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Abstract. Wireless sensor networks are often used to provide critical
measurements in unattended harsh environments. They should be de-
signed to adequately monitor their surroundings while being resilient
to environmental changes. Appropriate sensor node placement greatly
influences their capability to perform this task. Cellular automata have
properties very similar to those of wireless sensor networks. In this paper,
we present a sensor node placement algorithm that runs on a cellular au-
tomaton and achieves adequate coverage, connectivity and sparsity while
being resilient to changing environmental conditions.

1 Background and Motivation

1.1 Wireless Sensor Networks

Wireless sensor networks are systems consisting of a large number of miniaturized
sensor nodes deployed to operate autonomously in unattended (and frequently
harsh) environments. They are often heterogenous, measuring different proper-
ties of their surroundings and sending the collected data to an access point either
directly or through multi-hop paths. Wireless sensor networks have many ap-
plications including forest monitoring, disaster management, space exploration,
factory automation, border protection and battlefield surveillance [1].

1.2 Cellular Automata

Generally speaking, a cellular automaton is a theoretical system consisting of
a large number of simple processing elements (cells) locally interacting among
themselves. The emphasis here is on the simplicity of individual elements, their
connectivity and the absence of global control.

Cellular automata are commonly seen as consisting of a “cellular space” and
a set of “transition rules” [2]. The cellular space is a set of cells, often shown
in a given geometric configuration (usually a grid). Each one of these cells is
a finite state machine in one of a constant number of possible states, evolving
synchronously at discrete time units in parallel with all of the other cells in
the system. The state of each cell at the next time unit is determined by a
set of transition rules, which are functions of the current states of cells in its
neighbourhood (a finite set of cells connected to it, usually in its geometric
vicinity). This neighbourhood often also contains the cell itself.
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In this paper, we use a finite grid configuration where the number of cells is
finite but still large enough to clearly display complex behaviour. In such con-
figurations, the Moore radius is often used as a short-hand method of specifying
the neighbourhood. A Moore neighbourhood of radius r consists of the cell it-
self and every cell that is r or less cells apart from it in any direction: vertical,
horizontal and diagonal (Figure 1).

Fig. 1. Moore neighbourhood of radius 2

1.3 Node Placement in Wireless Sensor Networks

Node placement is an important wireless sensor network research area whose
aim is to optimize one or more design variables such as coverage, connectivity
and energy consumption through the appropriate positioning of sensor nodes.
While the communication methods and protocols of the sensors can have an
important impact on these variables, they are only considered after the node
positions have been determined. We have opted to deal exclusively with the node
placement problem in this paper, keeping in mind that any other constraints or
protocols can be added to the resulting system later on. Therefore, we only
consider wireless sensor networks where the owner has some control over the
sensor positions, unlike, for example, the case of sensors strapped around animals
or placed unanchored in the ocean. Specifically, we focus on sensors that have
some ability to reposition themselves (e.g. sensors placed on robots). There are
multiple problems related to the positioning of sensor nodes in wireless sensor
networks:

– Coverage is a Quality of Service (QoS) problem whose goal is to minimize
the part of the desired monitored area that is not covered by any sensor
node. In other words, the coverage problem is optimally solved when every
part of the area that needs to be monitored is covered by at least one sensor
node.

– Connectivity is another QoS problem aiming to make sure that every sensor
node is connected either directly or indirectly (through other sensor nodes)
to an access point, since the information collected by the sensors is useless
if it cannot be transmitted back

– Sensors are generally battery-operated; energy consumption is therefore a
key performance metric because it determines the lifetime (and replacement
cycle) of the sensors. Energy consumption should be minimized in order to
maximize the lifetime of the system given a number of nodes.
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Several positioning algorithms used to achieve desired node placement in wireless
sensor networks are surveyed in [1,3]. They are divided into two categories: deter-
ministic and random. Although deterministic methods provide better theoretical
results, random positioning algorithms are used more often because the inacces-
sibility of the monitored location and the generally large number of sensors make
them much more practical. Most of these algorithms aim to optimize only one
of the three key performance metrics (coverage, connectivity and energy con-
sumption), although some of them secondarily consider one other performance
metric.

Younis and Akkaya also describe a few repositioning algorithms that deter-
mine where to move one or more sensors after the initial deployment in order to
achieve better coverage, connectivity or energy consumption given some changes
in the environmental conditions [1]. However, all of the described algorithms,
whether for positioning or repositioning, are global (the decisions are made cen-
trally after information from every sensor is received) and rigid (they assume
strict definitions of performance and provide one optimal position given the cur-
rent conditions without regard to the fragility of these conditions).

Unlike most of the algorithms described in [1,3], our aim is to optimize all
three key performance metrics: coverage, connectivity and energy consumption.
Energy consumption can be greatly reduced by having simple components with
exclusively local decisions. It can also be seen as inversely proportional to node
sparsity (if the overall energy of the system is considered) [3]; this means that
our goal should be to achieve the best balance between maximum coverage and
connectivity and a minimal number of nodes.

We also aim to provide a flexible probabilistic approach that operates based
on local conditions, provides redundancy and speedy recovery after changes in
the system conditions, and does not differentiate between initial deployment and
repositioning. As such, the algorithm presented here leads to simpler, more re-
silient and more autonomous networks. On the flip side, it requires more nodes
than optimal deterministic placement (in order to achieve the desired redun-
dancy) and more sensor movement than what is strictly necessary, which, if
not properly managed, can significantly reduce the lifetime of the network by
depleting the nodes’ energy.

1.4 Wireless Sensor Network Simulation Using Cellular Automata

Wireless sensor networks are often deployed in harsh environments to perform
critical monitoring tasks. Yet most of the node positioning algorithms in the
literature do not take that into consideration, and assume that each of the sen-
sors will live for its prescribed lifetime and maintain its original position and
neighbourhood throughout.

The simplicity and locality of nodes in sensor networks bears a striking resem-
blance to that of cells in cellular automata. Our implementation runs on a cellular
automaton, simulating a wireless sensor network node placement algorithm that
remains active throughout the network’s lifetime, constantly adjusting the posi-
tioning in real-time to meet the changing requirements. We believe that cellular
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automata are ideally suited for this task given the locality of their interaction
(any global positioning issue or change would be difficult to communicate in time)
and the simplicity of their rules (sensor nodes do not have enormous processing
power). The main goal of the proposed algorithm is to improve node coverage
and connectivity while maintaining sparsity. It is clear that coverage and connec-
tivity can be optimized by deploying a large number of sensor nodes; however,
we aim to achieve full (or almost full) coverage and connectivity throughout the
monitored area with as few sensors as possible. Therefore, our algorithm opti-
mizes all three performance metrics, which is uncommon among wireless sensor
network node placement algorithms. Moreover, the proposed algorithm tackles
three of the four open problems in the area [3], as shown in Section 4.4.

2 System Description

RS and RC are two widely-used characteristics of nodes in wireless sensor net-
works. RS is the sensing radius; it defines the maximum distance that a point can
be from a sensor while still being covered by that sensor. RC is the communica-
tion radius, which is the maximum distance two sensors can be from each other
while still being able to communicate. We are only considering RS ≤ RC ≤ 2RS .
This makes sense according to our objectives: if RC < RS then RS does not need
to be as large as it is since the necessity of connectivity guarantees that there are
several sensors covering the same area (although some redundancy is desirable,
too much of it contradicts the sparsity requirement we set earlier). On the other
hand, if RC > 2RS then RC could be reduced because the need for coverage
ensures that sensors are within 2RS of each other.

We simulate the wireless sensor network on a two-dimensional cellular au-
tomaton: space is therefore discretized. This is not perceived as a limitation
since many of the existing mathemcatical models of sensor networks also assume
discretized space. In our model, a cell in state 0 (white) does not contain a sensor
- but still needs to be monitored by a sensor. A cell in state 1 (grey) is an access
point and a cell in state 2 (black) is a sensor node.

For our purposes, both access points and sensor nodes can monitor their en-
vironment and they have the same sensing and communication radii. The differ-
ence between them is that access points are capable of communicating directly
with the external observer (through wired or powerful long-range wireless con-
nections); this means that access points need to be wired somehow whether for
connectivity or power. Therefore, access point positions are fixed while sensor
nodes are mobile.

The mobility of the sensor nodes classifies this system as a dynamic posi-
tioning system, as opposed to a static positioning system where the sensors are
assigned fixed positions upon deployment. Sensing and communication radii are
assimilated to the Moore neighbourhood radius of the cellular automaton; a
direct implication of this fact is that sensing and communication radii are of
constant size relatively to the size of the system. Since RC ≤ 2RS , the transition
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rules need only focus on the communication radius; this is the case because under
this restriction, the fact that two nodes can communicate means that they are
collectively fully monitoring the area between them.

2.1 Transition Rules

The inherent design of cellular automata makes the direct simulation of particle
movement difficult, particularly when probabilistic rules are employed and it is
not possible for one cell to guess what the intentions of the neighbouring cells
are; such movement thus needs to be described as the disappearance of a particle
from one location and its appearance in another. We simulate this requirement
with even-odd rules (as previously described in [4]), where the transition rules
for even cycles are different from those of odd cycles. Therefore, the automaton
can be seen as running according to cycles of two steps: nodes decide where they
want to move in the first step, while they actually carry out the movement in
the second step. As mentioned earlier, the goal of that movement is to maximize
coverage, communication and sparsity.

Even Cycles. The first step is when the nodes announce their intention to
move. The decision to move is taken probabilistically based on the number of
other nodes in a sensor’s neighbourhood weighed by the distance of these nodes
from the sensor. For example, for a neighbourhood of size 4 every sensor node
calculates a number k as follows:

k = 8N1 + 4N2 + 2N3 + 1N4

In this formula, N1 is the number of nodes within a distance of 1 cell from the
sensor in question, N2 the number of nodes within a distance of 2 cells, etc.

k is then used to determine the probability of movement:

– For k = 0 or k ≥ 8 the node has a 50% chance of moving
– For 5 ≤ k ≤ 7 the node has a 20% chance of moving
– For 1 ≤ k ≤ 4 the node has a 5% chance of moving

These numbers are not cast in stone; they are only meant to give a greater
incentive for a node to move when it has too few or too many neighbours.
The assumption is that a node that has no neighbours is isolated (incapable of
reaching an access point either directly or indirectly) and is therefore forced to
move for the sake of connectivity. On the other hand, a node that has too many
neighbours is not needed at its current location (while being probably needed
somewhere else) and is hence encouraged to move for the sake of sparsity. Note
that chances of moving are kept at or below 50% to provide some stability to the
system, and above 0% to maintain some fault tolerance allowing the system to
correct itself (for example, k = 4 may mean that a node only has one neighbour
that is two cells away from it, which is often not an ideal scenario because it needs
four neighbours to ensure that its entire surrounding area is being covered).



Reliable Node Placement in Wireless Sensor Networks Using Cellular Automata 215

Our initial design suggested that a node should be strongly encouraged to
move even if it has some neighbours, as long as it does not have enough of them.
However, we changed the rules after realizing that such movement can cause it to
lose its connectivity, which is more important than coverage or sparsity (a node
that cannot transmit its results back is completely useless). In the current design,
a node only moves if it has no neighbours or too many neighbours. The constants
in the formula worked very well in our testing, both when we had enough nodes
to cover the entire area and when we had less than that. Testing with less nodes
than needed is important because it really underlines the difference between a
cell having too few neighbours and a cell having too many neighbours. This
is not the case when there are enough nodes because a cell having too few
neighbours implies that another cell has too many neighbours, and therefore,
movement is created when a cell has too few neighbours regardless of whether
this is expressly stipulated or not. The constants were particularly chosen to
discourage movement when a cell has only one neighbour in order to maintain
connectivity (unless that one neighbour is right next to the cell, in which case
connectivity is maintained even in the extreme case where both the cell and its
neighbour move in opposite directions). They were also chosen to encourage a
cell to have many neighbours (ideally four) that are far from it, rather than a
few neighbours close to it. In short, the constants’ goal is to encourage sparsity
whenever possible as long as connectivity is maintained.

Note that the probabilistic element in the rules described above can be em-
bedded within the cellular automaton as shown in [4] by adding to each cell a
few separate state bits implementing transition rules from a Wolfram Class 3
automaton such as Rule 30 [5].

The question that remains to be answered is: “where does a node move?” Once
it has taken the decision to move, a sensor chooses at random one of its eight
immediate neighbouring cells while following two conditions:

– The chosen neighbouring cell must be empty
– The chosen neighbouring cell must also be outside the reach of all other

nodes (conflicts are resolved by simply preventing them from occuring in the
first place)

The sensor then points to the cell it has randomly chosen by changing its state
to a number from 3 to 10 reflecting one of the eight possible directions. If on the
other hand it decides not to move, it remains in state 2.

Odd Cycles. The rules for odd cycles are very simple:

– A cell in state 1 or 2 does not change its state
– A cell in state 0 changes its state to 2 only if there is a cell in its immedi-

ate neighbourhood pointing in its direction (having the right state number
greater than or equal to 3)

– A cell in any of the states 3 to 10 changes its state to 0
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Thus, the odd cycle executes the moves designated in the previous even cy-
cle. Then the next even cycle designates new moves, which are executed by its
subsequent odd cycle, and so on.

3 Testing

Ideal placement (with a minimal number of sensors) is possible given RC and RS .
The problem with such placement is that it is static and extremely vulnerable
to any minor position change or sensor failure. However, we can use the ideal
placement as a benchmark against which to compare our placement algorithm.
Taking RC = RS = 3, the ideal placement (shown in Figure 2) for a cellular
automaton with periodic boundaries requires one sensor for every 18 cells.

Fig. 2. Ideal static placement of sensors for a small cellular automaton with periodic
boundaries and RC = RS = 3

Now that we have this benchmark, testing is straightforward: all we need to
do is compare the number of sensors needed to achieve different rates of coverage
and connectivity (on average, since the system is constantly moving) using our
algorithm to the number of sensors needed in the ideal placement. Then for
each application, one can choose the desired trade-off between coverage and
connectivity on one hand, and sparsity on the other, based on the minimum
acceptable coverage and connectivity ratios.

Starting with 10,000
18 � 556 sensors for an ideal placement, we performed sev-

eral tests with varying parameters on a cellular automaton with 10,000 cells.
The average results of these tests are given in Table 1.

Table 1. Performance of the proposed algorithm given various parameters

number of sensors
( actual

minimum
) RS RC uncovered area disconnected

sensors
1.1 3 3 2% 3.1%
1.1 3 4 2% 0.2%
1.3 3 4 1% 0%
1.5 3 4 0.3% 0%
2.0 3 4 0.05% 0%
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From these tests, we see that deploying 50% more sensors than the minimum
yields excellent results with no disconnections and almost complete coverage
(Figure 3). Note that in our system the area covered changes between cycles (the
numbers displayed in Table 1 are average values). Thus, the small areas missed by
sensors in one cycle are covered in subsequent cycles, unlike with static placement
algorithms. We also notice that a communication radius slightly larger than the
sensing radius dramatically reduces disconnection rates. However, a significantly
larger communication radius is not necessary since the large number of deployed
sensors (for coverage purposes) would prevent it from having any effect.

4 Enhancements and Conclusions

Although our algorithm as presented achieves the design objectives we set earlier
(coverage, connectivity and sparsity), we still have concerns regarding its energy
consumption, and consequently the resulting wireless sensor network’s lifetime.
In this section, we attempt to mitigate these concerns and treat some of the
open problems presented earlier.

4.1 Constant Movement

In our scheme, every node in the system moves at least 5% of the time, and
up to 50% of the time. This depletes the nodes’ energy very quickly given that
movement uses significant power (usually more than sensing and connectivity).
However, we cannot let the nodes remain in their positions once they have found
a good balance between coverage, connectivity and sparsity because the environ-
ment around them (moving neighbours, dying neighbours, etc.) often disturbs
this balance. Moreover the balance assumption may not even be correct to begin
with because of the limitations of the movement formula discussed earlier. On
the other hand, we also cannot encourage the nodes to move indefinitely while
looking for that elusive balance.

Therefore, we propose using simulated annealing to regulate the probability
of movement. Simulated annealing is an approach inspired by metallurgy and
designed to find good approximations of global solutions for optimization prob-
lems. In our case, simulated annealing involves slowly decreasing the probability
of movement from the up to 50% probabilities given above to much lower values
(but never nil in order to maintain some reliability and fault tolerance in the
system). This process allows the system to look for a desirable position while
the probability is high and settle in it as it gets lower.

However, we cannot allow the system to remain indefinitely in a low probabil-
ity of movement state, given that there could be major environmental changes
that require substantial movement to be overcome. Therefore, we briskly raise
the probabilities to their original levels at constant time intervals, only to slowly
decrease them again and allow the system to settle in its new state. This process
is shown in Figure 4.
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Fig. 3. Initial and desired states of an automaton with 10,000 cells and 729 sensors.
Note that despite the simplicity of the rules, the emergent behaviour is clear: it strives
for sparsity while maintaining coverage and connectivity. Regardless of the initial state,
the transition rules reward good coverage and connectivity, and punish the contrary,
ensuring that the desired state (which looks similar to the example above) is always
reached.
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Fig. 4. Periodic simulated annealing process with 10 periods in 10,000 cycles. Each
period shown here contains 15 cycles at the maximum probability (100% of the original
values), 35 cycles of decreasing probability and 950 cycles at the minimum probability
(1% of the original values).

4.2 Node Lifetime

Regardless of the placement algorithm, nodes will eventually have to deplete
their energy and die. This causes a progressive decrease in coverage and connec-
tivity until our fault tolerant algorithm can no longer adapt and they fall below
acceptable levels. Therefore, a node replacement strategy is essential, unless the
system is no longer needed beyond its lifetime (which is a very rare case).

We propose a node replacement strategy that matches the simulated annealing
strategy mentioned in the previous section. It assumes that the maximum node
lifetime is known, and that nodes die randomly sometime before their maximum
lifetime. Based on this assumption, it replaces subsets of the nodes progressively
throughout that lifetime in order to maintain a minimum acceptable number
of nodes at all times. The nodes are replaced right before the probability of
movement is increased, so that the increase in probability helps them find the
best locations in the system. They can added anywhere in the system, although
ideally they would be randomly spread.

Figure 5 shows a random decay of 850 nodes with a 10,000 cycle lifetime and
replenishment every 1,000 cycles. If the nodes are inexpensive and unintrusive,
they can simply die in-situ when their batteries are depleted; otherwise, they
can be instructed to move to a charging station when their battery levels reach
critical values.

4.3 Testing the Enhancements

We modified our system to consider the enhancements presented above. We
started with 850 sensors to cover the cellular automaton containing 10,000 cells
and gave them full freedom to move for 2,000 cycles in order to establish an
initial position. We then considered a node lifetime of 10,000 cycles, during
which all 850 nodes die progressively at random times. 85 nodes appeared at
random locations (replenishment with random positioning) every 1,000 cycles.
Therefore on average, the cellular automaton contained between 765 (1.38 times
the minimum) and 850 (1.53 times the minimum) sensors. In addition, we started
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Fig. 5. Random decay of 850 nodes with a lifetime of 10,000 cycles. One tenth of the
total nodes (85 in this case) are added at every one tenth of the lifetime (1,000 cycles).

with probabilities of movement of 50%, 20% and 5% for 15 cycles, and smoothly
dropped them down respectively to 0.5%, 0.2% and 0.05% during 35 cycles, then
kept them at these values for 950 cycles before raising them back up to 50%,
20% and 5% when 85 nodes are added. We then measured the average coverage
and connectivity rates over 10,000 cycles, which were respectively about 99.25%
and more than 99.99%. These are promising values, and given that under this
scheme the average node is moving less than 1% of the time, we believe that this
algorithm is also practical from an energy consumption perspective.

4.4 Open Problems

Chen and Koutsoukos present some open problems related to node placement
in wireless sensor networks [3]. Our unconventional design and choice of cellular
automata as a platform mitigates several of them:

Sensors with Irregular Sensing or Communication Ranges. Most node
placement algorithms assume that all sensors have the same sensing and com-
munication ranges. However, this is often not true in practice where different
kinds of sensors are combined in one system. Since our transition rules are sim-
ply based on the number of other sensors every individual node can locally see
within its communication range, this problem is inherently taken care of. Sen-
sors with irregular sensing and communication ranges can also be simulated in
cellular automata using non-uniform transition rules.

Coverage Solutions for Mobile Sensor Networks. Mobility is at the core
of the presented system. It enables desired initial positioning as well as fault
tolerance when changes in the environment (or problems with individual sensors)
cause reduced coverage or connectivity. Therefore, this problem is solved by
definition.
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Other Energy Conservation Methods (besides scheduling). Our sim-
ulated annealing approach is based on scheduling; therefore, regardless of its
effectiveness, it does not solve this open problem. Chen and Koutsoukos propose
communication range reduction as an example measure aimed at energy conser-
vation [3]; while this measure is not part of our system, it could be accommodated
by locally adjusting the communication range probabilistically depending on the
number of other nodes in that range.

Fault Tolerance. Thanks to its local probabilistic design, our system is inher-
ently fault tolerant. We prove this in the section above after implementing node
decay and still getting promising coverage and connectivity results thanks to the
system’s periodic adjustments through simulated annealing.

4.5 Conclusions

We have shown how our system can achieve its objectives of maximizing cov-
erage and connectivity while aiming for sparsity, provided the right number of
sensors is initially deployed. We have also shown how we can quickly estimate
that number. While energy conservation seemed to be the only potential major
weakness of our system, it is no longer an issue thanks to the simulated annealing
and node replenishment enhancements. It is possible that energy consumption
and convergence speed could be further improved with a more careful choice
of movement direction. Future work could also consider cases where mobility is
somewhat restricted as well as communication protocols that best complement
the presented node placement scheme.
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