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Abstract—Replication is the prevalent solution to tolerate faults in large data structures hosted on distributed servers. To tolerate f

crash faults (dead/unresponsive data structures) among n distinct data structures, replication requires f þ 1 replicas of each data

structure, resulting in nf additional backups. We present a solution, referred to as fusion that uses a combination of erasure codes and

selective replication to tolerate f crash faults using just f additional fused backups. We show that our solution achievesOðnÞ savings in

space over replication. Further, we present a solution to tolerate f Byzantine faults (malicious data structures), that requires only

nf þ f backups as compared to the 2nf backups required by replication. We explore the theory of fused backups and provide a library

of such backups for all the data structures in the Java Collection Framework. The theoretical and experimental evaluation confirms that

the fused backups are space-efficient as compared to replication, while they cause very little overhead for normal operation. To

illustrate the practical usefulness of fusion, we use fused backups for reliability in Amazon’s highly available key-value store, Dynamo.

While the current replication-based solution uses 300 backup structures, we present a solution that only requires 120 backup

structures. This results in savings in space as well as other resources such as power.

Index Terms—Distributed systems, fault tolerance, data structures

Ç

1 INTRODUCTION

DISTRIBUTED systems are often modeled as a set of
independent servers interacting with clients through

the use of messages. To efficiently store and manipulate data,
these servers typically maintain large instances of data
structures such as linked lists, queues, and hash tables. These
servers are prone to faults in which the data structures may
crash, leading to a total loss in state (crash faults [20]) or
worse, they may behave in an adversarial manner, reflecting
any arbitrary state, sending wrong conflicting messages to the
client or other data structures (Byzantine faults [9]). Active
replication [8], [21], [20] is the prevalent solution to this
problem. To tolerate f crash faults among n given data
structures, replication maintains f þ 1 replicas of each data
structure, resulting in a total ofnf backups. These replicas can
also tolerate bf=2c Byzantine faults, since there is always a
majority of correct copies available for each data structure. A
common example is a set of lock servers that maintain and
coordinate the use of locks. Such a server maintains a list of
pending requests in the form of a queue. To tolerate three
crash faults among, say five independent lock servers each
hosting a queue, replication requires four replicas of each
queue, resulting in a total of 15 backup queues. For large
values of n, this is expensive in terms of the space required by
the backups as well as power and other resources to maintain
the backup processes. Coding theory [2], [14] is used as a space-

efficient alternative to replication, both in the fields of
communication and data storage. Data that needs to be
transmitted across a channel is encoded using redundant bits
that can correct errors introduced by a noisy channel [22], [5],
[10]. Applications of coding theory in the storage domain
include RAID disks [13] for persistent storage or information
dispersal algorithms (IDAs) for fault tolerance in a set of data
blocks [18]. In many large scale systems, such as Amazon’s
Dynamo key-value store [4], data is rarely maintained on disks
due to their slow access times. The active data structures in
such systems are usually maintained in main memory or
RAM. In fact, a recent proposal of “RAMClouds” [12]
suggests that online storage of data must be held in a
distributed RAM, to enable fast access. In these cases, a direct
application of coding-theoretic solutions, that are oblivious to
the structure of data that they encode, is often wasteful. In
the example of the lock servers, to tolerate faults among the
queues, a simple coding-theoretic solution will encode the
memory blocks occupied by the lock servers. Since the lock
server is rarely maintained contiguously in main memory, a
structure-oblivious solution will have to encode all memory
blocks that are associated with the implementation of this
lock server in main memory. This is not space efficient, since
there could be a large number of such blocks in the form of
free lists and memory book keeping information. Also, every
small change to the memory map associated with this lock has
to be communicated to the backup, rendering it expensive in
terms of communication and computation.

In this paper, we present a technique referred to as fusion
which combines the best of both these worlds to achieve the
space efficiency of coding and the minimal update overhead
of replication. Given a set of data structures, we maintain a set
of fused backup data structures that can tolerate f crash faults
among the given the data structures. In replication, the
replicas for each data structure are identical to the given data
structure. In fusion, the backup copies are not identical to the
given data structures and hence, we make a distinction
between the given data structures, referred to as primaries and
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the backup data structures, referred to as backups. Henceforth,
in this paper, we assume that we are given a set of primary
data structures among which we need to tolerate faults.
Replication requires f additional copies of each primary
(f þ 1 replicas), resulting innf backups. Fusion only requires
f additional backups.

The fused backups maintain primary data in the coded
form to save space, while they replicate the index structure
of each primary to enable efficient updates. In Fig. 1, we
show the fused backup corresponding to two primary
array-based stacks X1 and X2. The backup is implemented
as a stack whose nodes contain the sum of the values of the
nodes in the primaries. We replicate the index structure of
the primaries (just the top of stack pointers) at the fused
stack. When an element a3 is pushed on to X1, this element
is sent to the fused stack and the value of the second node
(counting from zero) is updated to a3 þ b3. In case of a pop
to X2, of say b3, the second node is updated to a3. These set
of data structures can tolerate one crash fault. For example,
if X1 crashes, the values of its nodes can be computed by
subtracting the values of the nodes in X2 from the
appropriate nodes of F1. The savings in space is achieved
by fusing the data nodes, while the index structure at the
backups allows for efficient updates.

In Fig. 1, to tolerate one crash fault among X1 and X2,
replication requires a copy for both X1 and X2, resulting in
two backups containing five data nodes in total as compared
to the fusion-based solution that requires just one backup
containing three data nodes. When a crash fault occurs,
recovery in replication just needs the state of the correspond-
ing replica. Fusion on the other hand, needs all available data
structures to decode the data nodes of the backups. This is
the key tradeoff between replication and fusion. In systems
with infrequent faults, the cost of recovery is an acceptable
compromise for the savings in space achieved by fusion.

In [11], we present a coding-theoretic solution to fault
tolerance in finite state machines. This approach is extended
for infinite state machines and optimized for Byzantine fault
tolerance in [6]. Our previous work on tolerating faults in data
structures [7] provides the algorithms to generate a single
fused backup for array or list-based primaries, that can
tolerate one crash fault. In this paper, based on [23], we
present a generic design of fused backups for most commonly
used data structures such as stacks, vectors, binary search
trees, hash maps and hash tables. Using erasure codes, we
present f-fault tolerant data structures that tolerate f crash
faults using just f additional fused backups. In the example,
shown in Fig. 1, we can maintain another fused stack F2 that
has identical structure to F1, but with nodes that contain the
difference in values of the primary elements rather than the
sum. These set of data structures can tolerate two crash faults.

We extend this for values of f greater than two using Reed
Solomon (RS) erasure codes [19], [3], [17], which are widely
used to generate the optimal number of parity blocks in
RAID-like systems.

Further, we consider the case of Byzantine faults, where
the data structures can reflect arbitrary values, send
conflicting erroneous responses to the client and try to
maliciously defeat any protocol. Crash faults in a synchro-
nous system, such as the one assumed in our model, can
easily be detected using time outs. Detecting Byzantine faults
is more challenging, since the state of the data structures
need to be inspected on every update to ensure that there are
no liars in the system. In this paper, we present a solution to
tolerate f Byzantine faults among n primary data structures
using just nf þ f backup structures as compared to the 2nf
backups required by replication. We use a combination of
replication and fusion to ensure minimal overhead during
normal operation.

In addition, we prove properties on our fused backups
such as space optimality, update optimality, and order
independence. Given n primaries, our approach achieves
OðnÞ times savings in space over both replication and [7].
The time complexity of updates to our backups is identical to
that for replication and OðnÞ times faster than [7]. Similar to
replication, we show that the updates to the backups can be
done with a high level of concurrency. Further, we show that
the updates to different backups from distinct primaries can
be received in any order, thereby eliminating the need for
synchronization at the backups.

In practical systems, sufficient servers may not be
available to host all the backup structures and hence, some
of the backups have to be distributed among the servers
hosting the primaries. These servers can crash, resulting in
the loss of all data structures residing on them. Consider a
set of n data structures, each residing on a distinct server.
We need to tolerate f crash faults among the servers given
only a additional servers to host the backup structures. We
present a solution to this problem that requires dn=ðnþ a�
fÞe � f backups and show that this is the necessary and
sufficient number of backups for this problem. We also
present a way to compare (or order) sets of backups of the
same size, based on the number of primaries that they need
to service. This is an important parameter because the load
on a backup is directly proportional to the number of
primaries it has to service. We show that our partitioning
algorithm generates a minimal set of backups.

To illustrate the practical usefulness of fusion, we apply
our design to Amazon’s Dynamo [4], which is the highly
available data-store underlying many of the services
exposed by Amazon to the end-user. Examples include
the service that maintains shopping cart information or the
one that maintains user state. Dynamo achieves its twin
goals of fault tolerance (durability) and fast response time
for writes (availability) using a simple replication-based
approach. We propose an alternate design using a combina-
tion of both fusion and replication, which requires far less
space, while providing almost the same levels of durability,
and availability for writes. In a typical host cluster, where
there are 100 dynamo hosts each hosting a data structure,
the current replication-based approach requires 300 backup
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Fig. 1. Fault tolerant stacks.

 
 

 

 
 

 

 
 

 



structures. Our approach, on the other hand, requires only
120 backup structures. This translates to significant savings
in both the space occupied by the backups as well as the
infrastructure costs such as power and resources required
by the processes running these backups.

We provide a Java implementation of fused backups [1]
using RS codes for all the data structures in the Java
Collection Framework. Our experiments indicate that the
current version of fusion is very space efficient as compared
to both replication (approximately n times) and the older
version (approximately n=2 times). The time taken to update
the backups is almost as much as replication (approximately
1.5 times slower) while it is much better than the older
version (approximately 2.5 times faster). Recovery is ex-
tremely cheap in replication but the current version of fusion
performs approximately n=2 times better than the older
version. Though recovery is costly in fusion as compared to
replication, in absolute terms, it is still low enough to be
practical (order of milliseconds). In the following section, we
describe the system model of this paper.

2 MODEL AND NOTATION

Our system consists of independent distributed servers
hosting data structures. We denote the n given data
structures, also referred to as primaries, X1 . . .Xn. The
backup data structures that are generated based on our idea
of fusing primary data are referred to as fused backups or
fused data structures. The operator used to combine primary
data is called the fusion operator. The number of fused
backups, t, depends on the fusion operator and the number
of faults that need to be tolerated. The fused backups are
denoted F1 . . .Ft. In Fig. 1, X1 and X2 are the primaries, F1

is the fused backup and the fusion operator is addition.
The data structures are modeled as a set of data nodes and

an index structure that specifies order information about
these data nodes. For example, the index structure for a
linked list includes the head, tail, and next pointers. We
assume that the size of data in the data structure far exceeds
the size of its index structure. The data structures in our
system have a state as well as an output associated with them.
The state of a data structure is a snapshot of the values in the
data nodes and the index structure. The output is the value
visible to the external world or client. On application of an
event/update the data structure transitions from one state to
another and changes its output value. For example, the state
associated with a linked list is the value of its nodes, next
pointers, tail and head pointers. When we insert data into a
linked list with a certain key, the value of the nodes and
pointers change (state) and it responds with either success or
failure (output).

We assume a single client that sends updates to the
various data structures and acts on the responses/output
received from them. When an update is sent to a primary
data structure, the primary first updates itself and then
sends sufficient information to update the backups. We
assume FIFO communication channels that are reliable and
have a strict upper bound on time for all message delivery,
i.e., a synchronous system. Hence, all updates to the data
structures from the client, is received in the same order at
the data structures. The problem of multiple clients sending

updates to the data structures, which may be received in
any order, is beyond the scope of this paper.

Faults among the data structures, both primaries and
backups, can be of two types: crash faults (also referred to as
fail-stop faults) and Byzantine faults. In the case of crash
faults, the data structure crashes and stops responding to
the client, leading to a complete loss in state. For Byzantine
faults, the data structure can assume arbitrary values for its
state, send wrong responses to the client/other data
structures and in general behave maliciously to defeat any
protocol. However, the data structure cannot fake its
identity. Since active replication is a fault-masking techni-
que, so far in this paper, we have said that replication can
tolerate faults among the data structures. However, for
fusion, we need to decode the values and correct the faults
in the system. Henceforth, for convenience, we say that
backups (for both replication and fusion) “correct” faults
among primaries.

Detection and correction of faults in our system is
performed by the fault-free client. Since we assume a
synchronous system, crash faults are detected using time-
outs. If a data structure does not respond to an update sent
by the client within a fixed time period, it is assumed to
have crashed. We present algorithms for the detection of
Byzantine faults. When a fault occurs, no updates are sent
by the client until the state of all the failed data structures
have been recovered. For recovery, the client acquires the
state of the requisite data structures after they have acted on
all updates before the fault occurred, and then recovers the
state of the failed structures. Henceforth, when we simply
say faults, we refer to crash faults. The design of the fused
data structures is independent of the fault model and for
simplicity we explain the design assuming only crash faults.

3 FUSION-BASED FAULT TOLERANT DATA

STRUCTURES

Design motivation. In [7], Garg and Ogale present a design to
fuse array and list-based primaries that can correct one
crash fault. We highlight the main drawback of their
approach for linked lists. The fused structure for linked
list primaries in [7] is a linked list whose nodes contain the
XOR (or sum) of the primary values. Each node contains a
bit array of size n with each bit indicating the presence of a
primary element in that node. A primary element inserted
in the correct position at the backup by iterating through the
fused nodes using the bit array and a similar operation is
performed for deletes. An example is shown in Fig. 2 with
two primaries and one backup. After the delete of primary
elements a1 and b3, the first and third nodes of the fused
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Fig. 2. Old fusion [7].

 
 

 

 
 

 

 
 

 



backup F1 are updated to b1 and a3, respectively (deleted
elements in grayscale). After the deletes, while the
primaries each contain only two nodes, the fused backup
contains three nodes. If there are a series of inserts to the
head of X1 and to the tail of X2 following this, the number
of nodes in the fused backup will be very high. This brings
us to the main design motivation of this section: Can we
provide a generic design of fused backups, for all types of
data structures such that the fused backup contains only as
many nodes as the largest primary, while guaranteeing
efficient updates? We present a solution for linked lists and
then generalize it for complex data structures.

3.1 Fused Backups for Linked Lists

We use a combination of replication and erasure codes to
implement fused backups each of which are identical in
structure and differ only in the values of the data nodes. In
our design of the fused backup, we maintain a stack of
nodes, referred to as fused nodes that contains the data
elements of the primaries in the coded form. The fused
nodes at the same position across the backups contain the
same primary elements and correspond to the code words
of those elements. Fig. 3 shows two primary sorted linked
lists X1 and X2 and two fused backups F1 and F2 that can
correct two faults among the primaries. The fused node in
the 0th position at the backups contain the elements a1 and
b1 with F1 holding their sum and F2 their difference. At each
fused backup, we also maintain index structures that
replicate the ordering information of the primaries. The
index structure corresponding to primary Xi is identical in
structure to Xi, but while Xi consists of data nodes, the
index structure only contains pointers to the fused nodes.
The savings in space are achieved because primary nodes
are being fused, while updates are efficient since we
maintain the index structure of each primary at the backup.

Overview. We begin with a high-level description on how
we restrict the number of nodes in the backup stack. At
each backup, elements of primary Xi are simply inserted

one on top of the other in the stack with a corresponding
update to the index structure to preserve the actual
ordering information. The case of deletes is more complex.
If we just delete the element at the backup, then similar to
Fig. 2, a “hole” is created and the fused backups can grow
very large. In our solution, we shift the top-most element of
Xi in the backup stack, to plug this hole. This ensures that
the stack never contains more nodes than the largest
primary. Since the top-most element is present in the fused
form, the primary has to send this value with every delete
to enable this shift. To know which element to send with
every delete, the primary has to track the order of its
elements at the backup stack. We achieve this by maintain-
ing an auxiliary list at the primary, which mimics the
operations of the backup stack. When an element is inserted
into the primary, we insert a pointer to this element at the
end of its auxiliary list. When an element is deleted from
the primary, we delete the element in the auxiliary list that
contains a pointer to this element and shift the final
auxiliary element to this position. Hence, the primary
knows exactly which element to send with every delete.
Fig. 3 illustrates these operations with an example. We
explain them in greater detail in the following paragraphs.

Inserts. Fig. 4 shows the algorithms for the insert of a
key-value pair at the primaries and the backups. When the
client sends an insert to a primary Xi, if the key is not
already present, Xi creates a new node containing this key-
value, inserts it into the primary linked list (denoted
primaryLinkedList) and inserts a pointer to this node at
the end of the aux list (auxList). The primary sends the key,
the new value to be added and the old value associated
with the key to all the fused backups. Each fused backup
maintains a stack (dataStack) that contains the primary
elements in the coded form. On receiving the insert from
Xi, if the key is not already present, the backup updates the
code value of the fused node following the one contains the
top-most element of Xi (pointed to by tos½i�). To maintain
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Fig. 3. Fused backups for linked lists (keys not shown in F1, F2 due to space constraint).

 
 

 

 
 

 

 
 

 



order information, the backup inserts a pointer to the newly
updated fused node, into the index structure (indexList½i�)
for Xi with the key received. A reference count (refCount)
tracking the number of elements in the fused node is
maintained to enable efficient deletes.

Fig. 3ii shows the state of X1 and F1 after the insert of
ð3; a�1Þ. We assume that the keys are sorted in this linked list
and hence the key-value pair ð3; a�1Þ is inserted at index 1 of
the primary linked list and a pointer to a�1 is inserted at the
end of the aux list. At F1, the value of the second node (nodes
numbered from zero) is updated to a�1 þ b3 and a pointer to
this node is inserted at index 1 of indexList½1�. The identical
operation is performed at F2 (not shown in the figure due to
space constraints), with the only difference being that the
second fused node is updated to a�1 � b3. Observe that the aux
list at X1 specifies the exact order of elements maintained at
the backup stack (a1 ! a2 ! a�1). Analogously, indexList½1�
at the fused backup points to the fused nodes that contain
elements of X1 in the correct order (a1 ! a�1 ! a2).

Delete. Fig. 5 shows the algorithms for the delete of a key
at the primaries and the backups. Xi deletes the node
associated with the key from the primary and obtains its
value which needs to be sent to the backups. Along with

this value and the key k, the primary also sends the value of
the element pointed by the tail node of the aux list. This
corresponds to the top-most element of Xi at the backup
stack and is hence required for the shift operation that will
be performed at the backup. After sending these values, the
primary shifts the final node of the aux list to the position of
the aux node pointing to the deleted element, to mimic the
shift of the final element at the backup.

At the backup, since indexList½i� preserves the exact

order information of Xi, by a simple double dereference,

we can obtain the fused node p that contains the element of

Xi associated with k. The value of p is updated with the

top-most element (sent by the primary as tos) to simulate

the shift. The pointers of indexList½i� are updated to reflect

this shift. Fig. 3iii shows the state of X1 and F1 after the

delete of b1. The key facts to note are: 1) at F1, b3 has been

shifted from the end to the 0th node, 2) the aux list at X2

reflects the correct order of its elements at the backup stack

(b3 ! b2), and 3) indexList½2� reflects the correct order of

elements at X2 (b2 ! b3). In Appendix A, which can

be found on the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.96,
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Fig. 4. Fused backups for linked lists: inserts.

Fig. 5. Fused backups for linked lists: deletes.

 
 

 

 
 

 

 
 

 



we extend this design to complex data structures such as
maps, trees, and hash tables.

As specified in Section 2, we assume that the size of the
data far exceeds the size of the auxiliary structure. For
example, in Fig. 3, if the size of the primary or fused nodes
is in the order of megabytes, the size of the index structures
or auxiliary structures is just in the order of bytes (next
pointers). So the space overhead of maintaining these
auxiliary/index structures is negligible. Also, the auxiliary
structures at the primary can be updated in constant time
for both inserts and deletes with the use of double-ended
pointers. Hence, they do not cause any additional overhead
in terms of time.

So far, we have used simple sum-difference as the fusion
operator, that can correct two crash faults using two
backups. Given two integers, say a and b, it is sufficient to
maintain the integers ðaþ bÞ and ða� bÞ to correct two faults
among these four integers. Similarly, it can be seen that, to
correct three faults among three integers a, b, and c, it is
sufficient to maintain the integers ðaþ bþ cÞ, ðaþ 2bþ 3cÞ,
and ðaþ 4bþ 9cÞ. In Appendix B, which is available in the
online supplemental material, we generalize this and present
the Reed Solomon erasure codes that can be used as a fusion
operator to correct f crash faults among the primaries using
f backups. While the structure of all the f fused backups will
be identical, the fused nodes will contain the RS checksum
values of the primary elements. The key intuition behind RS
codes is to form f checksums from n given data elements,
such that despite f failures among the data and checksums,
we have sufficient linearly independent equations to recover
the failed data.

3.2 Correcting Crash Faults

To correct crash faults, the client needs to acquire the state of
all the available data structures, both primaries and backups.
As seen in Section 3.1, the fused node at the same position at
all the fused backups are the codewords for the primary
elements belonging to these nodes. To obtain the missing
primary elements belonging to this node, we decode the code
words of these nodes along with the data values of
the available primary elements belonging to this node. The
decoding algorithm depends on the erasure code used.
In Fig. 3(i), to recover the state of the failed primaries, we
obtain the states F1 and F2 and iterate through their nodes.
The 0th fused node of F1 contains the value a1 þ b1, while the
0th node of F2 contains the value a1 � b1. Using these, we can
obtain the values of a1 and b1. The value of all the primary
nodes can be obtained this way and their order can be
obtained using the index structure at each backup. In
Appendix A, which is available in the online supplemental
material, we show that the time complexity of recovery using
RS codes as the fusion operator is Oðnmst2Þ, given n
primaries with OðmÞ nodes of OðsÞ size each, with t actual
crash faults among them ðt � fÞ. Recovery is much cheaper
in replication and has time complexity OðmstÞ.

4 THEORY OF FUSED DATA STRUCTURES

In this section, we prove properties on the fused backups
such as size optimality, update optimality, and update order
independence, all of which are important considerations

when implementing a system using these backups. These
properties ensure that the overhead in space and time caused
due to these backups is minimal. The results in this section
apply for all types of primaries and are independent of the
fusion operator used. The only assumption we make is that
the codes can be updated locally in constant time (like
updates in RS codes).

4.1 Space Optimality

Consider n primaries, each containing OðmÞ nodes, each of
size OðsÞ. In [7], to correct one crash fault, the backup for
linked lists and list-based queues consumes OðnmsÞ space,
which is as bad as replication. We show that the fused
backups presented in this paper require only OðmsÞ space.
Further, to correct f faults, we show that the fused backups
need only OðmsfÞ space. Replication, on the other hand
requires OðmnsfÞ space, which is OðnÞ times more than
fusion. To correct f crash faults, we use RS codes that require
f fused backups, which is the minimum number of backups
required for f faults. For example, in Fig. 3, the number of
fused nodes in F1 or F2 is always equal to the number of
nodes in the largest primary. The optimal size of the data
stack in our backups combined with RS codes as the fusion
operator, leads to the result that our solution is space optimal
when the data across the primaries is uncorrelated.

Theorem 1 (Space Optimality). The fused backups generated
by our design using RS codes as the fusion operator are of
optimal size.

Proof. We first show that the data stack of each backup
contains only m fused nodes. A hole is defined as a fused
node that does not contain an element from a primary
followed by a fused node that contains an element from
that primary. When there are no holes in the data stack,
each primary element is stacked one on top of the other
and the stack contains only m nodes, i.e., as many nodes
as the largest primary. We maintain the invariant that
our data stack never has holes.

In inserts to Xi, we always update the fused node on
top of the last fused node containing an element from Xi.
Hence, no hole is created. For deletes, when a hole is
created, we shift the final element of the primary,
pointed by tos½i� to plug this hole If the size of each
node is OðsÞ, then the backup space required by our
solution to correct f crash faults is OðmsfÞ.

Now, f crash faults among the primaries will result in
the failure of at least f data nodes, each of size OðsÞ. To
correct f crash faults among them, any solution needs to
maintain at least f backup nodes each of size OðsÞ. Since
the data structures each contain OðmÞ nodes, to correct f
crash faults among them, any solution needs to maintain
f backups containing each containing OðmsÞ space.
Hence, the minimum space required is OðmsfÞ. tu

4.2 Efficient Updates

We define update optimality as follows: the time complex-
ity of updates at any fused backup for all operations is the
same as that of the corresponding update to the primary. In
[7], to update the backup for linked lists, we need to iterate
through all the fused nodes. Since the number of fused
nodes in the backup is OðnmÞ, the time complexity of
updates is OðnmÞ. However, since each primary linked list
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has OðmÞ nodes, update to a primary takes only OðmÞ time.

Hence, this solution is not update optimal. We show that
the fused backups presented in this paper are update

optimal for all types of primaries. So, fusion causes has

same minimal overhead during normal operation as

replication. Our proof is based on the following simple

intuition. The time complexity of update to the primaries
depends on its index structure. For example, in the case of a

linked list the index structure consists of next pointers. So to

update a linked list with OðmÞ nodes it takes OðmÞ time.

Since we replicate the index structure of each primary
completely at the backup, the time complexity of the update

to the fused backup is same as that at the primary.

Theorem 2 (Update Optimality). The time complexity of the

updates to a fused backup is of the same order as that at the

primary.

Proof. In the case of inserts, we obtain the node following
the top most element of Xi in the data stack and update it

in constant time. The update to the index structure

consists of an insert of an element with key k, which is

the identical operation at the primary. Similarly, for

deletes, we first remove the node with key k from the
index structure, an operation that was executed on the

data structure of the same type at the primary. Hence, it

takes as much time as that at the primary. Shifting the

final element of this primary to the fused node that
contains the deleted element is done in constant time.

This argument for inserts and deletes extends to more
complex operations: any operation performed on the
primary will also be performed on the index structure at
the backup. Updating the data nodes of the stack takes
constant time. tu

Since the primaries are independent of each other, in

many cases the updates to the backup can be to different

fused nodes. In the following theorem, we show that
multiple threads belonging to different primaries can

update the fused backups by locking just a constant number

of nodes. Hence, fusion can achieve considerable speed-up.

Theorem 3 (Concurrent Updates). There exists an algorithm

for multiple threads belonging to different primaries to update

a fused backup concurrently by locking just a constant number

of nodes.

Proof. We modify the algorithms in Figs. 4 and 5 to enable

concurrent updates. We assume the presence of fine

grained locks that can lock just the fused nodes and if

required a fused node along with the dataStackTos.
Since updates from the same primary are never applied

concurrently, we don’t need to lock the index structure.
Inserts. If the insert to the fused backup has to create a

new fused node, then the updating thread has to lock
dataStackTos and the fused node pointed by this pointer
using a single lock, insert and update a new fused node,
increment dataStackTos and then release this combined
lock. If the insert from Xi does not have to create a new
node it only has to lock the fused node pointed by tos½i�,
update the node’s code value and release the lock. When
the primaries are of different sizes, then the insert to the

backups never occurs to the same fused node and hence
are fully concurrent.

Deletes. The updating thread has to obtain the fused
node containing the element to be deleted, lock it, update
its value and release it. Then it has to lock the node
pointed by tos½i�, update its value and release the lock.
Similar to the case of inserts, when the delete causes a
node of the stack to be deleted, the thread needs to lock
the dataStackTos as well as the node pointed by this
pointer in one lock, delete the node, update the pointer,
and then release the combined lock. tu

4.3 Order Independence

In the absence of any synchronization at the backups,
updates from different primaries can be received in any
order at the backups. The assumption of FIFO communica-
tion channels only guarantees that the updates from the
same primary will be received by all the backups in the same
order. A direct extension of the solution in [7] for multiple
faults can result in a state from which recovery is
impossible. For example, in Fig. 3, F1 may receive the
insert to X1 followed by the delete to X2 while F2 may
receive the delete update followed by the insert. To achieve
recovery, it is important that the fused nodes at the same
position at different fused backups contain the same
primary elements (in different coded forms). In Fig. 3(i), if
the 0th node of F1 contains a1 þ b1, while the 0th node of F2

contains a2 � b1, then we cannot recover the primary
elements when X1 and X2 fail.

We show that in the current design of fused backups, the
nodes in the same position across the fused backups always
contain the same primary elements independent of the order
in which the updates are received at the backups. Also,
the index structures at the backups are also independent of
the order in which the updates are received. Consider the
updates shown in Fig. 3. The updates to the index lists
commute since they are to different lists. As far as updates to
the stack are concerned, the update from X1 depends only
on the last fused node containing an element from X1 and is
independent of the update from X2 which does not change
the order of elements ofX1 at the fused backup. Similarly the
update from X2 is to the first and third nodes of the stack
immaterial of whether a�1 has been inserted.

Theorem 4 (Order Independence). The state of the fused
backups after a set of updates is independent of the order in
which the updates are received, as long as updates from the
same primary are received in FIFO order.

Proof. Clearly, updates to the index structure commute. As
far as updates to the stack are concerned, the proof
follows from two facts about our design. First, updates
on the backup for a certain primary do not affect the
order of elements of the other primaries at the backup.
Second, the state of the backup after an update from a
primary depends only on the order of elements of that
primary. The same argument extends to other complex
operations that only affect the index structure. tu

4.4 Fault Tolerance with Limited Backup Servers

So far we have implicitly assumed that the primary and
backup structures reside on independent servers for the
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fusion-based solution. In many practical scenarios, the
number of servers available maybe less than the number
of fused backups. In these cases, some of the backups have
to be distributed among the servers hosting the primaries.
Consider a set of n data structures, each residing on a
distinct server. We need to correct f crash faults among the
servers given only a additional servers to host the backup
structures. We present a solution to this problem that
requires dn=ðnþ a� fÞe � f backups and show that this is
the necessary and sufficient number of backups for this
problem. Further, we present an algorithm for generating
the optimal number of backups.

To simplify our discussion, we start with the assumption
that no additional servers are available for hosting the
backups. As some of the servers host more than one backup
structure, f faults among the servers, results in more than f
faults among the data structures. Hence, a direct fusion-
based solution cannot be applied to this problem. Given a
set of five primaries, fX1 . . .X5g, each residing on a distinct
server labelled, fH1 . . .H5g, consider the problem of
correcting three crash faults among the servers (n ¼ 5,
f ¼ 3). In a direct fusion-based solution, we will just
generate three backups F1, F2, and F3, and distribute them
among any three servers, say, H1, H2, and H3, respectively.
Crash faults among these three servers will result in the
crash of six data structures, whereas these set of backups
can only correct three crash faults. We solve this problem by
partitioning the set of primaries and generating backups for
each individual block.

In this example, we can partition the primaries into three
blocks ½X1; X2�, ½X3; X4�, and ½X5� and generate three fused
backups for each block of primaries. Henceforth, we denote
the backup obtained by fusing the primaries Xi1 ; Xi2 ; . . . , by
Fjði1; i2; . . .Þ. For example, the backups for ½X1; X2� are
denoted as F1ð1; 2Þ � � �F3ð1; 2Þ. Consider the following
distribution of backups among hosts:

H1 ¼ ½X1; F1ð3; 4Þ; F1ð5Þ�; H2 ¼ ½X2; F2ð3; 4Þ; F2ð5Þ�;
H3 ¼ ½X3; F1ð1; 2Þ; F3ð5Þ�; H4 ¼ ½X4; F2ð1; 2Þ�;
H5 ¼ ½X5; F3ð1; 2Þ; F3ð3; 4Þ�:

Note that, the backups for any block of primaries, do not
reside on any of the servers hosting the primaries in that
block. Three server faults will result in at most three faults
among the primaries belonging to any single block and its
backups. Since the fused backups of any block correct three
faults among the data structures in a block, this partitioning
scheme can correct three server faults.

For example, assume crash faults in the servers H2, H4,
and H5. Consider the recovery of X2 on the crashed server,
H2. Since, F1ð1; 2Þ; F2ð1; 2Þ; F3ð1; 2Þ are the three fused
backups for ½X1; X2�, given the state of any two data
structures among fX1; X2; F1ð1; 2Þ; F2ð1; 2Þ; F3ð1; 2Þg, we can
recover the state of the remaining three. In our example, we
can obtain the state of X1 on server H1, and the state of
F1ð1; 2Þ on server H3 (servers that have not crashed). Given
the state of these two data structures we can recover the
state of X2, F2ð1; 2Þ, and F3ð1; 2Þ. Here, each block of
primaries requires at least three distinct servers (other than
those hosting them) to host their backups. Hence, for n ¼ 5,
the size of any block in this partition cannot exceed

n� f ¼ 2. Based on this idea, we present an algorithm to
correct f faults among the servers.

Partitioning algorithm. Partition the set of primaries X as
evenly possible into dn=ðn� fÞe blocks, generate the f fused
backups for each such block and place them on distinct
servers not hosting the primaries in that block.

The number of blocks generated by the partitioning
algorithm is dn=ðn� fÞe and hence, the number of backup
structures required is dn=ðn� fÞe � f . Replication, on the
other hand requires n � f backup structures which is always
greater than or equal to dn=ðn� fÞe � f . We show that
dn=ðn� fÞe � f is a tight bound for the number of backup
structures required to correct f faults among the servers.
For the example where n ¼ 5, f ¼ 3, the partitioning
algorithm requires nine backups. Consider a solution with
eight backups. In any distribution of the backups among the
servers, the three servers with the maximum number of
data structures will host nine data structures in total. For
example, if the backups are distributed as evenly as
possible, the three servers hosting the maximum number
of backups will each host two backups and a primary.
Failure of these servers will result in the failure of nine data
structures. Using just eight backups, we cannot correct nine
faults among the data structures. We generalize this result
in the following theorem.

Theorem 5. Given a set of n data structures, each residing on a
distinct server, to correct f crash faults among the servers, it is
necessary and sufficient to add dn=ðnþ a� fÞe � f backup
structures, when there are only a additional servers available
to host the backup structures.

Proof. We first prove sufficiency, followed by the proof
showing that it is necessary to maintain that many
backups.

Sufficiency. We modify the partitioning algorithm for a
additional servers simply by partitioning the primaries
into dn=ðnþ a� fÞe blocks rather than dn=ðn� fÞe
blocks. Since the maximum number of primaries in any
block of the partitioning algorithm is nþ a� f , there are
at least f distinct servers (not hosting the primaries in the
block) available to host the f fused backups of any block
of primaries. So, the fused backups can be distributed
among the host servers such that f server faults only lead
to f faults among the backups and primaries correspond-
ing to each block. Hence, the fused backups generated by
the partitioning algorithm can correct f server faults.

Necessity. Suppose there is a scheme with t backups
such that t < dn=ðnþ a� fÞe � f . In any distribution of
the backups among the servers, choose f servers with the
largest number of backups. We claim that the total
number of backups in these f servers is strictly greater
than t� f . Failure of these servers, will result in more
than t� f þ f faults (adding faults of f primary
structures). This would be impossible to correct with t
backups. We know that,

t < dn=ðnþ a� fÞe � f
) t < d1þ f=ðnþ a� fÞe � f
) ðt� fÞ < df=ðnþ a� fÞe � f
) ðt� fÞ=f < df=ðnþ a� fÞe:

If the f servers with the largest number of backups
have less than or equal to t� f backups in all, then the
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server with the smallest number of backups among them
will have less than the average number of backups which
is ðt� fÞ=f . Since the remaining nþ a� f servers have
more than or equal to f backups, the server with the
largest number of backups among them will have as
many or greater than the average number of backups,
df=ðnþ a� fÞe. Since, ðt� fÞ=f < df=ðnþ a� fÞe, we
get a contradiction that the smallest among the f servers
hosting the largest number of backups, hosts less number
of backups than the largest among the remaining n� f
servers. tu

4.4.1 Minimality

In this section, we define a partial order among equal sized

sets of backups and prove that the partitioning algorithm

generates a minimal set of backups.
Given a set of four data structures, fX1 . . .X4g, each

residing on a distinct server, consider the problem of

correcting two faults among the servers, with no additional

backup servers (n ¼ 4, f ¼ 2, a ¼ 0). Since, dn=ðnþ a� fÞe ¼
2, the partitioning algorithm will partition the set of

primaries into two blocks, say ½X1; X2� and ½X3; X4� and

generate four fused backups, F1ð1; 2Þ, F2ð1; 2Þ and F1ð3; 4Þ,
F2ð3; 4Þ. An alternate solution to the problem is to fuse the

entire set of primaries to generate four fused backups,

F1ð1; 2; 3; 4Þ . . .F4ð1; 2; 3; 4Þ. Here, F1ð1; 2Þ is obtained by

fusing the primaries X1 and X2, whereas F1ð1; 2; 3; 4Þ is

obtained by fusing all four primaries. In the latter case,

maintenance is more expensive, since the backups need to

receive and act on updates corresponding to all the

primaries, whereas in the former, each backup receives

inputs corresponding to just two primaries. Based on this

idea, we define an order among backups. Given a set of n

data structures, X, consider backups F and F 0, obtained by

fusing together a set of primaries, M � X and N � X,

respectively. F is less than F 0 (F < F 0) if M � N . In the

example discussed, F1ð1; 2Þ < F1ð1; 2; 3; 4Þ, as fX1; X2g 6�
fX1; X2; X3; X4g. We extend this to define an order among

sets of backups that correct f faults among the servers.

Definition 1 (Order among Sets of Backups). Given a set of

n data structures, each residing on a distinct server, consider

two sets of t backups, Y and Y 0 that correct f faults among the

servers. Y is less than Y 0, denoted Y < Y 0, if the backups in Y

can be ordered as fF1; . . . ; Ftg and the backups is Y 0 can be

ordered as fF 01; . . . ; F 0tg such that ð81 � i � t : Fi � F 0i Þ ^
ð9j : Fj < F 0jÞ.

A set of backups Y is minimal if there exists no set of

backups Y 0 such that Y 0 < Y .
In the example for n ¼ 4, f ¼ 2, the set of backups,

Y ¼ fF1ð1; 2Þ; F2ð1; 2Þ; F1ð3; 4Þ; F2ð3; 4Þg, generated by the

partitioning algorithm is clearly less than the set of backups,

Y 0 ¼ fF1ð1; 2; 3; 4Þ � � �F4ð1; 2; 3; 4Þg. We show that the parti-

tioning algorithm generates a minimal set of backups.

Theorem 6. Given a set of n data structures, each residing on a

distinct server, to correct f faults among the servers, the

partitioning algorithm generates a minimal set of backups.

Proof. When a backup F is generated by fusing together a
set of primaries, we say that each primary in the set
appears in the backup. Given a set of backups that can
tolerate f faults among the servers, each primary has to
appear at least f times across all the backups. The
partitioning algorithm generates a set of backups Yp, in
which each primary appears exactly f times. Any other
solution in which the primaries appear exactly f times
will be incomparable to Yp. tu

5 DETECTION AND CORRECTION OF BYZANTINE

FAULTS

So far, in this paper, we have only assumed crash faults. We
now discuss Byzantine faults where any data structure may
change its state arbitrarily, send wrong conflicting messages
to the client/other data structures and in general attempt to
foil any protocol. However, we assume that the data
structures cannot fake their identity. To correct f Byzantine
faults among n primaries pure replication requires 2f
additional copies of each primary, which ensures that a
nonfaulty majority of f þ 1 copies are always available.
Hence, the correct state of the data structure can easily be
ascertained. This approach requires 2nf backup data
structures in total. Recovery in replication reduces to
finding the state with tþ 1 votes among the 2f þ 1 copies
of each primary, where t is the actual number of faults.
Since this majority can be found by inspecting at most 2tþ 1
copies among the primaries, recovery has time complexity
OðmstÞ, where m is the number of nodes in each data
structure and s is the size of each data structure.

In this section, we present a hybrid solution that
combines fusion with replication to correct f Byzantine
faults using just nf þ f backup structures, while ensuring
minimal overhead during normal operation. Recovery is
costlier in fusion, with time complexity Oðmsft2 þ nst2Þ.
The algorithms and proofs in this section are an extension of
the results in [6], which focuses on fault tolerance in infinite
state machines.

In our solution, we maintain f additional copies of each
primary that enable efficient detection of Byzantine faults.
This maintains the invariant that there is at least one correct
copy in spite of f Byzantine faults. We also maintain f fused
backups for the entire set of primaries, which is used to
identify and correct the Byzantine primaries, after the
detection of the faults. Thus, we have a total of nf þ f
backup data structures. The only requirement on the fused
backups {Fj; j ¼ 1 � � � f} is that if Fj is not faulty, then given
the state of any n� 1 data structures among fX1 � � �Xng, we
can recover the state of the missing one. Thus, a simple XOR
or sum based fused backup is sufficient. Even though we are
correcting f faults, the requirement on the fused copy is only
for a single fault (because we are also using replication).

The primaryXi and its f copies are called unfused copies of
Xi. If any of the f þ 1 unfused copies differ, we call the
primary, mismatched. Let the state of one of the unfused copies
(which includes the value of the data elements, auxiliary
structure and index information) be v. The number of
unfused copies of Xi with state v is called the multiplicity of
that copy.
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Theorem 7. Let there be n primaries, each with OðmÞ nodes of
OðsÞ size each. There exists an algorithm with additional nf þ
f data structures that can correct f Byzantine faults and has
the same overhead as the replication-based approach during
normal operation and Oðmfst2 þ nst2Þ overhead during
recovery, where t is the actual number of faults that occurred
in the system.

Proof. We present an algorithm in Fig. 6 that corrects f
Byzantine faults. We keep f copies for each primary
and f fused data structures overall. This results in
additional nf þ f data structures in the system. If there
are no faults among the unfused copies, all f þ 1 copies
will result in the same output and therefore the system
will incur the same overhead as the replication-based
approach. If the client or one of the fused backups
detects a mismatch among the values received from the
unfused copies, then the recovery algorithm is invoked.
The recovery algorithm first reduces the number of
mismatched primaries to one and then uses the locate
algorithm to identify the correct primary. We describe
the algorithm in greater detail and prove its correctness
in the following paragraphs.

The recovery algorithm first checks the number of
primaries that are mismatched. First consider the case
when there is a single mismatched primary, say Xc. Now
given the state of all other primaries, we can successively
retrieve the state of Xc from fused data structures Fj; j ¼
1 � � � f till we find a copy of Xc that has f þ 1 multiplicity.
Now consider the case when there is a mismatch for at
least two primaries, say Xc and Xd. Let �ðcÞ and �ðdÞ be
the largest multiplicity among unfused copies of Xc and
Xd, respectively. Without loss of generality, assume that
�ðcÞ � �ðdÞ. We show that the copy with multiplicity �ðcÞ
is correct.

If this copy is not correct, then there are at least �ðcÞ
liars among unfused copies of Xc. We now claim that
there are at least f þ 1� �ðdÞ liars among unfused copies
of Xd which gives us the total number of liars as �ðcÞ þ
f þ 1� �ðdÞ � f þ 1 contradicting the assumption on the

maximum number of liars. Consider the copy among
unfused copies of Xd with multiplicity �ðdÞ. If this copy
is correct we have f þ 1� �ðdÞ liars. If this copy is
incorrect, we know that the correct value has multiplicity
less than or equal to �ðdÞ and therefore there are at least
f þ 1� �ðdÞ liars among unfused copies of Xd. Hence,
the primary with multiplicity �ðcÞ is correct. By
identifying the correct primary, we have reduced the
number of mismatched primaries by 1. By repeating this
argument, we get to the case when there is exactly one
mismatched primary, say Xc.

We use the locate algorithm in Fig. 6 to locate the
correct copy of Xc. In the locate algorithm, we first
identify errors in the auxiliary and index structures.
Since this information is replicated at all the f fused
backups, we can obtain 2f þ 1 versions of this informa-
tion among which at least f þ 1 versions are identical (at
most f liars). The remaining f versions are certainly
faulty and unfused copies with this information can be
discarded. This operation can be performed in OðmfÞ
time, as the auxiliary/index structures contain OðmÞ
pointers. If there are no errors among the auxiliary/
index structures, we identify errors in the data elements.

The set Z maintains the invariant that it includes all
the correct unfused copies (and may include incorrect
copies as well). The invariant is initially true because all
indices from 1; . . . ; f þ 1 are in Z. Since the set has f þ 1
indices and there are at most f faults, we know that the
set Z always contains at least one correct copy.

The outer while loop iterates until all copies are
identical. If all copies in Z are identical, from the
invariant it follows that all of them must be correct and
we can simply return any of the copies in Z. Otherwise,
there exist at least two different copies in Z, say p and q.
Let w be the first key in which states of copies p and q
differ. Either copy p or the copy q (or both) are liars. We
now use the fused data structures to recreate copies of
state½w�, the value associated with key w. Since we have
the correct copies of all other primaries Xi; i 6¼ c, we can
use them with the fused backups Fj; j ¼ 1 � � � f . Note that
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the fused backups may themselves be wrong so it is
necessary to get enough multiplicity for any value to
determine if some copy is faulty. Suppose that for some
v, we get multiplicity of f þ 1. This implies that any copy
with state½w� 6¼ v must be faulty and therefore can safely
be deleted from Z. We are guaranteed to get a value with
multiplicity f þ 1 out of total 2f þ 1 values, viz. f þ 1
values from unfused copies of Xc and f values decoded
using the f fused backups and remaining correct
primaries. Further, since copies p and q differ in
state½w�, we are guaranteed to delete at least one of them
in each iteration of the inner while loop. Eventually, the
set Z would either be singleton or will contain only
identical copies, which implies that we have located a
correct copy.

The time complexity of reducing the mismatched
primaries to one is Oðmsft2Þ.We now analyze the time
complexity of the procedure locate. Assume that there are
t � f actual faults that occurred. We delete at least one
unfused copy ofXc in each iteration of the outer while loop
and there are at most t faulty data structures giving us the
bound of t for the number of iterations of the while loop.
In each iteration, creating state½w� requires at most OðsÞ
state to be decoded at each fused data structure at the cost
of OðnsÞ. The maximum number of fused data structures
that would be required is t. Thus,OðntsÞwork is required
for a single iteration before a copy is deleted from Z. To
determine w in incremental fashion requires OðmfsÞ
work cumulative over all iterations. Combining these
costs we get the complexity of the algorithm to be
Oðmfst2 þ nst2Þ. tu

Theorem 7 combines advantages of replication and

coding theory. We have enough replication to guarantee

that there is at least one correct copy at all times and

therefore we do not need to decode the entire state data

structure but only locate the correct copy. We have also taken

advantage of coding theory to reduce the number of copies

from 2f to f . It can be seen that our algorithm is optimal in

the number of unfused and fused backups it maintains to

guarantee that there is at least one correct unfused copy and

that faults of any f data structures can be tolerated. The first

requirement dictates that there be at least f þ 1 unfused

copies and the recovery from Byzantine fault requires that

there be at least 2f þ 1 fused or unfused copies in all.

6 PRACTICAL EXAMPLE: AMAZON’S DYNAMO

In this section, we present a practical application of our

technique based on a real world implementation of a

distributed system. Amazon’s Dynamo [4] is a distributed

data store that needs to provide both durability and very

low response times (availability) for writes to the end user.

They achieve this using a replication-based solution which

is simple to maintain but expensive in terms of space. We

propose an alternate design using a combination of both

fusion and replication, which consumes far less space,

while guaranteeing nearly the same levels of durability

and availability.

6.1 Existing Dynamo Design

We present a simplified version of Dynamo with a focus on
the replication strategy. Dynamo consists of clusters of
primary hosts each containing a data store like a hash table
that stores key-value pairs. The key space is partitioned across
these hosts to ensure sufficient load-balancing. For both fault
tolerance and availability, f additional copies of each primary
hash table are maintained. These f þ 1 identical copies can
correct f crash faults among the primaries. The system also
defines two parameters r and w which denote the minimum
number of copies that must participate in each read request
and write request respectively. These values are each chosen
to be less than f . In Fig. 7(i), we illustrate a simple set up of
Dynamo for n ¼ 4 primaries, with ðf; w; rÞ ¼ ð3; 2; 2Þ.

To read and write from the data store, the client can send
its request to any one of the f þ 1 copies responsible for
the key of the request, and designate it as the coordinator. The
coordinator reads/writes the value corresponding to the
key locally and sends the request to the remaining f copies.
On receiving r� 1 or w� 1 responses from the backup
copies for read and write requests, respectively, the
coordinator responds to the client with the data value (for
reads) or just an acknowledgment (for writes). Since w < f ,
clearly some of the copies may not be up to date when the
coordinator responds to the client. This necessitates some
form of data versioning, and the coordinator or the client
has to reconcile the different data versions on every read.
This is considered an acceptable cost since Dynamo is
mainly concerned with optimizing writes to the store. In this
setup, when one or more data structures crash, the
remaining copies responsible for the same key space can
take over all requests addressed to the failed data structures.
Once the crashed data structure comes back, the copy that
was acting as proxy just transfers back the keys that were
meant for the node. In Fig. 7(i), since there can be at most
three crash faults in the system, there is at least one node
copy for each primary remaining for recovery.

6.2 Hybrid Dynamo Design

We propose a hybrid design for Dynamo that uses a
combination of fusion and replication. We focus on the case
of ðf; w; rÞ ¼ ð3; 2; 2Þ. Instead of maintaining three addi-
tional copies for each primary (f ¼ 3), we maintain just a
single additional copy for each primary and two fused
backups for the entire set of primaries as shown in Fig. 7(ii).
The fused backups achieve the savings in space while the
additional copies allows the necessary availability for reads.
The fused backups along with the additional copies can
correct three crash faults among the primaries. The basic
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protocol for reads and writes remains the same except for
the fact that the fused backups cannot directly respond to
the client requests since they require the old value
associated with the key (Section 3). On receiving a write
request, the coordinator can send the request to these fused
backups which can respond to the request after updating
the table. For the case of w ¼ 2, as long as the coordinator,
say Xi obtains a response from one among the three
backups (one copy and two fused backups) the write can
succeed. This is similar to the existing design and hence
performance for writes is not affected significantly. On the
other hand, performance for reads does drop since the
fused backups that contain data in the coded form cannot
return the data value corresponding to a key in an efficient
manner. Hence, the two additional copies need to answer
all requests to maintain availability. Since Dynamo is
optimized mainly for writes, this may not be a cause for
concern. To alleviate the load on the fused backups, we can
partition the set of primaries into smaller blocks, trading
some of the space efficiency for availability. For the set up
shown in Fig. 7, we can maintain four fused backups where
F1; F2 are the fused backups for X1 and X2, while F3 and F4

are the fused backups of X3 and X4.
Similar to the existing design of Dynamo, when data

structures crash, if there are surviving copies responsible for
the same keys, then they can take over operation. However,
since we maintain only one additional copy per primary, it is
possible that none of the copies remain. In this case, the fused
backup can mutate into one or more of the failed primaries. It
can receive requests corresponding to the failed primaries,
update its local hash table and maintain data in its normal
form (without fusing them). Concurrently, to recover the
failed primaries, it can obtain the data values from the
remaining copies and decode the values. Hence, even though
transiently the fault tolerance of the system is reduced, there
is not much reduction in operational performance. Dynamo
has been designed to scale to 100 hosts each containing a
primary. So in a typical cluster with n ¼ 100, f ¼ 3 the
original approach requires, n � f ¼ 300 backup data struc-
tures. Consider a hybrid solution that maintains one
additional copy for each primary and maintains two fused
backups for every 10 primaries. This approach requires only
100þ 20 ¼ 120 backup data structures. This results in
savings in space, as well as power and other resources
required by the processes running these data structures.
Hence, the hybrid solution can be very beneficial for such a
real-world system.

7 IMPLEMENTATION AND RESULTS

In this section, we describe our fusion-based data structure
library [1] that includes all data structures provided by the
Java Collection Framework. Further we have implemented
our fused backups using Cauchy RS codes (referred to as
Cauchy-Fusion) and Vandermonde RS codes (Van-Fusion).
We refer to either of these implementations as the current
version of fusion. We have compared its performance
against replication and the older version of fusion (Old-
Fusion) [7]. Old-Fusion has a different, simpler design of the
fused backups, similar to the one presented in the design
motivation of Section 3. We extend it for f-fault tolerance

using Vandermonde RS codes. The current versions of
fusion, using either Cauchy or Vandermonde RS, outper-
form the older version on all three counts: backups space,
update time at the backups and time taken for recovery. In
terms of comparison with replication, we achieve almost n
times savings in space as confirmed by the theoretical
results, while not causing too much update overhead.
Recovery is much cheaper in replication.

Fault-tolerant data structure library. We implemented
fused backups and primary wrappers for the data struc-
tures in the Java 6 Collection framework that are broadly
divided into list-based, map-based, set-based, and queue-
based data structures. We evaluated the performance of a
representative data structure in two of these categories:
linked lists for list-based and tree maps for map-based data
structures. Both Old-Fusion and Van-Fusion use Vander-
monde RS codes with field size 216, while Cauchy-Fusion
uses Cauchy RS codes, with field size 25. The RS codes we
have used are based on the C++ library provided by Plank
et al. [15], [16]. Currently, we just support the Integer data
type for the data elements at the primaries.

Evaluation. We implemented a distributed system of hosts,
each running either a primary or a backup data structure and
compared the performance of the four solutions: Replication,
Old-Fusion, Van-Fusion, and Cauchy-Fusion. The algo-
rithms were implemented in Java 6 with TCP sockets for
communication and the experiments were executed on a
single Intel quad-core PC with 2.66 GHz clock frequency and
12 GB RAM. In the future, we wish to evaluate fusion over
physically disparate machines. The three parameters that
were varied across the experiments were the number of
primaries n, number of faults f and the total number of
operations performed per primary, ops. The operations were
biased toward inserts (80 percent) and the tests were
averaged over five runs. In our experiments, we only assume
crash faults. We describe the results for the three main tests
that we performed for linked lists: backup space, update time
at the backup and recovery time (Fig. 8). The results for tree
maps are of a similar nature (Fig. 10 in the Appendix, which
is available in the online supplemental material,).

7.1 Backup Nodes

To measure the space required by the backups, we assume
that the size of data far exceeds the overhead of the index
structure and hence, we just plot the total number of backup
nodes required by each solution. We fix f ¼ 3, ops ¼ 500
and vary n from 1 to 10. Cauchy-Fusion and Van-Fusion,
differ only in the type of RS code used, but use the same
design for the backups. So, they both require the same
number of backup nodes. Both Cauchy-Fusion and Van-
Fusion perform much better than both replication (approxi-
mately n times) and Old-Fusion (approximately n=2 times)
because the number of nodes per backup never exceeds the
maximum among the primaries.

7.2 Recovery Time

We measure recovery time as the time taken to recover the
state of the crashed data structures after the client obtains the
state of the requisite data structures. The same experiment as
that used to measure backup space was used to compare the
four solutions. Cauchy-Fusion and Van-Fusion perform
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much better than Old-Fusion (approximately n=2 times)
because recovery in fusion involves iterating through all the
nodes of each fused backup. The current design contains
fewer nodes and hence performs better. The time taken for
recovery by replication is negligible as compared to fusion-
based solutions (the curve is almost merged with the x-axis in
the graphs). This is to be expected since recovery in
replication requires just copying the failed data structures
after obtaining them. However, note that, even forn ¼ 10, the
time taken for recovery by both Cauchy and Van-Fusion is
under 40 milliseconds. This can be a small cost to pay for the
considerable savings that we achieve in space.

Further analysis of the recovery times in both Cauchy-
Fusion and Van-Fusion shows that almost 40 percent of the
cost of recovery is spent in decoding the coded data elements.
This implies two things. First, using a different code such as
LDPC codes, that offers faster decoding in exchange for less
space efficiency, fusion can achieve faster recovery times.
Second, more than 50 percent of recovery time is spent on just
iterating through the backup nodes, to retrieve the data for
decoding. Hence, optimizing the recovery algorithm, can
reduce the recovery time. The other observation is that, even
though Cauchy RS codes have much faster decode times than
Vandermonde RS codes, the recovery time for Cauchy-
Fusion is only marginally better than Van-Fusion. We believe
this is mainly due to the small data size (4-byte integers). For
larger data values, Cauchy-Fusion might perform much
better than Van-Fusion. These are future areas of research that
we wish to explore.

7.3 Update Time

Finally, to measure the update time at the backups, we
fixed n ¼ 3, f ¼ 1 and varied ops from 500 to 5,000. Both
Cauchy-Fusion and Van-Fusion has more update overhead
as compared to replication (approximately 1.5 times
slower) while they perform better than the older version
(approximately 2.5 times faster). Since the current design
of fused backups has fewer backup nodes, it takes lesser
time to iterate through the nodes for an update. The
update time at a backup can be divided into two parts: the
time taken to locate the node to update plus the time taken
to update the node’s code value. The code update time
was insignificantly low and almost all the update time was
spent in locating the node. Hence, optimizing the update
algorithm can reduce the total update time considerably.
This also explains why Cauchy-Fusion does not achieve
any improvement over Van-Fusion and at times does
slightly worse, because the overhead of dealing with
blocks of data in Cauchy-Fusion exceeds the savings

achieved by faster updates. As mentioned before, we
believe that with the larger data sizes, Cauchy-Fusion may
perform as expected.

8 COMPARATIVE STUDY: REPLICATION VERSUS

FUSION

In this section, we summarize the main differences between
replication and fusion (Table 1). Throughout this section,
we assume n primary data structures, containing at most
OðmÞ nodes of size OðsÞ each. Each primary can be updated
in OðpÞ time. We assume that the system can correct either f
crash faults or f Byzantine faults, and t is the actual number
of faults that occur. Note that, the comparison in this section
is independent of the type of data structure used. We
assume that the fusion operator is RS coding, which only
requires f parity blocks to correct f erasures among a given
set of data blocks.

8.1 Number of Backups

To correct f crash faults among n primaries, fusion requires
f backup data structures as compared to the nf backup data
structures required by replication. For Byzantine faults,
fusion requires nf þ f backups as compared to the 2nf
backups required by replication.

8.2 Backup Space

For crash faults, the total space occupied by the fused
backups is msf (f backups of size ms each) as compared to
nmsf for replication (nf backups of size ms each). For
Byzantine faults, since we maintain f copies of each primary
along with f fused backups, the space complexity for fusion
is nfmsþmsf as compared to 2nmsf for replication.

8.3 Maximum Load on Any Backup

We define load as the number of primaries each backup has
to service. Since each fused backup has to receive requests
from all n primaries the maximum load on the fused backup
is n times more than the load for replication. Note that,
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Fig. 8. Linked lists: experimental evaluation comparing replication, old-fusion, van-fusion, and cauchy-fusion.
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Replication versus Fusion

 
 

 

 
 

 

 
 

 



higher the value of n more the savings in space/number of
backups (OðnÞ times), but more the maximum load on any
backup (again, OðnÞ times).

8.4 Normal (Fault-Free) Operation Time

The fused backups in our system can be updated with the
same time complexity as that for updating the correspond-
ing primary, i.e., OðpÞ. We have shown that the updates at
the backup can be received in any order and hence, there is
no need for synchrony. Also, if Byzantine faults/liars need
to be detected with every update in a system, then fusion
causes no overhead in time.

8.5 Recovery Time

This parameter refers to the time complexity of recovery at
the client, after it has acquired the state of the relevant data
structures. In the case of fusion, to recover from t ðt � fÞ
crash faults, we need to decode the backups with total time
complexity Oðmst2nÞ. For replication, this is only OðmstÞ.
For Byzantine faults, fusion takes Oðmfst2 þ nst2Þ to
correct t Byzantine faults. In the case of replication this
is only OðmsfÞ. Thus, replication is much more efficient
than fusion in terms of the time taken for recovery.
However, since we assume faults to be rare, the cost of
recovery may be acceptable.

8.6 Normal (Fault-Free) Operation Messages

This parameter refers to the number of messages that the
primary needs to send to the backups for any update. We
assume that the size of the key for insert or delete is
insignificantly small as compared to the data values. In
fusion, for crash faults, every update sent to the primary
needs to be sent to f backups. The size of each message is 2s
since we need to send the new value and old value to the
backups. For deletes, the size of each message is 2s since we
need to send the old value and the value of the top-of-stack
element (as shown in Fig. 5). Hence, for crash faults, in fusion,
for any update, f messages of size 2s need to be exchanged.
For replication, in inserts, only the new value needs to be sent
to the f copies of the primary and for deletes, only the key to
be deleted needs to be sent. Hence, for crash faults in
replication, for any update f messages of size at most s need
to be exchanged.

For Byzantine faults, for fusion, since we maintain f
copies of each primary and f fused backups, it needs f
messages of size s and f messages of size 2s, respectively. In
replication, 2f messages of size s need to be sent to the 2f
copies of the primary for inserts and for deletes, only 2f
keys need to be sent.

8.7 Recovery Messages

This refers to the number of messages that need to be
exchanged once a fault has been detected. When t crash faults
are detected, in fusion, the client needs to acquire the state of
all the remaining data structures. This requires nþ f � t
messages of size OðmsÞ each. In replication the client only
needs to acquire the state of the failed copies requiring only t
messages of size OðmsÞ each. For Byzantine faults, in fusion,
the state of all nþ nf þ f data structures (primaries and
backups) needs to be acquired. This requires nf þ f
messages of size OðmsÞ each. In replication, only the state

of any 2tþ 1 copies of the faulty primary are needed,
requiring just 2tþ 1 messages of size OðmsÞ each.

9 CONCLUSION

Given n primaries, we present a fusion-based technique for
fault tolerance that guarantees OðnÞ savings in space as
compared to replication with almost no overhead during
normal operation. We provide a generic design of fused
backups and their implementation for all the data structures
in the Java Collection framework that includes vectors,
stacks, maps, trees, and most other commonly used data
structures. We compare the main features of our work with
replication, both theoretically and experimentally. Our
evaluation confirms that fusion is extremely space efficient
while replication is efficient in terms of recovery, load on the
backups and the size of the messages that need to be sent to
the backups. We wish to explore alternate techniques for
fusion with a focus on erasure codes such as LDPC codes [5]
and LT codes [10] that offer different tradeoffs between the
various system parameters.

Many real world systems such Amazon’s Dynamo or
Google’s MapReduce framework use replication extensively
for fault tolerance. Using concepts presented in this paper,
we can consider an alternate design using a combination of
replication and fusion-based techniques. We illustrate this in
Section 6 by presenting a simple design alternative for
Amazon’s data store, Dynamo. In a typical Dynamo cluster
of 100 hosts our solution requires only 120 backup structures
as compared to the existing set up of 300 backup structures,
without compromising on other important QoS parameters
such as response times. Thus fusion achieves significant
savings in space, power, and other resources.
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