

CIDS: A framework for Intrusion Detection in Cloud Systems

Hisham A. Kholidy
Dipartimento di Informatica

Università di Pisa, Pisa, Italy
hkholidy@di.unipi.it, hisham_dev@yahoo.com

Fabrizio Baiardi
Dipartimento di Informatica
Università di Pisa, Pisa, Italy

baiardi@di.unipi.it

Abstract
By impersonating legitimate users, intruders can use the
abundant resources of cloud computing environments.
This paper develops a framework for "CIDS" a cloud
based intrusion detection system, to solve the deficiencies
of current IDSs. CIDS also provides a component to
summarize the alerts and inform the cloud administrator.
CIDS architecture is scalable and elastic with no central
coordinator. This paper describes the components,
architecture, detection models, and advantages of CIDS.

Key Words: cloud computing, security, intrusion
detection, attacks, masquerade.

1. Introduction

Cloud computing has a broad appeal because it
enables IT managers to provision services to users faster
and in a cost-effective way. However, it does raise some
concerns and chief among them is securing data in the
cloud because of their operational models, the enabling
technologies, and their distributed nature, clouds are easy
targets for intruders. While intrusions can be handled by
an Intrusion Detection System (IDS) [1], current IDSs
have many deficiencies which hinder their adoption in a
cloud environment. This paper describes CIDS, a
framework for a Cloud based Intrusion Detection System
to deal with attacks like: (1) Masquerade attacks: where
threats impersonate legitimate users, (2) Host-based
attacks: these can be a consequence of masquerade attacks
and generally result in an observable user behavior
anomaly and (3) Network-based attacks. CIDS also
summarizes the intensive network based IDS alerts
according to the attack signature and target. Section 2
briefly introduces a cloud security and the seven known
top threats to cloud computing systems. Then, it classifies
vulnerabilities of the cloud computing paradigm. The next
section surveys the related works. Section 4 describes the
components, architecture, detection models, and
advantages of our CIDS framework. Section 5 outlines
future work.

2. Cloud computing security
Threats of cloud computing systems differ from those

of traditional IT solutions. CSA (Cloud Security
Alliance)[2] ranks seven threats that apply across cloud

computing SPI models [3]: (1) Abuse and nefarious use of
cloud computing, (2) Insecure interfaces and APIs, (3)
Malicious insiders, (4) Shared technology issues, (5) Data
loss or leakage, (6) Account or service hijacking, (7)
Unknown risk profile. [4] defines seven risks a user
should raise before committing: (1) Sensitive data should
be processed outside the enterprise only with the
assurance that they are only accessible and propagated to
privileged users, (2) One customer data should be fully
segregated from those of another customer, (3) A
customer needs to verify if the infrastructure complies
with some regulatory security requirements, (4) The cloud
provider should commit to store and process data in
specific jurisdictions and obey local privacy requirements
on behalf of the customer who do not know where data is
stored, (5) The cloud provider should offer replication and
disaster recovery mechanisms, (6) Investigative support
needs to be ensured, (7) Data should be accessible even
when the provider is acquired by another company or if
the user moves to another provider.

3. Related work
IDSs may be classified according to the source of data

into: (1) Host-based IDS (HIDS), where sensors that
detect an intrusion are focused on a single host. (2)
Network-based IDS (NIDS), where sensors are focused
on a network segment. (3) Distributed IDS (DIDS) which
integrates both types of sensors, DIDS can be categorized
as Mobile Agent IDS (MAIDS), Grid based IDS (GIDS),
and recently Cloud based IDS. Traditional NIDS and
HIDS cannot identify suspicious activities in a cloud
environment. As an example, a NIDS can not detect an
attack anytime node communication is encrypted. Attacks
can also be invisible to HIDS, because they may not leave
traces in the node operating system where the IDS resides.
Since in clouds, distinct users share computing and
communication resources, attacks may be originated from
and be directed against several resources within the cloud
infrastructure. Hence, only a distributed strategy may be
appropriate. The adoption of DIDS solutions [5] is still
challenging in cloud computing because the complex
architecture of the infrastructure and the distinct kinds of
users lead to different requirements and possibilities for
being secured. Some of these IDSs are scalable but they
have the problem of single point of failure as most

2012 Ninth International Conference on Information Technology- New Generations

978-0-7695-4654-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ITNG.2012.94

379

2012 Ninth International Conference on Information Technology - New Generations

978-0-7695-4654-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ITNG.2012.94

379

distributed hierarchical IDS. Also, some distributed IDSs
are strongly centralized and lack the flexibility to be
applied to different cloud architectures. This category of
IDSs can not respond to attacks against the IDS itself,
another deficiency is that some IDSs use only one
technique for detecting the attacks, whether, the
knowledge based technique or the behavior-based one. A
good IDS should integrate them to detect known and
unknown attacks with a reasonable false alarm rates.
Mobile Agent-based IDSs [6] are not a suitable solution
for clouds, because their hierarchical structure poses both
reliability and scalability problems. Furthermore, they are
not flexible and can not respond to attacks against the
intrusion detection system itself. Other problems are
recalled in [6]. GIDS solutions in [7, 8 9, 10, 11, 12,
13,14] offer a partial or complete methodology for
dealing with attacks against the processes running either
inside or outside the kernel space, and Grid protocol stack
and network devices. However GIDS solutions can not be
adopted because of: (1) Distinct cloud service models,
SaaS, PaaS, and IaaS, with different types of threats and
distinct users with distinct requirements, (2) The high
scalability of cloud systems, (3) GIDS solutions do not
correlate the alerts coming from different nodes, and (4)
The performance and the load balancing inside cloud
network are higher than in grid systems. Some cloud
based intrusion detection systems have recently been
proposed. [15] proposes an IDS based on the Mobile
Agents (MAs) technology. The most important
deficiencies are the performance and the security issues
related to MAs [16, 17]. [18] proposes a theoretical
framework for dealing with attacks targeting any service
model but it does not correlate the alerts from components
in the cloud infrastructure. The analysis of previous work
confirms that, a proper defense strategy for cloud systems
needs to: (1) Be distributed and scalable to adapt the
cloud characteristics, (2) Avoid any single point of
failure, (3) Protect the IDS by isolating it from
vulnerabilities in the host machine, (4) Have a flexible
architecture to be applied to several cloud architectures,
(5) Integrate both behavior and knowledge based
techniques, and (6) consider different service models and
user requirements.

4. The proposed Framework (CIDS)
CIDS has a scalable and elastic architecture with a

P2P solution and no central coordinator. Hence, there is
no single point of failure. CIDS architecture distributes
the processing load at several cloud locations and isolates
the user tasks from the cloud by executing them in a
monitored virtual machine. This helps in protecting CIDS
components from threats that can control a task in the VM
and that can modify CIDS components. To increase attack
coverage, CIDS integrates knowledge techniques and
behavior based ones. Furthermore, it collects events and
audits from VMs so that the detector and correlator

components can analyze them. Each node also includes an
audit system that monitors messages among nodes and the
middleware logging system, and collects events and logs
from the VMs. By sharing both the knowledge and
behavior databases in each node among the audit
components, CIDS can detect the masqueraders that
access from several nodes and both host-based and
network-based attacks. Furthermore, to take into account
the large volume of data in a cloud that prevents
administrators from observing any action, a further CIDS
component parses and summarizes a highly intensive
number of alerts from a NIDS component in a physical or
virtual switch inside the cloud virtual network. A report
for the administrators collects alert messages from all IDS
detectors installed in the cloud system. CIDS resides
inside the cloud middleware which provides a
homogeneous environment for accessing all nodes. The
middleware sets the access control policies and supports a
service-oriented environment. Since the middleware can
be install inside different grid and cloud systems, CIDS
can be applied to several Grid and cloud systems.

4.1 CIDS Architecture

In the proposed architecture, each node has two IDSs
detectors, CIDS and HIDS. In this way, the node can
cooperatively participate in intrusion detection by
identifying the local events that could represent security
violations and by exchanging its audit data with other
nodes. Figure 1 shows the sharing of information among
the following CIDS components:
Cloud nodes: contains the resources homogeneously
accessed through the cloud middleware.
Guest task: it is a sequence of actions and commands
submitted by a user to an instance of VM.
Logs & audit collector: it acts as a sensor for both CIDS
and HIDS detectors and collects logs, audit data, and
sequence of user actions and commands.
VM: it encapsulates the system to be monitored using
VMM. The detection mechanisms are implemented
outside the VM, i.e. out of reach of intruders. A single
instance of a VM monitors can observe several VMs.
Type II Virtual Machine Monitor (VMM): CIDS uses
type II VMM [19] implemented as a process of an
underlying operating system of the host machine. Some
VMMs are useful in system security, among them:
Isolation, Inspection, and Interposition [19]. VMM stores
in the audit system the data collected by the logs & audit
collector component and forwards them to both CIDS and
HIDS correlator components.
The audit system: this component implements three
main functions. First of all, it monitors message
exchanges among nodes and extracts from them the
behavior of the cloud user. Then, it monitors the
middleware logging system in the node itself. CIDS can

380380

collect all audit data and middleware events such as user’s
login or logout from the cloud system or tasks
submissions. The third function collects and stores events
and logs from the VM system. A log entry is created for
each node action with the action’s type, (e.g. error, alert,
or warning), the event that generated it, and the message.
CIDS correlator and detector: it correlates user
behaviors, e.g. sequence of commands or actions
collected from several sources, and analyzes them through
our new heuristic semi-global alignment approach
(HSGAA). We will briefly explain later the HSGAA
approach in CIDS.
HIDS correlator and detector: it correlates user's logs
and signatures collected from several sources. Then it
analyses them to detect known trails left by attacks or
predefined sequences of user actions that might represent
an attack. It is implemented by the OSSEC IDS tool [20]
that receives user's logs and signatures and determines
whether a rule in the knowledge based database is being
broken. After that, it computes the probability that a user
action represents an attack, and it communicates this to
the alert system that alerts the other nodes if the
probability is sufficiently high.
Behavior-based database: it is a profile history database
for the behavior of cloud users. It is important that all
nodes share the same behaviour database for the same
user. This helps in correlating the normal behaviors of a
specific user to detect a suspected behavior distributed
among several nodes. Since behavior deviation in one
node can be normal in another one, correlation reduces
the false alarms rate and it is more suitable for adapting
the deployment and utilization of the cloud system, as a
user task can be executed in more than one machine.
Access to all databases, including events collected by the
VMM from the VMs, can be easily implemented by the
middleware that transparently creates a virtual
homogeneous environment and synchronizes the nodes.
As an example, consider that the audit system can create a
log entry such as: “User Roy only logs in for 2 to 3 hours
and uses a specific sequence of UNIX commands”, only if
the nodes know the behavior of the user in all the nodes.
Knowledge-based database: it stores a set of rules and
signatures for known attacks. It describes a malicious
behavior with a rule to be compared against those in the
database. Like the behavior-based database, all nodes
should share or exchange the same knowledge base,
through the services provided by the middleware.
Alert System: it uses the middleware’s communication
mechanisms to alert other nodes if the CIDS or HIDS
correlator and detector components signal an attack. It
also communicates its alerts to the report producer
component in the scheduler machine.
Parser and summarizer: It parses and summarizes the
alerts fired by a component in the cloud virtual network.
We will briefly explain later, the adopted algorithm.

Report producer: it collects alerts from any cloud IDS
and sends a report about attacks to the cloud scheduler. It
helps also service providers to know if their infrastructure
is exploited to penetrate other victims.

Figure.1: CIDS Architecture

Yellow components are CIDS components, Green ones are cloud
system components, and Pink ones are NIDS components

4.2 CIDS deployment models
We recall the P2P architecture of CIDS helps in

balancing the load among all nodes. In CIDS each node
has its own analyzer and detector components that are
connected to the behavior and knowledge based
databases. The individual analysis reduces the complexity
and the volume of exchanged data, but at the expense of
the node processing overhead. As discussed in the
following, our approach can reduce this overhead. The
lack of a single point of failure also improves the
framework attack resistibility. Some components of the
scheduler machine (i.e., Report Producer and NIDS Alert
Parser and Summarizer) do not represent a single point of
failure. As a matter of fact, a cloud runs several copies of
the scheduler node with a fault tolerance technique
provided by the middleware to backup the processing
data. According to the architecture of the cloud system,
CIDS components can be deployed into one of two
models namely, hybrid and pure P2P models. In the
hybrid model, each node communicates to nodes outside
its domain through its domain controller i.e., nodes in
different domain are not directly connected. Whereas, in
the pure P2P model, each node communicates directly to

381381

other nodes i.e., the domain controllers acts like a peer but
with a scheduler to perform the scheduling tasks.

4.2 CIDS deployment models
We recall again, CIDS framework has P2P

architecture with no central coordinator, where the
network load is symmetrically distributed to all nodes. In
CIDS each node has its own analyzer and detector
components that are connected to the behavior and
knowledge based databases. This differs from distributed
centralized IDSs, where a centralized management system
collects all the data. The individual analysis reduces the
complexity and the volume of data exchanged among
nodes, but at the same time it increases the processing
overhead inside a single node. We will explain later, how
our HSGAA approach can reduce this overhead. Since
CIDS has no single point of failure, the framework
represents a moderate solution for attack resistibility. The
cloud scheduler machine has some components (i.e.,
Report Producer and NIDS Alert Parser and Summarizer)
that do not represent a single point of failure, because
there are several copies of the scheduler node in the cloud
with a fault tolerance technique provided by the
middleware to backup the processing data. According to
the architecture of the cloud system, CIDS components
can be deployed into one of two models namely, hybrid
and pure P2P models. In the hybrid model, each node
communicates to any other node outside its domain
through its domain controller i.e., no direct connection
between two nodes in different domain. Whereas, in the
pure P2P model, each node communicates directly to
other nodes without using the domain controller i.e., the
domain controllers work like the other peers but with a
scheduler to perform the scheduling tasks.

4.3 Attacks and services covered by CIDS
CIDS is a defense strategy that satisfies the previous

IDS requirements and deals with some attacks against
SaaS, PaaS and IaaS clouds.

Figure.2: Attacks and services covered by CIDS.

Figure 2 shows the attacks and services discussed in the
following:

1) Masquerading attacks:
This is a PaaS attack that includes any attack that
impersonates a legitimate user to use service resources
maliciously. This is by far the most critical attack, as its
exploitation is rather easy. An intruder masquerades as a
legal user by obtaining the user’s password and this

leaves some trails left at the service location. CIDS
detects this attack through HSGAA.
Heuristic Semi-Global Alignment Approach
(HSGAA): it detects masquerade attacks based on the
Semi-Global Smith Waterman alignment algorithm [21].
The main idea underlying HSGAA is to compute the best
alignment score, by aligning the active user's session
sequence (e.g., mouse movements, system calls, opened
windows titles, written Commands, opened file names) to
the previous stored sequences for this user. By properly
defining the misalignment areas, we can label them to be
anomalous. The presence of several anomalous areas is a
strong indicator of masquerade attacks. The value of
HSGAA is its ability to align sequences not only using
lexical matching, such as string matching or longest
common substring searches. Furthermore, it allows for
small mutations in the sequences with small changes in
the low-level representation of the commands
functionality (e.g., using vi instead of cat in UNIX
command line interface).
From the computational point, HSGAA accelerates the
detection and update operations, by implementing these
operations in distinct threads. As a further improvement,
the heuristic approach divides the signature sequence into
a smaller set of overlapped subsequences to reduce the
computational load of the alignment process. This also
results in shorter masquerader live time inside the system.
From the security point, unlike traditional semi-global
alignment algorithm that uses the same parameters for all
users, HSGAA can reduce both false positive and false
negative rates by pairing each user with distinct scoring
parameters. This increases the hit ratio of the detection
system. Furthermore, it supports two update modules that
support the slight changes in the user behavior due to
some project requirements or other individual
considerations. HSGAA provides two scoring systems
that enable changes in the low-level representation of the
commands functionality, by categorizing user's
commands to a set of groups and enabling the alignment
of commands in the same group without reducing the
alignment score.
2) Host-based attacks:
Host based attacks may be a consequence of a
masquerading attack. CIDS detects several host based
attacks using the current HIDS tools, which integrate both
the log analysis and data mining techniques into a log
mining technique. As previously mentioned, we use
OSSEC [20] as an example of HIDS tools.
3) Network-based attacks and the summarizer and log

analyzer component:
CIDS detects network attacks by analyzing network
packets using NIDS tools. We use Snort [25] as NIDS.
The summarizer and log analyzer component analyzes
and summarizes NIDS alerts and logs, and sends a report

382382

to the cloud administrator. This component is an IDS
service supported in the IaaS model and works as outlined
below.

Parser and Summarizer Approach: from the point of
view of the cloud administrator, a clear, summarized, and
readable alarm report is fundamental. A NIDS component
produces an intensive number of alerts, because of the
high scalability of the cloud network. Our parser and
summarizer component reduces the number of alerts for
the cloud administrator. Among the approaches to
summarize and integrate NIDS alerts, we recall, [22, 23].
A more suitable and clear approach to store NIDS alerts is
[24] that is based upon the alert parameters shown in
Table 1. Our approach is based upon the idea that, if one
or more hosts, are attacking the same machine using the
same attack signature, we should reduce the intensive
redundant alerts fired by NIDS components. This can be
achieved by merging all the alerts with the same
combination (destination IP, attack signature) into one
alert only that also merges their attributes. Our
implementation uses SNORT with MySQL. Table 1
shows an example.
Table.1: An example for the alert description table.

Our approach neglects the source IP address because it
can be spoofed. Spoofing can be detected by the HIDS
component. However, the final summarized table would
contain all information that describes the attack including
the source IP address that can be used later by the cloud
administrator.

Table.2: The final alerts summarization table.

Table 2 shows the final alerts produced by our approach,
we note that alerts A1, A4, and A6 refer to the same
signature, their attacks targets the same machine and the
attacker uses the same method three times. The alerts are
summarized by alert S1. The alerts A2, A3, and A8 have
the same signature but with different signature details.

The attackers fired these attacks from two different host
machines. These alerts are summarized to alert S2 in
Table 2. Finally, the attacks related to the alerts A5 and
A7 target the same machine but with different signatures,
hence these alerts have not been summarized. Algorithm1
shows the parsing and summarization.

Algorithm1: parsing and summarization

4.4 CIDS detection models

 In the following, we describe the three alternative
models to detect masquerade and host-based attacks
namely: (A) Audit exchange model, (B) Audit exchange
model with a neural network, and (C) Independent model.

A) Audit exchange model
 In this model, nodes exchange their audit data among
each others so that each one has a complete audit data for
its current users. The detection phase depends on two
parameters: (1) The alignment score computed in the
CIDS detector component, (2) Alerts fired by the HIDS
component. In this way, the detection overhead is
balanced among nodes with no single point of failure. The
detection efficiency is high because the user audit is
concentrated in one place and the masquerader surviving
is very short. As a counterpart, this model needs a fast
periodic update of user audit data in all the nodes related
to the user and this introduces some overhead in the cloud
network. The processing steps are:

01: Begin
02: Build Table T with rows= n //This table is similar to table 1.
03: Define:
 dest-ip=1, sig-id=2,
 i=1, // Index for rows of table T
alert-dscrp-strct = T(1)(signature-name, signature-class-id, signature-
priority, score-ip, ip-protocol, source-port, destination-port) // Is a
structure contains one record of table T with 7 columns of alert
description (from 4 to 10 of Table 1),
summarized-T: // This table is similar to table 2.
04: While (Length(T) >1 and i < Length(T))
05: For j=i+1 to Length(T) do
06: If ((T(i, dest-ip) = T(j, dest-ip)) And (T(i, sig-id) =T(j, sig-id))
 And (T(i, alert-descrp-strct) = T(j, alert-descrp-strct)))Then
07: Add the ith record to table summarized-T
08: Delete the ith and the jth records from table T, set i=1
09: Else
10: If ((T(i, dest-ip)=T(j, dest-ip)) And (T(i, sig-id)=T(j, sig-id))
 And (T(i, alert-descrp-strct)!=T(j, alert-descrp-strct))) Then
11: Merge the ith and the jth records of table T and add the
 resultant merged record to table summarized-T
12: Delete the ith and the jth records from table T, set i=1
13: End If
14: End If
15: End For
16: i=i+1
17: End While
18: If (T is not Empty)
19: Add table T to table summarized-T
20: End IF
21: Return (summarized-T)
22: End

383383

B) Audit exchange model with a neural network.
 This model integrates the audit exchange model
(model A) with the neural network one. The resulting
steps are: (1) For each user, prepare the training patterns
that describe the user normal behaviors. (2) During the
training phase, a history profile is built for each user with
the following parameters: average number of failure login
hits, average time between the typed commands, average
time from login to logout or to the end of the session,
source IP address(es) for each user login, VM name(s)
used by the user, and time interval of logging to the cloud
system (e.g., [7:8], [10:12], 15:18]). (3) At each login, the
user profile is updated in any cloud node related to the
user. In step 2, parameters are updated, and HSGAA
computes the Sequence Alignment Scores (SAS) for the
current login session of the user. (4) The neural network
collects the previous input parameters and adapts the
weights according to the back propagation algorithm [26].
(5) Perform a periodic update for each profile of the cloud
nodes. (6) Go through the processing steps in the audit
exchange model, for each user IDSs instance (i.e., CIDS
or HIDS) firing. Besides the advantages of model A, this
model offers these advantages. (1) The masquerader
surviving is shorter than both models A and C, because of
the neural network classification. (2) A higher hit rate
with a fewer false positive and false negative alarms than
both models A and C. This model has the same
disadvantages of model A. Furthermore, its performance
is worst than both A and C, because of the network and
processing overheads to update the neural network
parameters.
C) The independent model
 Each cloud node evaluates its own user audits
without exchanging data with other nodes. The detection
phase depends upon the same two parameters of model A
(i.e., SAS computed by HSGAA and alerts fired by
HIDS). Login usage patterns for a user are evaluated
using both CIDS and HIDS detectors inside a cloud node
CN and by using the behavior-based and signature-based
of CN only. If the HIDS detector of CN fires an alert, the
algorithm will behave according to step 2 of model A for
each user HIDS instance firing. If the CIDS detector of

CN fires an alert, the algorithm checks the current login
usage patterns against the audit data of the current user in
the other nodes related to the user until a node accepts the
current pattern, otherwise this user will be marked as a
masquerader. Then, this model will behave according to
step 2 of model A for each user CIDS instance firing.
Algorithm 2 shows the steps of model C. The model
advantages are: (1) It does not require a periodic update of
user audit data in each node related to that user, (2) A
very low overhead for the cloud network, as there is no
data exchange, except if the score iSAS is less than the
previous define threshold SAS� then, the exchanged data is
the test audit data (test_d) produced by the user during the
login session, (3) A lower processing overhead for each
cloud node than models A and B, because each node
executes the HSGAA alignment of the test audit data
(test_d) of the node which has the login session, only if
the score iSAS is less than the previous defined threshold

SAS� . The disadvantages are: (1) A longer masquerader
surviving than both models A and B because the analysis
requires a long time to check the audit data (test_d) in all
nodes. (2) A lower hit rate than model B, because the
neural network classification model can not be applied
due to the lack of the exchanged audit data. The hit and
the false alarm rates of the model are the same of model
A. Model B has a better false alarm rate.

Algorithm2: The analysis algorithm for model C

5. Conclusion and future work:

Cloud computing risks and threats differ from
traditional ones and current IDS technology is not suitable
for cloud computing. This paper has proposed CIDS
framework to define a proper defense strategy for cloud
systems. CIDS is a scalable and elastic solution with P2P

01: Begin
02: Inputs: test audit data (test_d) produced by user (i) during the
current login session behavior-base(behavr_d) stored for user (i)
during the training phase inside the current login cloud node, iSAS is

the alignment score for user i computed by HSGAA, SAS� is the
alignment threshold defined for user i, Not-Masq-flag = False.
03: Use HSGAA to compute iSAS by aligning (test_d) against
(behavr_d) in the same machine.
04: If i SASSAS θ< Then
05: For each cloud node(C_node)contains (behavr_d) of user i, do:
06: Use HSGAA to compute iSAS for the ith user in (C_node)

07: If i SASSAS θ≥ Then
08: Not-Masq-flag = True
09: Exit the loop;
10: End if
11: End for
12: End If
13: If Not-Masq-flag = false or HIDS instance is fired Then
14: Run step 2 of model A for each user i IDS instance firing.
15: End If
16: End

If user HIDS or CIDS instance fired Then //This denotes that an
attack has been detected (Host-based or masquerade attack).
1. Alert all nodes that have VM instance(s)for that user to stop

exchanging his audit data.
2. Send alerts to the scheduler node to do the following tasks:

a. Stop the current tasks related to this user from all his VMs.
if the alert is coming from HIDS detector then, stop only this
malicious VM.

b. Prepare a summarized report to the cloud administrator
contains some information about the masqueraded user, the
malicious VMs, and the detected attack.

c. Apply the administrator action against this user by re-
initializing his malicious VM(s) or by Blocking or
suspending his account.

 End if

384384

architecture with no central coordinator that avoids a
single point of failure. CIDS has two P2P deployment
models hybrid P2P and pure P2P. To increase flexibility
and portability, the middleware where the framework
resides can be installed in distinct cloud and grid systems.
To increase attacks coverage, CIDS integrates
knowledge-based and behavior-based approaches and
monitors each node to identify local events that could
represent security violations. When an attack occurs, it
alerts other nodes. CIDS exploits the distinct execution
spaces of a VMM to separate the intrusion detection
system from the system under monitoring so that the
intrusion detector components become invisible and
inaccessible to intruders. CIDS includes an audit system
to discover those attacks that network-based and host-
based systems cannot detect. It also parses and
summarizes a high intensive number of alerts fired by
NIDS component to prepare a readable report for the
cloud administrator. CIDS provides three alternative
detection models. The CIDS webpage [27] describes
further details about CIDS.

For future work, we will apply our framework to a cloud
system. We need to adapt a suitable dataset for cloud
systems. For cloud systems, one user can have more than
one instance of audit data in several machines, which is
not currently available for the existing datasets. We also
need to practically evaluate the parameters of HSGAA
approach for each user separately. Another enhancement
concerns the summarizer and parser algorithm. To reduce
the corresponding overhead, the algorithm can be
parallelized by dividing the collected alarms into a set of
groups to be parsed and summarized in distinct nodes.
The summarized alerts from each machine are collected
and sent to the scheduler machine. Finally, we need also
to apply the three proposed detection models, in order to
choose the most suitable one according to both users and
providers requirements.

6. References
[1] Karen Scarfone and Peter Mell, “Guide to Intrusion Detection

and Prevention Systems (IDPS)”, National Institute of Standards
and Technology(NIST), Special Publication 800-94, Feb. 2007.

[2] “Top Threats to Cloud Computing”, Cloud Security Alliance,
http://www.cloudsecurityalliance.org/csaguide.pdf, V. 1.0 (2010)

[3] Foster, I.; Yong Zhao; Raicu, I.; Lu, S., "Cloud Computing and
Grid Computing 360-Degree Compared", Grid Computing
Environments Workshop, GCE '08, vol., no., pp.1-10, Nov. 2008

[4] J. Brodkin. “Gartner: Seven cloud-computing security risks”,
http://www.networkworld.com/news/2008/070208-cloud.html.

[5] Jansen W., Karygiannis, T. 1999, “Mobile agents and security”.
Special Publication 800-19, NIST.

[6] W Jansen, P Mell, T Karygiannis, Marks, "Applying Mobile
Agents to Intrusion Detection and Response (1999)", National
Institute of Standards and Technology Interim Report - 6416

[7] O. Choon and A. Samsudin, “Grid-based intrusion detection
system,” in Proc. 9th Asia-Pacific Conference on
Communications, vol. 3, pp. 1028-1032, September 21-24,2003.

[8] S. Kenny and B. Coghlan, “Towards a grid-wide intrusion
detection system,” in Proc. European Grid. Conference
(EGC2005), pp.275-284, Amsterdam, Netherland, February 2005

[9] F-Y. Leu, Fang-Yie Leu, Jia-Chun Lin, Ming-Chang Li, Chao-
Tung Yang, and Po-Chi Shih, “Integrating Grid with Intrusion
Detection”, Proc. Int’l Conf. Advanced Information Networking
and Applications (AINA 05), vol. 1, March, 2005, pp. 304–309

[10] M. Tolba, M. Abdel-Wahab, and I. Taha, and A. Al-Shishtawy,
“GIDA: Toward enabling grid intrusion detection systems”, in
Proc. 5th IEEE/ACM Int. Symp. on Cluster Computing and the
Grid (CCGrid2005), Cardiff, UK, May 9-12, 2005.

[11] Fang-Yie L., Jia-Chun L., Ming-Chang L., and Chao-Tung Y.,
“A Performance-Based Grid Intrusion Detection System,” in
Proc. 29th Annual IEEE International Computer Software and
Applications Conference (COMPSAC), pp.525-530, July, 2005

[12] Guofu Feng, Xiaoshe Dong, Weizhe Liu, Ying Chu, and Junyang
Li, “GHIDS: Defending Computational Grids against Misusing
of Shared Resource”, Proc. Asia-Pacific Conf. Services
Computing (APSCC 06), December.2006, pp. 526–533.

[13] Schulter, A.; Navarro, F.; Koch, F.; Westphall, C.B., “Intrusion
Detection for Computational Grids”, Proc. 2nd Int’l Conf. New
Technologies, Mobility, and Security, IEEE Press, November,
2008, pp. 1–5.

[14] Hisham A. Kholidy, "A Study for Access Control flow Analysis
with a proposed Job analyzer component based on Stack
inspection methodology", 10th International Conference on
Intelligent System Design and Applications (ISDA 2010), 29 Nov
-2 Dec 2010.

[15] Amir Vahid Dastjerdi, Kamalrulnizam Abu Bakar, Sayed
Gholam Hassan Tabatabaei, “Distributed Instrusion Detection in
Clouds Using Mobile Agents”, Third International Conference on
Advanced Engineering Computing and Application in Sciences,
October 11-16, 2009 - Sliema, Malta

[16] Scerri, Paul and Vincent, Régis and Mailler, Roger, booktitle
"Coordination of Large-Scale Multiagent Systems", Springer US,
isbn: 978-0-387-27972-5, p. 231-254, 2006

[17] W. A. Jansen, “Intrusion detection with mobile agents”,
Computer communication (15): page: 1392-1401, 2002.

[18] Roschke, S., Cheng, F., Meinel, “Intrusion Detection in the
Cloud”, The 8th International Conference on Dependable,
Autonomic and Secure Computing (DASC-09) China, Dec. 2009

[19] N. Kelem, R. Feiertag. “A Separation Model for Virtual Machine
Monitors”, Research in Security and Privacy. Proceedings of the
IEEE Computer Society Symposium, pages 78-86, 1991.

[20] http://www.ossec.net/main/
[21] Scott E. Coull, Joel W. Branch, Boleslaw K. Szymanski, Eric A.

Breimer. 2008. “Sequence alignment for masquerade detection”.
Journal of Computational Statistics & Data Analysis. 52, 8 (April
2008), 4116-4131. http://dx.doi.org/10.1016/j.csda.2008.01.022.

[22] D. Andersson, M. Fong, and A. Valdes, “Heterogeneous Sensor
Correlation: A Case Study of Live Traffic Analysis,” Third Ann.
IEEE Information Assurance Workshop, Jun. 2002.

[23] A. Valdes and K. Skinner, “An Approach to Sensor
Correlation,”Proc. Recent Advances in Intrusion Detection, Oct.
2000.

[24] Fredrik Valeur, Giovanni Vigna and Richard A. Kemmerer, “A
Comprehensive Approach to Intrusion”, IEEE Transactions on
Dependable and Secure Computing, Jul. 2004

[25] http://www.snort.org/
[26] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern

Approach. p. 578.
[27] http://www.di.unipi.it/~hkholidy/projects/cids

385385

