured independently using

ig. 4. (a) Illustration of the weight w (shown in orange) of the inhibitory facilitating syn
re  explained in Eq. (9).  (b)–(d) Simulated response of the IFS circuit to a 10 kHz burst 

lots  show changes in the synaptic weight, w, for different values of: (b) degree of facilita
ontrolled using the tuning voltage V˛), and (d) resting weight of the synapse, wr .
science Methods 210 (2012) 93– 109

the externally controllable voltages Vp, Vd, Vlkp, and Vlkd, respec-
tively. The DA concentration signal can be generated globally using
an external voltage bias or using a burst of spikes (Wijekoon and
Dudek, 2011). According to the approximated silicon DA-STDP
synapse model, the strength of the STDP synapse, s, evolves as in
the equations given below:
dc

dt
= −c

�ET (c)
+ STDP(�tpp)ı(t − tpre/post) (6)

apse (IFS), when an input spike train pre (shown in green) is provided; parameters
of pre-synaptic input spikes, lasting for 4 ms and followed by a silent period. The
tion AF (controlled using the tuning voltage V�w), (c) speed of recovery, DF (mainly
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Fig. 5. Block diagram of a 67 neuron cell unit of the cortical neuron chip: (a) single neuron test circuit: a neuron circuit (NA) is connected to a synapse, and the buffered
membrane voltage of a neuron (spike out) can be observed externally; (b) two  neuron test circuit: post-synaptic current is generated for one of the neurons (NB1 and NB2),
using  a global synapse; outputs from the neurons are multiplexed using an address bit, and one neuron’s output can be observed at a given time; tuning parameters are
shared  by the neurons. (c) 64 neurons with different circuit parameters (various capacitor and transistor sizes); one synapse and two neuron tuning parameters are shared
by  all the neurons; outputs from the neurons are multiplexed using a 6 bit address, and the output of one neuron can be observed at a given time. Note: the voltages EPSV
a  the n
i s; test

I
D
o
3
c
i

F
a

nd  IPSV are used to regulate the excitatory and inhibitory post-synaptic current to
nclude  bias voltages, reset, and address bits use to multiplex the observable output

ds

dt
= f (cd) (7)

dd

dt
= −d

�DA(d)
+ DA(t) (8)

n the above equations c is the synaptic eligibility trace; ı(t) is the
irac-delta function that provides a step-increase or -decrease

f c for every pre- and post-synaptic neuron firing time (see Fig.
c); the function STDP( ) describes the spike-timing-dependent
hange of the eligibility (as in Eq. (4)); a sub-circuit in Fig. 1d,
mplements f(cd) to generate the approximate product of c and the

ig. 6. Photograph of the Cortical Neuron IC: (a) the full IC layout showing 202 neurons, t
n  isolated neuron, (b) a microphotograph of a single neuron, including the output buffer
eurons respectively; Vc and Vd are tuning parameters of the neuron; other inputs
 is an internal signal of the synapse which is used to measure the synaptic currents.

d  that represents the extracellular concentration of DA. DA(t) is the
amount of the DA released due to the activities of the dopaminergic
neuron (the spike output of the dopaminergic neuron is connected
to Vda burst node of the DA generator circuit shown in Fig. 1d; hence
the activities of the dopaminergic neuron increases the dopamine
level; the strength of this increase can be adjusted using externally
controllable voltage Vda ctl). Leakage parameters �ET = f(c,VETlkp,

VETlkd) and �DA = f(d,Vlkda) can be tuned using externally controllable
voltages VETlkp, VETlkd and Vlkda. Typical values of �ET and �DA are
1 ms  and 0.2 ms  respectively. In the case of DA modulated synapse,
the use of capacitors to hold the memory traces does not limit the

hese include 3 blocks of 67 neuron cell units with different circuit parameters and
 and control circuit, and (c) picture of the IC wire-bonded inside a package.
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ig. 7. The architecture of the DA modulated synapse chip: (a) synapse and neuron
utputs; d is the externally controllable extracellular DA level; Vp , Vd , Vlkp , Vlkd , Vlkw

f  a synapse; VcN and VdN are the tuning parameters of a neuron.

perational time of an experiment as the leakage of the eligibility
race is a crucial feature in the DA modulated synapse (Izhikevich,
007).

.2.3. Short-term synaptic dynamics

The synaptic facilitating and depressing circuits are designed

ased on the computational neural model of short-term dynamics
roposed by Abbott et al. (1997).  The core circuits used to generate

nhibitory and excitatory synapses with facilitation or depression

ig. 8. Photograph of the DA modulated synapse chip: (a) layout of the chip without th
enerator and test output circuits, the DA generator circuit, and a neuron circuit, (c) pictu
osition, (b) block diagram of the circuit showing tuning parameters and observable
Vlkwd are tuning parameters of a synapse; ETp , ETd , s, ltp and ltp are internal signals

are shown in Fig. 1b. Facilitation dynamics of the model is illus-
trated in Fig. 4a. According to the approximated silicon synapse
circuit model, facilitating and depressing weight of the synapse, w
evolves as in the equations given below.
for facilitating synapse
dw

dt
= −DF (w)H(w − wr)+AF (w)ı(t − tpre)

(9)

e pads, (b) enlarged pictures of a synapse circuit that includes pre-synaptic spike
re of the chip wire-bonded inside a package.
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Fig. 9. Synapse and neuron composition of the Cortical Neural La

or depressing synapse
dw

dt
= DD(w)H(wr − w) − AD(w)ı(t − tpre)

(10)

here tpre is the arrival time of the pre-synaptic spike event;
(w) is unit step function, ı(t) is Dirac-delta function; the func-

ions AF = f(w,V�w) and AD = f(w,V�w) decide the weight dependent
trength of facilitation and depression respectively; these strengths
an be tuned using the externally controllable voltage V�w of the
ynapse circuit; wr is resting voltage of the synaptic weight and
ts value can be set using the externally controllable voltages Vwr.
he decay functions DF = f(w,wr,V˛) and DD = f(w,wr,V˛) in the equa-
ions above determine the recovery speed of the facilitated and the
epressed weight, w, back to their resting weight wr; the recovery
ime of facilitation and depression can be tuned using the externally
ontrollable voltage V˛ of the synapse circuit. DF and DD act as a lin-
ar or exponential decays depending on the parameter values, wr

nd V˛.
In summary, the resting weight of the synapse, strength of facil-

tation or depression, and the recovery time can be configured
ndependently using externally control tuning voltages (as shown
n Fig. 4). The facilitating or depressing dynamics circuits can con-
ect to an inhibitory or excitatory circuit to generate inhibitory
r excitatory post synaptic current respectively. This post synaptic
urrent can be scaled using an externally adjustable bias voltage.

.3. Integrated circuit implementations

Different combinations of the neural circuits presented above
ave been fabricated in three integrated circuits, in a standard
.35 �m CMOS technology. The prototype ICs serve as a proof-
f-concept and illustrate how analogue circuitry can be used to
mplement complex functionality with minimum power consump-
ion. The fabricated ICs include the “Cortical Neuron” IC, the “DA

odulated Synapses” IC, and the “Cortical Neural Layer” (CNL) IC.
he former two ICs are designed to test the function of the basic
eural elements, and the CNL IC is designed to facilitate cortical
etwork emulations.
.3.1. Cortical Neuron IC
The first prototype integrated circuit, the Cortical Neuron

C, contains 202 neuron cells, with varied circuit parameters
NL) chip: this shows 120 neurons and their input synapse types.

(transistor sizes and capacitances). It was fabricated to test the
functionality of the neuron circuit, and experimentally obtain the
best combinations of circuit parameters, so that the neuron circuit
is capable of reproducing the widest range of neural firing patterns,
using two tuning parameters.

The 202 neurons are grouped into three of 67 neuron cells and
one isolated neuron cell. The block diagram of the 67 neuron cell
unit is shown in Fig. 5. The cells are individually accessible and do
not form any network. In addition to the neuron cells, the IC con-
tains multiplexers, buffers and simple synaptic circuitry to generate
excitatory and inhibitory postsynaptic currents. The different neu-
rons are provided with three different types of output buffers to
feed the membrane potential signal to the output pads. The cir-
cuit also contains a multiplexing unit that selects one neuron at a
time. Some cells are designed with an additional external mem-
brane potential resetting circuit. The size of the IC is approximately
3 mm by 2 mm,  and it has 84 pins. A photograph of the IC layout
with an enlarged individual neuron, as well as a photograph of the
IC wire bonded to a package is shown in Fig. 6.

2.3.2. DA modulated synapses IC
This prototype test integrated circuit contains twenty eight

STDP/DA-STDP synapses with a global DA generator circuit, and two
cortical neuron circuits. The block diagram of the IC is shown in Fig.
7. The STDP/DA-STDP synapse can be configured to work as a STDP
synapse or as a DA-modulated STDP synapse. Fig. 8 shows the lay-
outs of the cells and the photographs of the fabricated IC. Although
the actual circuit area is approximately 0.5 mm by 0.8 mm,  a large
IC area (1.8 mm × 1.8 mm)  is required to accommodate 44 pins
needed by the circuits. This prototype IC is fabricated to test the
functionality of the STDP synapse circuit and DA-Modulated STDP
synapse circuit along with the neuron circuit. Accordingly, some
of the internal states of all the synapses can be observed exter-
nally and, at any given time, the internal states of two synapses
can be observed along with the inverted spike outputs of both neu-
rons, so that the STDP or DA-STDP traces can be obtained and the
functionality of the synapse can be tested and calibrated.
2.3.3. Cortical Neural Layer (CNL) IC
The CNL IC implements neural circuits with a similar cell com-

position to the neocortex. The CNL IC models 120 cortical neurons
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nd 7560 synapses. The IC comprises generic neuron and synapse
ircuits with configurable neuronal connections. The neurons of the
C can be configured to different known types of neurons. The IC is
lso equipped with different short-term and long-term dynamics
ynapse circuits that include inhibitory, excitatory, facilitating and
epressing and STDP dynamics.

The neural elements occupy two separate blocks: Block-A and
lock-B. Block-A consists of 100 neurons and 6300 synapses. Each
f the neurons in this block receives inputs from 43 excitatory
epressing synapses (21 STDP and 22 Non-STDP excitatory depress-

ng synapses) and 20 inhibitory depressing non-STDP synapses
3 somatic and 17 distal inhibitory synapses; these two types
re distinguished by the range of available synaptic strengths).
lock-B consists of 20 neurons and 1260 synapses. Each of the
lock-B neurons receives input from 63 non-STDP synapses. The
3 synapses comprise an equal number of excitatory facilitating,

nhibitory facilitating, and excitatory depressing synapses. A dia-
ram of synapse and neuron on the IC is shown in Fig. 9.
Most of the neuron outputs are available in parallel from the
C pins. Some neuron outputs are accessible serially, and a few of
he neuron outputs are internally wired into the synaptic input
rray. The pre-synaptic spike inputs can be provided externally by

ig. 10. The Cortical Neural Layer chip: (a) layout of the CNL chip that contains 7560 syn
lastic  synapse circuits; (c) picture of the chip wire-bonded inside a package. Syn., synap
science Methods 210 (2012) 93– 109

addressing the synapses using the address bus of the IC. The internal
states of the selected synapses can be calibrated and/or observed
externally. The parameters of the neurons are set (in groups) using
60 external bias voltages. The size of the IC is 24 mm2 (6.78 mm by
3.58 mm),  and it has 180 pins. Fig. 10 shows the layout of the IC
showing the physical location of the synapses and neurons, and a
photograph of the fabricated IC.

The CNL IC can be configured to have a heterogeneous neuron
and synapse type combination, such that it could closely rep-
resent the neuron and synapse type composition of the cortical
layer. By combining many ICs together, a six-layered VLSI corti-
cal network could be built to resemble a small-scale network of
the neocortex. Although multi-compartmental dendrites are not
modelled, the neuron model can express a richness of behaviour
that can represent the variations in dendritic morphology and ion
channel distribution, in addition to the neural dynamics on the
cell body. Further, some effect on the membrane integration due
to the distance of the synapse from the soma can be modelled

using the dentritic delays and tuning the adjustable strength of
the post-synaptic current. Axonal and dendritic delays can be pro-
grammed, if required, in the spike-routing network (not discussed
here).

apses, 120 neurons, and auxiliary circuits; (b) layouts of the short- and long-term
se; Ex., excitatory; In., inhibitory; Fac., facilitating; Dep., depressing.
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Table 1
Values of the neuron tuning parameter, Vc required to obtain different firing patterns
across all process corners of the MOSFETS (corner conditions: WP,  worst power; WO,
worst one; TM,  typical mean; WZ,  worst zero; WS,  worst speed), when Vd = 1.9 V.
All the main types of firing patterns can be obtained from the neuron circuit, across
process variations. Here both RS1 and RS2 are regular spiking firing patterns.

Vc (V) Corner analysis (worst case analysis)

WP WO TM WZ  WS

0.00 RS2 RS2 RS1 RS1 RS1
0.10  RS2 RS2 RS1 RS1 RS1
0.20  IB IB RS2 RS1 RS1
0.30  CH CH RS2 RS1 RS1
0.40  CH CH IB RS2 RS2
0.50 FS FS CH RS2 RS2
0.60 FS* FS* CH IB IB
0.65  FS* FS* FS CH CH
0.70  FS* CH CH

F
i
(
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. Results

.1. Neuron

Selected experimental waveforms obtained from the Corti-
al Neuron IC are shown in Fig. 11.  These include fast spiking,
ow-threshold spiking, regular spiking, intrinsically bursting, and
hattering spike patterns when a 0.1 �A step current is injected
nto the soma, for different neuron tuning parameters, Vc and Vd. For

ore experimental results and their corresponding tuning param-
ters see Wijekoon and Dudek (2006, 2008a,b). As shown in Table 1,
ll the main types of firing patterns can be obtained from the neuron
ircuit for any process variations that are inherent in the fabrication
echnology.
.2. Long-term synapse

Long-term potentiating and depressing effects of the STDP (LTP
 when post-synaptic spike follows the pre-synaptic spike, and LTD

0.75  FS* FS FS
0.80  FS* FS*
0.90  FS* FS*

ig. 11. Measured waveforms of the membrane voltage of the fabricated VLSI neuron circuit when stimulated with a 0.1 �A step current (shown at the bottom of the figure)
njected into the soma, for different neuron tuning parameters, Vc and Vd , resulting in different characteristic spike patterns: (a) and (b) FS, fast spiking, (c) RS, regular spiking,
d)  LTS, low threshold spiking, (e) and (f) IB, intrinsically bursting, (g) and (h) CH, chattering, (i) FS*, very fast spiking.
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Fig. 12. Experimental waveforms of the fabricated VLSI long-term plastic synapse circuit, demonstrating the long-term potentiating and long-term depressing changes of
the  synapse weight, for a particular set of circuit tuning parameters. Neuronal spikes trigger pre- and post-synaptic spike timing history traces which linearly decay in time
(shown  in green and magenta, respectively). These traces correspond to voltages at nodes ltp and ltd in the circuit in Fig. 1a, and are used to determine time between synaptic
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vents. Yellow trace shows the weight of the synapse: it is increased when a post
losely  follows a pre-synaptic spike (indicated by a step decrease in the pre-synapti
pike.  (For interpretation of the references to color in this figure legend, the reader 

 when the pre-synaptic spike follows the post-synaptic spike) are
xperimentally demonstrated in Fig. 12.  This includes two  itera-
ions of the same stimuli to demonstrate the degree of repeatability
f the output responses. The highest value of potentiation per spike
air can be adjusted to a value between 0 and 30% of the maximum
eight of the synapse, using the tuning parameter Vp. The highest

alue of depression can be adjusted to a value between 0 and 50%
f the maximum weight using the parameter Vd.

Due to the device mismatch (Pelgrom et al., 1989) in the fab-
icated circuits, the nominally identical synapses, using the same
uning parameters, will produce different responses. This variabil-
ty is illustrated in Fig. 13,  where Monte Carlo simulations are used
o analyse the impact of device mismatch on the timing history of
re- and post-synaptic firing events and on the synaptic weight of
he STDP synapse circuit.

The STDP curve obtained from the implemented silicon synapse
s shown in Fig. 14.

.3. Short-term synapse
The experimentally obtained waveforms, demonstrating the
peration of the excitatory depressing, inhibitory depressing, exci-
atory facilitating, and inhibitory facilitating synapses are shown
n Fig. 15.  The results are included for two iterations of the same
ptic spike (indicated by a step increase in the post-synaptic spike timing history)
e timing history); it is decreased when a pre-synaptic spike follows a post-synaptic
rred to the web version of the article.)

stimuli to demonstrate the degree of repeatability of the output
responses. The amount of facilitation or depression per spike can
be adjusted to a value between 0 and 100% of the maximum possi-
ble weight of the synapse, using the tuning parameters V�w and V˛.
However, resting weight, wr of the synapse can limit the maximum
possible facilitation or depression per spike.

The effect of device mismatch is analysed using simulations
shown in Fig. 16.  All synapses show basic dynamics of depres-
sion or facilitation and recovery to the resting weight, albeit with a
variability of the model parameters.

4. Discussion

The presented circuits provide a set of phenomenological mod-
els implemented in hardware, which can be used to construct
neural circuits and networks. The implemented models include
non-linear spiking and bursting dynamics of the cortical neu-
rons, STDP and dopamine modulated STDP synaptic dynamics,
and facilitating and depressing short-term dynamics of inhibitory
and excitatory synapses. The experimental results obtained from

the prototype ICs verify the operation of these models in silicon.
When designing these circuits, we  aimed to achieve the ability
to model neuronal networks with a level of biological plausibil-
ity greater than many existing VLSI devices proposed to date, while
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Fig. 13. Mismatch analysis of the STDP synapse circuit. Variation of spike timing history trace for (a) the pre-synaptic firing event; (b) the post-synaptic firing event. (c)
Synaptic  weight trace showing the mean (blue plot) and the standard deviation (red bars) of a response to a stimulus of 20 pairs of pre- and post-synaptic spikes as shown in
F d then
T simula
( rred to
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ig.  12 (for the initial 10 pairs pre-synaptic spike follows the post-synaptic spike, an
he  simulation results are obtained for 1000 Monte Carlo iterations, using Hspice 

For  interpretation of the references to color in this figure legend, the reader is refe

t the same time providing the level of integration and scalabil-
ty that would allow the construction of relatively large systems.
he devices are designed so that a system containing many ICs can

e assembled; an off-chip spike routing hardware (Fasnacht and
ndiveri, 2011) is envisaged for greatest flexibility of inter-neural
onnectivity.

ig. 14. The shape of the STDP curve obtained from the fabricated synapse circuit for
 typical set of circuit tuning parameters. The STDP curve is adjustable using the four
uning parameters; Vlkp and Vlkd can be used to set the active time window of LTP
nd LTD; Vp and Vd can be used to set the strength of potentiation and depression,
espectively.
 for the remaining 10 pairs the post-synaptic spike follows the pre-synaptic spike).
tor, with the standard mismatch models provided for the fabrication technology.

 the web  version of the article.)

The proposed hardware neural models operate in accelerated-
time, which is beneficial from the point of view of computational
efficiency. If biological-time operation is required, different specific
circuit solutions might be needed, e.g. see Wijekoon and Dudek
(2009) where we outline the design of a biological-time neuron
cell.

The proposed VLSI circuits have been designed and fabricated
in a standard 0.35 �m CMOS technology. The CNL IC comprises
120 individual neurons and 7650 distinct hardware synapses of
various types. Several CNL ICs can be combined together to build
small-scale networks. The feasibility of scaling this approach to a
larger-scale system can be estimated. The CNL IC occupies 24 mm2

of silicon. The IC area can be easily increased (at increased cost),
providing more neurons and synapses on a single IC. Further device
density improvements can be obtained by using a more modern sil-
icon technology. We  estimate, that when migrated to a 90 nm CMOS
technology node, and with a chip area of 120 mm2 (a size that can be
easily fabricated with a reasonable yield) a future device similar to
the CNL IC could contain about 5000 neurons and 300,000 synapses
(when deriving these estimated figures we  have taken into account
the fact that the migration of 0.35 �m technology circuits into
90 nm technology would require redesigning the analogue neural
circuits, considering higher leakage currents and mismatch prob-
lems that are inherent in deep sub-micron circuit implementations,

and thus assumed a conservative density scaling factor). A hundred
of such ICs could be integrated on a single printed circuit board,
together with digital spike routing circuits, and ten boards assem-
bled together in a system the size of a desktop-computer, and with
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Fig. 15. Experimental results from the fabricated short-term plastic synapse circuits, demonstrating the short-term facilitation and depression of the synaptic weights of the
synapses, for a burst of pre-synaptic spikes followed by a silent period: (a) excitatory depressing and inhibitory depressing synapses, (b) excitatory facilitating and inhibitory
facilitating synapses. Traces show (from the bottom to top): pre-synaptic spike train, weights of the two  short-term plastic synapses and the post-synaptic response. For the
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xcitatory synapses, inverted waveforms of the synaptic weight are shown. The res
f  the output responses. The strength of depression or facilitation per pre-synaptic s
urrent of the synapses can be controlled independently using the tuning paramete

he power dissipation in the kilowatts range. Such system would
nable the construction of networks comprising up to 5 million
eurons and 300 million synapses.

Specialised packet routing schemes (Plana et al., 2007) and
afer-scale integration networks (Schemmel et al., 2008, 2010)
ave been proposed to support the high bandwidth requirements of

nter-neuron communication in neuromorphic architectures. The
hree-dimensional stacking of silicon wafers (Topol et al., 2010)
rovides a promising solution to increasing the level of integration
nd high inter-die communication bandwidth. It should be noted
hat it is the communication infrastructure, not the implementa-
ion of the neuron/synapse model, that will most likely dominate
he power and performance requirements in a large-scale system,
nd limit the complexity of the network models that can be imple-
ented by the VLSI devices.
From the IC layouts (Fig. 10)  it is evident that the synapse cir-

uitry dominates the device area. Several hardware realisations

f a “memristor” based synapse have been recently postulated
Strukov et al., 2008; Linares-Barranco and Serrano-Gotarredona,
009), promising an extremely compact IC implementation. It has
o be recognized, however, that these devices will be best suited to
clude two iterations of the same stimuli to demonstrate the degree of repeatability
esting weight, the recovery time to reach the resting weight, and the post-synaptic

a  simple ‘weighted summation’ model of synaptic processing, pro-
viding little flexibility regarding the plasticity model, and inability
to model complex synaptic dynamics. A number of solutions (e.g.
Lin et al., 2006; Vogelstein et al., 2007) with apparently large num-
ber of synapses have been described in the literature, where the
synapses are time-multiplexed or ‘virtualised’ (i.e. one hardware
synapse is used to emulate multiple synapses). To some extent,
these mechanisms can be also applied to the presented CNL IC,
increasing the number of available synapses per neuron. It has to be
emphasised, however, that the implementation of more elaborate
learning rules, such as DA-STDP, and short-term synaptic dynamics,
requires dedicated hardware resources for each synapse (as multi-
ple state values have to be stored, and evolve, in each synapse). The
circuits presented in this paper provide compact implementations
of these models, indicating the limits of what can be achieved in
current microelectronic technologies.

The circuits developed in this work implement models at a

particular level of abstraction, and while we  tried to capture the
essential properties of neural dynamics that might be relevant
to the computational capabilities of the neocortex, the choice
of the models is somewhat arbitrary. While we attempted to
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Fig. 16. Mismatch analysis of the short-term dynamic synapse circuit. Plots show the variation in the synaptic weight traces: (a) excitatory depressing (inverted weight
s n), (d)
H y.
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hown), (b) inhibitory depressing, (c) excitatory facilitating (inverted weight show
spice,  using the standard mismatch models provided for the fabrication technolog

rovide a level of generality and flexibility in our circuits (through
djustable parameters, a multitude of synapse types with pro-
rammable properties, generic off-chip connectivity, etc.), they
emain, as all hardware-based solutions (especially based on ana-
ogue computation), committed to run a particular model. They can
rovide acceleration of the simulation times and significant power
fficiency advantages, when compared with the execution of simi-

ar models in software on conventional computer hardware, but at
he same time they offer a limited scope of simulation experiments,
estricted to the parameter ranges and models that were foreseen at
he IC design stage. Herein lies possibly the greatest disadvantage of
 inhibitory facilitating. Results were obtained from the Monte Carlo simulations in

hardware-based models – they do necessitate a large development
time (months to years) in case a different computational model
should be required. For instance, it would be relatively easy to mod-
ify a software-based simulation to extend the STDP model to take
into account spike triplets, or use an exponential non-linearity in
the neuron cell instead of quadratic. In the case of a VLSI hardware
model, the development of a new integrated circuit is needed. Even

if a large library of “standard cells” could be developed in hard-
ware, covering the most likely variants of the models that might be
required, there will always be cases that a new model, or a new set
of parameters not covered by the existing hardware, will be desired
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y the experimenter. The addition of such a model to existing hard-
are, even if possible, requires many man-months of design effort.

his problem also exists in the case of specialised digital hard-
are architectures, because even though a more established design
ow for turning algorithms into hardware exists for such designs,

t is likely that the entire system is build on certain assumptions
for example, data types, or bandwidth requirements) that become
nvalid as the implemented neural models are modified.

Another limitation of the analogue VLSI approach to neural
odelling, clearly demonstrated by our results, is the problem of

ccuracy and repeatability of the model. Both random electronic
oise (introducing temporal variability), and the mismatch of tran-
istor parameters (introducing spatial variability) are unavoidable
n practical hardware implementations. As can be seen from Table 1
nd Figs. 13 and 16,  through careful design it can be ensured that
he device variability does not push the model outside its operat-
ng ranges, allowing the system to execute a valid neural model.
evertheless, the spread of results caused by device variability is

elatively high (and will only get worse as technology scales to
maller dimensions), inducing uncertainty into the parameters of
he executed model. This uncertainty and noise are a great disad-
antage of neuromorphic hardware approach to neural modelling.
t could be said that the noise and variability of the analogue circuits

ake them more analogous to biology, as compared with error-free
nd numerically accurate software simulation. However, the abso-
ute controllability of the parameters, the ability to execute a model

ith an arbitrary accuracy, and the ability to introduce noise and
ariability in a controllable manner if desired, are the significant
dvantages of a digital modelling solution. It should be noted that
he accuracy of analogue circuit models can be made higher than
n the case of circuits presented in this paper, and a very good level
f agreement between the hardware model and numerical simula-
ion have been demonstrated in the literature (Saighi et al., 2011) –
ut at a cost of significantly increased circuit size and complexity,
bliterating any performance and power advantages of analogue
LSI approach as compared with digital simulation.

The restricted flexibility of the hardware resource, and the lim-
tations on the connectivity imposed by the communication fabric,
ose problems related to the optimal mapping of the desired net-
ork structure onto the available hardware. As the actual model

mplemented by the VLSI device cannot be expressed analyti-
ally, or even approximated numerically with satisfactory accuracy,
ue to a large number of second-order effects that are difficult
o account for, the validation of the model becomes problematic.

 systematic approach to tuning of parameters, and their corre-
pondence to the biological variables, is also difficult to establish.
urther mapping issues are related to providing increased robust-
ess against device mismatch (Neftci et al., 2011).

The observability of the internal variables in a hardware neural
odel is limited to the circuit nodes that have been designed to be

vailable for this purpose. We  have provided several mechanisms
or outputting internal signals off-chip, however it is impossible to
rovide a comprehensive solution to monitoring all internal signals
ue to additional circuit complexity that this introduces.

The difficulties outlined above, which stem from the funda-
ental limitations inherent in the neuromorphic VLSI approach to

eural modelling, point in our view to a conclusion that a great
egree of biological realism should not be expected from such
evices. Where precise models are required for the study of the
rain (e.g. with applications in medicine or neurobiology), numer-

cal methods implemented on digital computers are clearly more
uitable.
Nevertheless, the neuromorphic devices should prove useful as
ools for carrying out investigations into neural computation, and
roperties of spiking neural networks. While these have to be inves-
igated at various levels of abstraction and biological plausibility,
science Methods 210 (2012) 93– 109

the neural and synaptic dynamics based on models of cortical cells
might be critical to the intelligent information processing carried
out by the biological brains. The circuits presented in this paper
offer compact and configurable network implementations, suit-
able for the exploration of the computational properties of systems
with dynamics relevant to cortical network models. In this context,
they offer performance and power advantages over digital hard-
ware/simulation solutions. As such, the circuit techniques we have
developed should also find use in the construction of neuromorphic
systems applied to sensory information processing or biologically
inspired robot control, and provide foundations for the design of
efficient brain-inspired computational hardware once the opera-
tion of the brain and the underlying computational paradigm is
better understood.

The physical limitations of silicon hardware are not that differ-
ent to the limitations imposed on a biological system. The noise
and variability are present in both, and so is the need for physi-
cal layout constraint that favours local connectivity. The biological
solutions to noise tolerance, robustness against faults, and plastic-
ity mechanisms, have evolved being shaped up by a similar set of
constraints that the hardware designer is faced with. Hence, there
is hope that a better understanding of analogue hardware imple-
mentations of neural systems will help to form the hypotheses
and computational models that emphasise these important physi-
cal implementation constraints, and ultimately help to understand
the information processing principles present in the brain, and con-
versely, that biology will provide the inspiration for the design of
future intelligent computing machines.
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