
M
f

R
a

b

a

A
R
R
A
A

K
A
F
F
R
M
M

1

m
o
n
i
p

t
c
a
m
i
c
c
v
a
c

h
u
b
t
p
e
b

h
1

Applied Soft Computing 24 (2014) 1095–1104

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

onitoring applications: An immune inspired algorithm
or software-fault detection

ui Ligeiroa,b

INOV INESC – Instituto de Novas Tecnologias, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
CMAF – Instituto Investigaç ão Interdisciplinar, Univ. Lisboa, Av. Gama Pinto 2, 1649-003 Lisboa, Portugal

 r t i c l e i n f o

rticle history:
eceived 24 February 2013
eceived in revised form 11 May 2014
ccepted 11 August 2014
vailable online 1 September 2014

eywords:
rtificial immune system

a b s t r a c t

Large-scale software systems are in general difficult to manage and monitor. In many cases, these systems
display unexpected behavior, especially after being updated or when changes occur in their environment
(operating system upgrades or hardware migrations, to name a few). Therefore, to handle a chang-
ing environment, it is desirable to base fault detection and performance monitoring on self-adaptive
techniques.

Several studies have been carried out in the past which, inspired on the immune system, aim at solving
complex technological problems. Among them, anomaly detection, pattern recognition, system security
ault detection
ault injection
einforcement learning
onitoring
etrics

and data mining are problems that have been addressed in this framework.
There are similarities between the software fault detection problem and the identification of the

pathogens that are found in natural immune systems. Being inspired by vaccination and negative and
clonal selection observed in these systems, we developed an effective self-adaptive model to monitor
software applications analyzing the metrics of system resources.
. Introduction

Large-scale software systems are difficult to manage and monitor. These systems
ay display unexpected behavior, especially after being updated or when changes

ccur in their environment (operating system upgrades or hardware migrations, to
ame a few). Novel situations require robust defensive mechanisms, but monitor-

ng can be rather time-consuming, requiring many efforts and tools [1–6] for the
urpose.

A failure or malfunction occurs when the system behavior deviates from its ini-
ial specification, this being usually associated to the detection of a system error. In
ase of a failure in an application component, it must be detected quickly and, prefer-
bly, the overall system should be kept working, even with limitations. CPU usage,
emory usage, load average and thread count are, among others, useful resource

ndicators of the efficiency and performance of a system. These metrics are highly
orrelated with the characteristics of the host where the software applications exe-
ute and, in general, when something wrong happens, some of the metrics reach
alues outside their usual ranges. Thus, the creation of an adaptive monitoring mech-
nism that ensures system fault detections based on resource metrics is a natural
hoice.

Despite all recent biological findings, lots of uncertainty still exists regarding
ow Nature works. However, in these last decades, biological systems have been
sed as a source of inspiration to solve complex technological problems, going far
eyond the earlier boundaries of computer science. For example, analogies between

he defending mechanisms of the immune system and anomaly detection in com-
uter systems have been largely studied since 1994, after publications by Forrest
t al. [8] and Kephart [9]. As a matter of fact, the vertebrate immune system has
een the object of study by several authors [11–18], and as here, we give especial

E-mail addresses: rui.ligeiro@inov.pt, rmligeiro@fc.ul.pt, rui.ligeiro@gmail.com

ttp://dx.doi.org/10.1016/j.asoc.2014.08.021
568-4946/© 2014 Elsevier B.V. All rights reserved.
© 2014 Elsevier B.V. All rights reserved.

relevance to the insights most pertinent to the monitoring model, particularly the
self/non-self discrimination, vaccination and some specific aspects of the adaptive
immune response. The vertebrate immune system it is a complex system composed
of a large collection of cells with several defense mechanisms that protect the body
against diseases by recognizing, attacking and destroying pathogens. The system is
divided into two inter-related branches: the innate immune system and the adap-
tive immune system. Roughly speaking, the innate immune system acts very quickly
to the first signs of infection, being crucial to the initial inflammatory response
by recognizing and signaling the adaptive immune response, whereas the adap-
tive immune system has the ability to change, improving the immune response
during the lifetime of the organism. Note that the learning, memory and adap-
tation capabilities of the adaptive immune system emerge without any central
control.

Lymphocytes, a special type of white blood cell with the function to recognize
“non-self” antigens, are the most important agents of the adaptive immune system.
B-cells and T-cells are the two main types of lymphocytes that together recognize
and kill antigens. While B-cells produce and release large amounts of antibodies that
attack pathogens, T-cells orchestrate the response of other cells as well as directly
induce the death of cells that show signs of having been invaded by pathogens.
The lymphocytes surface is covered with receptors that identify antigens by partial
matching its shape. Consider, for instance, receptors and antigens as two pieces of
LEGO, that even if they don’t exactly join together, there are some complementary
parts between each other. Affinity is the term used for the degree of recognition
of antigens by lymphocyte receptors – stronger recognition corresponds to higher
affinity and vice versa.

T-cells mature in the thymus gland, an organ located in the upper region of

the chest to which T-cells travel after being created by the bone marrow in imma-
ture form. In this organ a process takes place called negative selection, responsible
for eliminating T-cells capable of attacking the body’s own cells. Nevertheless, this
discrimination (self/non-self) can fail, resulting in the development of autoimmune
diseases.

dx.doi.org/10.1016/j.asoc.2014.08.021
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.08.021&domain=pdf
mailto:rui.ligeiro@inov.pt
mailto:rmligeiro@fc.ul.pt
mailto:rui.ligeiro@gmail.com
dx.doi.org/10.1016/j.asoc.2014.08.021

1 mputi

O
p
T
p
w
l
c
a
i
f
m
a

r
p
m
f
a
a

i
t
w
c

1

i
k
r
v
c

1

t
i
l
a
t
b
t
i
m
m
i
i
a

1

c
d
t
b
b
n
t
i

b
t
o
i
3
a
p

2

c
a
t

096 R. Ligeiro / Applied Soft Co

The reproduction of lymphocytes is based in a principle known as clonal selection.
nce activated, B-cells produce and segregate antibodies, proliferating in a quantity
roportional to the degree of affinity with the antigen. B-cells are also stimulated by
-cells (T-helper cells) to divide into offspring cells, which are very similar to their
arent. This preferential proliferation of the most capable cells has clear similarities
ith Darwin’s evolution principle. The immune system maintains a population of

ong-lived memory cells after clearance of infection and recruits newly generated B-
ells into the memory. Immune memory enables the immune system to act quickly
nd efficiently in protecting the body in case it is infected by similar pathogens
n the future. Vaccination follows the same principle. Summarizing, the essential
eatures of the natural immune systems are distributed detection, self-organization,

ulti-layer structure, diversity, autonomy, imperfect detection, learning, memory
nd adaptability.

Several immune inspired algorithms have been developed and a relatively new
esearch field, called Artificial Immune Systems (AIS), arose as a new computing
aradigm. Nevertheless, AIS has not been used so far, to our knowledge, as a tool to
onitor concrete software applications using resource usage metrics. Our model,

or monitoring software applications, is based on metrics of the system resources
nd inspired in the natural mechanisms of the immune system, briefly discussed
bove.

There are similarities between the software fault detection problem and the
dentification of pathogens in natural immune systems. It should be mentioned that
he natural immune system is merely used as a metaphor for anomaly detection and
e are not trying to imitate all its features and detailed operation. Our inspiration

omes mostly from the following three features:

.1. Self/non-self discrimination

A healthy immune system is able to differentiate between the cells of its organ-
sm, know as self, and the foreign elements (antigens) that attack the organism,
now as non-self. In the same way, an anomaly points toward a deviant behavior in
elation to what is expected and characteristic of the system. Thus, inspired by the
ertebrate adaptive immunity response, an algorithm is developed to distinguish
ommon behavior of the host (self) from faults (non-self) in software applications.

.2. Vaccination

The reason why we do not acquire some diseases more than once is because
he immune system remembers pathogens. Vaccination is a good evidence that the
mmune system has memory. It consists in introducing into an organism some harm-
ess organisms, which provoke an immune response against the foreign elements. As

 consequence, immunological memory is induced which enables the immune sys-
em to act quickly and efficiently in protecting the body when it is actually infected
y the real pathogens at some future time. Having this in mind, a kind of fault injec-
ion learning mechanism was created, as a part of the monitoring model. A fault
njection is an application of an artificial malfunction, inserted into a particular

onitored system with the purpose of simulating a specific error. Note that the
onitored system is not actually affected by the fault. This process occurs in the

nterface between the monitoring model and the monitored application. It consists
n intercepting metrics collected from the monitoring model into the monitored
pplication and changing their values to outside the normal range.

.3. Adaptive immune response

The adaptive immune system is composed of a large collection of cells with no
entral control, which together have the ability to improve the immune response
uring the lifetime of the host. The system evolves based on the principles of muta-
ion and selection, producing a number of lymphocytes proportional to the degree of
inding (affinity) with the antigen. As stated above, in software systems, unexpected
ehavior requires robust adaptive defensive mechanisms capable of recognizing
ew faults. As proposed by de Castro and Von Zuben [10], one is here inspired by
he clonal selection concept, together with the affinity maturation process of the
mmune response, to create an adaptive monitoring mechanism.

In this paper we show that not only the model performs well in detecting faults,
ut also fault injection and reinforcement learning substantially decrease the detec-
ion of false positives. The article begins by reviewing the most important aspects
f software-fault monitoring, describes the faults that are simulated as well as the
dentification of all the metrics that are collected in the monitored system. In Section
, we present a computational algorithm that, in addition to detecting anomalies,
lso identifies its type. After that, the results and discussion of the simulation are
resented as well as the most relevant conclusions.

. Preliminary knowledge
We advocate the use of monitoring as a major design prin-
iple to increase safety, reliability and dependability of software
pplications. Many tools have been proposed for runtime moni-
oring with the purpose of detecting, diagnosing and recovering
ng 24 (2014) 1095–1104

from software faults. Nelly Delgado and colleagues described the
taxonomy of software-fault monitoring systems and presented a
state-of-the-art of the tools used to detect faults (for details, see [6]
and references therein). Note that none of the tools referred in their
study are based on metrics of the system resources together with
immune system inspiration to distinguish the common behavior of
the host (self) from faults (non-self).

In 1994 Forrest et al. applied to the problem of computer viruses
(see [8] for details), is of paramount importance for the scientific
community, because it unifies a wide variety of computational
situations by treating them as the problem of distinguishing self
from non-self. Later on, enhancements were made to the original
version of the Negative Selection algorithm proposed by Forrest
et al. ([20–23], to name a few), but the main features remained
unchanged. Another valuable application of AIS-based algorithms
for fault prediction is the study by Catal and Diri [35]. The authors
analyzed the performance of several existing classifiers using a
different kind of metrics: software metrics (method-level and class-
level; see [7] for details on software fault prediction metrics). When
compared to others, AIS algorithms present remarkable results in
predicting faults, however no experimentation are presented in
detecting faults in real time, like we do here. Two other relevant
methods address the fault detection problem using AIS combined
with other technics. One is an approach based on conventional
fuzzy soft clustering and AIS for multiple sensor data fusion and
fault detection [36], the other is a multi-objective AIS to optimize
parameters of a Support Vector Machine (SVM) applied to fault
diagnosis of induction motors and anomaly detection problems
[37]. Our model mimics a system that has features very close to
a real system in contrast to the mentioned works that although
showing good results, seem to be not sufficiently mature to face
the requirements and complex behavior of practical applications.

To the best of the author’s knowledge, the only work presenting
an evolutionary technique that also invokes a set of resource usage
metrics for software faults detection is that by Wong et al. [24]. Due
to this similarity, their approach will be discussed in more detail in
the Section 4.

In general terms, despite of all the important studies carried
out in software monitoring, we did not find one that detects faults
using metrics together with artificial immune adaptation technics.
Furthermore, most of them are based in disparate approaches and
methodologies as the existence of an oracle, i.e., determining if
the systems behavior under test is or not acceptable, or concern
whether the design or implementation of the system meets the
requirements (or specifications) or the instrumentation of a pro-
gram code.

The main goal of runtime software-fault monitoring is to
observe the software behavior in order to determine whether it
complies with its intended purpose, in other words, to determine if
it is consistent with a given specification [19]. Avizienis and Laprie
[25] gave widely accepted definitions of systems fault, error and
failure. In summary, a system failure occurs when the delivered
service deviates from the required service because the system was
erroneous: an error is that part of the system state that is liable
to lead to a fault in the system. A fault is active when it causes an
error and results in an incorrect state that may or may not lead to
a failure. Some faults are, deliberately or not caused by humans,
whereas others are trigged by natural phenomena without human
participation. Both may cause a huge impact, affecting partially or
even completely the integrity of the whole system.

Here, we do not need to treat differently faults, errors or fail-
ures. We simply use the term fault, considered as a malfunction that
affects the proper functioning or full availability of a system, leading
some particular resource metrics to reach values outside their usual

ranges. Three faults were simulated to evaluate the performance of
our model (which was developed in Java):

mputing 24 (2014) 1095–1104 1097

•

•

•

r
m
t
s

a
f
p
i
e
p
p
c
a

a
i
(
i
a
o
c
t
t
a
s
f
t
s

•

•

•

•

•

t
m

R. Ligeiro / Applied Soft Co

Denial-of-service (DoS): An attack attempting to make a machine
or network unavailable to legitimate requests by saturating its
resources. We created a JMeter script that generates 100 virtual
users. These users make a series of HTTP requests simultaneously
for 30 consecutive seconds to the monitored system.
Memory leak: In Java it is usually associated to errors in the
garbage collection. Occurs when an object is stored in memory
but cannot be accessed by the running code. We implemented a
component that progressively inserts 5 × 106 strings into a static
list with global scope. Because this list is static, it prevents the
garbage collector from cleaning the occupied memory that per-
sistently grows until there is no space left in the Java Heap.
Thread explosion: Cyclic creation of a big quantity of threads. We
implemented a component that progressively creates 5000 run-
ning threads, each of them sleeps for a second and terminates
immediately after that.

An important reason for choosing these faults is that they are
elatively common (especially DoS), however, the most important
otive is that all of them affect different groups of resource metrics

hereby allowing a wide and general interpretation of the model
uccess in detecting different types of faults.

The original definition of dependability is the ability to deliver
 service that can justifiably be trusted [26,27]. Simulation-based
ault injection is important to evaluate the dependability of com-
uter systems and there are already several techniques and tools to

nject faults (see for example [28] and references therein). Whereas
ngineers use fault injection to test fault-tolerant systems or com-
onents, we apply a fault injection mechanism for artificial learning
urposes. As stated before the process consists in intercepting and
hanging the collected metrics to values outside the normal range,
s described in detail in the next sections.

Our model exclusively monitors Java applications. Briefly, Java is
n object-oriented programming language that provides platform
ndependence by executing programs on a Java Virtual Machine
JVM) installed on the operating system. To deal with the complex-
ty of today’s distributed systems, the Java community designed

 straightforward specification to address the management needs
f applications written for the Java platform. This specification,
alled Java Management Extensions (JMX), was also designed for
he instrumentation of resources, providing tools for building dis-
ributed managing and monitoring applications [29]. An MBean is
n object that follows the design patterns conforming to the JMX
pecification. It can be used to provide information about the per-
ormance and resource consumption of the applications running on
he virtual machine. JMX MBeans interfaces offer several metrics of
ystems resources. Among them we make use of the following:

CPU time: Returns the amount of process CPU time consumed by
the JVM [30].
Load average: Returns the system load average for the last minute.
The system load average is the sum of the number of runnable
entities queued to the available processors and the number of
runnable entities running on the available processors, averaged
over a given period of time [30].
Heap memory: Returns the current memory usage of the heap that
is used for object allocation [30].
Cms old gen: Returns the number of objects, copied in memory
by the garbage collector from the young generation to the old
generation [31].
Thread count: Returns the current number of live threads includ-
ing both daemon and non-daemon threads [30].
Among the available metrics provided by the MBeans interfaces,
hese are especially useful because, together, they provide infor-

ation on resource consumption referring to all simulated faults.
Fig. 1. Overview of fault injection reinforcement learning process.

Specifically, denial-of-service fault affects CPU time and load aver-
age, memory leak affects heap memory and cms old gen and finally
thread explosion affects thread count and CPU time.

3. Algorithm

As stated before, our model combines mechanisms studied in
Forrest’s negative selection algorithm for protecting computer sys-
tems [8] and Castro’s clonal selection algorithm (CLONALG) for
solving complex machine learning tasks, like pattern recognition
and multimodal optimization [10]. In our algorithm the nega-
tive selection feature is crucial in detecting faults, whereas the
clonal selection feature promotes adaptation. The major differ-
ence between our algorithm and the ones mentioned before is the
fault injection reinforcement learning process, which contributes to
the improvement of the general performance of the model and
drastically decreases the number of false positives. Reinforcement
learning is learning by interacting with an environment in order
to automatically determine the ideal behavior within a specific
context. The learner is not told which actions to take, instead he
must discover which actions yield the most reward by trying them
[32]. Our algorithm uses reinforcement learning with the aim to
improve the model accuracy in detecting faults. The procedure is
autonomous and consists in injecting a fault into the monitored sys-
tem by intercepting and changing the metrics values outside their
usual ranges, and, after that, by checking whether the model detects
it. As an example of a fault injection, consider the following metric
values: CPU time = 20 and load average = 5 (the values of other met-
rics are irrelevant now). Injecting a denial-of-service fault might
result in changing the metrics to the following values: CPU time = 90
and load average = 50. The learning process dynamics uses basically
two types of feedback: (1) positive: cloning as positive reinforce-
ment received by faults correctly detected; (2) negative: elimina-
tion or mutation as negative reinforcement received respectively
by wrong detection of faults or no detection at all (see Fig. 1 for
details about the fault injection reinforcement learning process).

The algorithm uses mutation and selection principles based on
affinity measure between vectors, which is essential to the progres-
sive adaptation of the monitoring model. Such behavior will lead
to an increase on the overall affinity of the detector population.
In addition, the affinity concept unifies a wide variety of combi-
nations by allowing even a fault to be detected by matching only
some complementary parts of the vectors. Besides, a method of
approximate detection is of paramount importance for monitor-
ing software applications because faults provoke different impact
in their characteristic metrics. The algorithm has four phases. Note
that in the first three phases one must ensure that the system is not
affected by real faults because, if so, the faulty behavior would be
incorrectly considered as typical.

The algorithm:
1. Self set generation
1.1 periodically collect metrics from the target monitoring sys-

tem (see Section 2 for details about the metrics chosen);

1098 R. Ligeiro / Applied Soft Computing 24 (2014) 1095–1104

2

3

4

F
r
1

Fig. 2. Example of a vector signature containing all collected metrics.

1.2 create a vector composed by all the metrics that together
represent a signature of the system at that moment. Fig. 2
shows an example of a vector signature;

1.3 insert the signature into the self set. If the number of selfs is
enough, go to phase 2 or else go to step 1.1.

. Detectors set generation
2.1. generate a random signature vector representing an imma-

ture lymphocyte known hereafter as detector;
2.2. calculate immature detector affinity measure with each

vector signature of the self set (see Fig. 3). The affinity is cal-
culated as the difference between signature’s and detector’s
metrics. A signature metric n matches a detector metric m,
if and only if |n − m| < 3. If the immature detector matches
any self, reject it and go to step 2.1 or else proceed to the
next step;

2.3. insert the immature detector, which has passed the self fil-
tration into the detectors set. If the number of detectors is
enough, go to phase 3, or else go to step 2.1 again.

. Learning process
3.1. periodically inject faults by generating random values for

metrics outside their usual ranges. Calculate the fake signa-
ture affinity with each detector of the detectors set. In case
of a match, clone the activated detectors and slightly mutate
the metrics;

3.2. periodically check all the past detections and slightly mutate
detectors without any detection until now;

3.3. periodically collect metrics and calculate signature affinity
with each detector of the detectors set. If a fault is detected
without being injected (false positive) eliminate the detec-
tor(s) that wrongly detected it;

3.4. if enough faults were injected, leave current learning pro-
cess and proceed to phase 4 or else go to step 3.1.

. Monitoring
4.1. periodically collect metrics from the target monitoring sys-

tem;
4.2. create a vector composed with all the metrics that together

represent a signature of the system at that moment;
4.3. calculate signature affinity with each detector of the detec-

tors set (the process is the same as depicted in Fig. 3). If the

signature matches, signalize a fault by displaying an error
message on the console identifying the type of the fault and
its corresponding metric values. Go to step 4.1.

ig. 3. Affinity measure match between a signature and a detector. A signature met-
ic n matches a detector m, if and only if |n − m| < 3. Affinity vector is composed by
’s to represent position activation and 0’s to non-active metric positions.
Fig. 4. A vector signature and the three “fault detection schemas”.

As mentioned above, denial-of-service fault affects the CPU time
and load average group of metrics, memory leak affects heap mem-
ory and cms old gen group of metrics and finally thread explosion
affects thread count and CPU time group of metrics. We named these
three groups as “fault detection schema”. The term is based on John
Holland’s schema theorem for genetic algorithms [33]: a schema
identifies a subset of strings with similarities at certain string pos-
itions. A “fault detection schema” is a binary string of length 5, where
1’s represent the positions of the signature vector whose metrics
must match the same detector positions for a fault be signalized.
For other signature vector positions we use the asterisk to be a
wildcard character whose bit could be either 0 or 1. This represen-
tation allows us to identify not only the occurrence of more than
one fault at same time, but also its respective types. Fig. 3 already
depicted this representation in the affinity vector result. Consider
now Fig. 4 that illustrates a signature example and the three “fault
detection schemas”. Suppose a “fault detection schema” bit string as
11,000, which indicates a match in first (CPU time metric) and sec-
ond (load average metric) positions of the vector, in this case a
denial-of-service fault is signalized by our model.

Our monitored application is a web application developed in
Java Enterprise Edition (Java EE) deployed in a Weblogic application
server that communicates to a MySQL database storing a financial
credit dataset downloaded from UCI Irvine Machine [34]. This appli-
cation offers five different services: list all clients, create all clients,
show client, update client and remove client.

Only very rarely the activity of the software system remains
constant during the day. There are periods where accesses are
higher, then lower, then higher again and so on. In many cases
these periods tend to follow the same daily pattern. If these changes
were not considered, it would be very difficult to monitor with a
unique self set storing all the signatures collected in different access
periods, which do not represent current typical behavior of the sys-
tem. Hypothetically we have considered six 4-h periods of distinct
accesses (see Fig. 5). This implies the four phases of the algorithm
should be run for each of the six different periods considered.

4. Results

JMeter [1] is a desktop application designed to simulate con-
current load on a variety of services in order to test its behavior,
analyze and measure overall performance. We used JMeter to per-
form the simulation of the six periods by sending simultaneous

virtual user accesses into the monitored application services. For
convenience in reducing the time of experimentation we simulated
the six periods in 6 min (1 min each) that corresponds to a day.
Table 1 lists a fixed quantity of simultaneous virtual users for the

R. Ligeiro / Applied Soft Computing 24 (2014) 1095–1104 1099

Fig. 5. Six periods and the corresponding six self sets.

Table 1
Quantity of simultaneous virtual users for the six different periods.

Period interval Virtual users

[0h00,4h00[1
[4h00,8h00[5
[8h00,12h00[25
[12h00,16h00[15
[16h00,20h00[10

s
t
t
R
i

e
p
p
n
m
t
e
p
o
w
u
W
m
b
a
i
f
e

a
r
l
i
p
d

r
o
t
b
(

Table 2
Reinforcement feedback actions of the learning process phase of the algorithm.

Action Quantity (detectors)

Clones 13,303
Eliminations 1,968

positives (fpos) and false negatives (fneg). For further details see
[24].
[20h00,24h00[20

ix periods throughout the simulation. Take notice that this quan-
ity of virtual users was considered appropriate taking into account
he resources used (MacBook Pro; 2.26 GHz Intel Core 2 Duo; 5 GB
AM). However, in other circumstances it may not achieve the

ntended purpose.
The metrics were collected from the monitored application

very 5 s that proved to be more than sufficient to guarantee
roper monitoring. To correctly evaluate the impact of the learning
rocess, initially our experiments were performed only with the
egative selection feature, without the learning process, and later
ore experiments were carried out using also the third phase of

he algorithm. In our experiments we set 100 as the amount of self
lements and 500 as the amount of detectors for each of the six
eriods. We injected a total of 100 faults (denial-of-service, mem-
ry leak and thread explosion) for each period. These parameters
ere compiled from a pilot, developed to test the impact of the val-
es variations as well as the computational load of the algorithm.
e conclude that the performance is affected by gathering of five
etrics of system resources that consume 2% of CPU load, as well as,

y the increase of the amount of detectors in the set which consume
pproximately 1% of CPU load per 250 detectors. In all experiments,
n the last phase of the algorithm (4. Monitoring) we simulated 90
aults (30 of denial-of-service, 30 of memory leak and 30 of thread
xplosion) into the monitored application.

Below, we present the results of a simulation that covers all the
lgorithm phases. At the end of this section we will present the
esults obtained without learning. The graphics of the metrics col-
ected for the several selfs belonging the six periods are illustrated
n Figs. 6 and A1–A5. These graphics display the activity of the first
hase of the algorithm and, as expected, the number of virtual users
irectly influences metric values.

During the simulation, we send a total of 187,750 virtual user
equests to services of the monitored application. These requests
ccurred during the different period intervals equally divided by

he five services (37,550 requests each). The reinforcement feed-
ack actions that took place during the third phase of the algorithm
3. Learning process) are presented in Table 2.
Mutations 67,918
Total 83,189

The simulation stayed at the last phase of the algorithm (4. Mon-
itoring) during 2000 iterations. The results of a simulation with all
the phases of the algorithm are listed in Table 3.

It is important to notice that faults simulated as one schema type
can be wrongly detected as belonging also to others. As can be seen
from Table 3 for the 30 denial-of-service faults simulated, although
29 of them are correctly detected, 28 were wrongly detected as
thread explosion. No faults were simulated in the last 500 iterations
of the last phase of the algorithm, however the model detected 3
faults (false positives), 2 thread explosions and 1 denial-of-service.
Recall that virtual users keep doing requests that obviously affect
resource metrics.

To understand the influence that the learning process has on the
algorithm, a simulation without the third phase is presented next.
The model without learning relies exclusively upon the negative
selection feature, sufficient however to detect faults. In this case
the algorithm jumps directly from the second to the fourth phase.
Table 4 presents the results.

In these simulation 51 false positives were detected, 31 of which
being the denial-of-service and 20 the thread explosion. Observe
that there are much more faults detected of any type.

The work by Wong et al. [24] describes a evolutionary technique
that uses genetic programming to automatically evolve an accurate
utility function for a specific system, set of resource usage metrics,
and precision recall reference. As in the case in question (as here),
metrics are computed using sensor values that monitor a variety
of system resources (e.g., memory usage, processor usage, thread
count). There were five attacks and faults (denial of service, infinite
loop, log file explosion, memory leak and recursion) on the Jigsaw
web server1 intended to either deny Jigsaw the ability to perform its
normal hosting functions or add additional, malicious functionality
to the running server. Table 5 presents the results of the fitness
function scores for the evolved predicates as well as of both false
1 http://www.w3.org/Jigsaw/.

http://www.w3.org/Jigsaw/

1100 R. Ligeiro / Applied Soft Computing 24 (2014) 1095–1104

Fig. 6. Metrics of the “[0h00,4h00[” period interval (1 virtual user).

Table 3
Monitoring results of the simulated faults.

Fault simulated Quantity Detected Detected Detected

Schema Denial-of-service Memory leak Thread explosion
Denial-of-service 30 29 0 28
Memory leak 30 2 30 0
Thread explosion 30 3 0 27
Total 90 34 30 55

Table 4
Monitoring results of the simulated faults without reinforcement learning.

Fault simulated Quantity Detected Detected Detected

Schema Denial-of-service Memory leak Thread explosion
Denial-of-service 30 28 23 30

i
h
e

T
F

Memory leak 30 28

Thread explosion 30 24

Total 90 80

From the results presented above it is easy to conclude that,

n terms of efficiency, what distinguishes these techniques is the
igher quantity of wrong faults detected by our algorithm (we will
xplain the reason for this in the next section). Despite performing

able 5
� fitness function scores for the evolved predicates.

 ̌ Value F� score fpos rate fneg rate

0.5 0.996344 0.000% 1.835%
1 0.998327 0.000% 0.335%
2 0.998786 0.539% 0.016%
30 27
2 25

55 82

well, by reducing the problem to a single utility function the
approach presented by Wong et al. has difficulties in determining
the root cause and other details of the faults, and our approach has
a clear advantage in this matter.

5. Discussion and conclusion

When comparing the graphics of Figs. 6 and A1–A5, one sees a

pronounced difference between some metric values, while others
do not seem to be influenced by the virtual user requests varia-
tion. The reason is that the services provided by the monitored
application merely perform basic database CRUD (create, read,

mputi

u
r

r
m
p
s
t
s
m
s

t
d
t
m
i
f
d
t
p

r
t
c
F
a
s
s
m

d
t
t
a
o
(
d
T
s
u
o
s

l
m
t

R. Ligeiro / Applied Soft Co

pdate, delete) operations, thereby not very demanding for all the
esources used here.

The learning process contributed, through reinforcement
ewarding actions, to the overall adaptation of the monitoring
odel. By examining Table 2, it is easy to infer that the learning

rocess affected many detectors. The 67,918 mutations in detectors
chemas values mean that there are a huge quantity of detectors
hat did not detect any fault. Mutations increase the probability of
uccess in detecting future fault injections. Note that the detector
ight have multiple mutations and that the population is not con-

tant because it grews after cloning and reduces after elimination.
There were 1968 eliminations, which indicate incorrect detec-

ion occurring in two ways: injection of a fault of one type, but
etected as being of other type (from another schema) and detec-
ion of a fault where no fault injection occurred. The elimination

easure, in general terms, gives an idea of the model accuracy and
mplies that the negative selection feature, by itself, scores lots of
alse positives detections. The reason is that those eliminations are
one in detectors gathered during the second phase, that proved
o be bad detectors. The elimination of these detectors naturally
romotes the decrease of false positive detections.

There were 13,303 detectors cloned. Cloning was initially car-
ied out at a lower pace, gradually increasing as model learning. As
he detector population grew promoting the fittest detectors, the
loned ones are also good candidates to be cloned in the future.
urthermore, there were more detectors signalizing the same fault
nd the cloning mechanism insured that the model converged to
uitable detection intervals, contributing globally for better deci-
ions. At the end, the population was higher because there were
ore clones than eliminations.
Of all the 90 simulated faults (see Table 3), 86 were correctly

etected (29 of denial-of-service, 30 of memory leak and 27 of
hread explosion). This is a very high detection rate (96%). However,
here were too many faults signaled as being of one type when actu-
lly were from other type. For instance, the model detected only
ne less fault of thread explosion (28) than of denial-of-service
29) for injected faults of this last type. These results might cast
oubt on the model accuracy, especially of the learning process.
he fact is that these results occurred due to the peculiarities of the
imulation JMeter scripts used in the experimentation. When sim-
lating a denial-of-service, 100 virtual users’ requests create a lot
f threads, which are collaterally detected by the thread explosion
chema.
Unquestionably, only three false detections by the model with
earning is a good result. Lets us now pass to the results of the

odel without learning to better support our conclusion. Through
he observation of the results presented in Table 4, it is easy to see
ng 24 (2014) 1095–1104 1101

(even taking into account the peculiarities of the JMeter scripts)
that the model without learning has limitations in identifying the
type of the simulated faults. A more serious limitation is the huge
amount of false positives (51 in 500 iterations). Nevertheless, of all
the 90 simulated faults 83 were correctly detected (28 denial-of-
service, 30 memory leak and 25 thread explosion). This is a very
high detection rate (92%) slightly below the results of the model
with learning (96%).

The main goal of this research was to develop a computational
model to monitor software applications developed in Java. We do
consider it as a proof-of-concept whose insights might contribute
to the development of monitoring tools and future studies in the AIS
field. It was demonstrated that the algorithm shows good perfor-
mance in detecting faults, as well as in identifying their type. Acting
alone, the negative selection feature detects too many false posi-
tives, but the reinforcement learning process enables the overall
model to become robust and efficient. Learning minimizes incon-
sistencies inherent in the randomness of the detectors during the
negative selection. Without difficulty this model is adaptable to
other kinds of monitored applications. The model is very flexible
because it is based in performance indicators and consumption
resources, which enables it to be generalized to other technolo-
gies.

Some of the results concerning the identification of the different
types of faults were not as expected. They occurred due to pecu-
liarities in the simulation JMeter scripts used in experimentation. A
limitation of the algorithm is that during the first three phases one
must ensure that the system is not affected by real faults because,
if so, the faulty behavior would be incorrectly considered typical.
After that, when entering the last phase, the algorithm would not
readapt. Another shortcoming is the need of prior identification of
the metrics affected by the faults.

For future research we plan to implement a feature that auto-
matically readapts to changes in typical behavior of the monitored
application, if they actually occur. Although we consider denial-of-
service, load average and thread explosion sufficient to evaluate
our model, we intend to experiment other types of faults to con-
firm the model performance and accuracy. Additionally, it will be
of interest to integrate this model with others, especially with
fault tolerance, fault prevention, fault removal and fault forecast-
ing. Another important prospective work will be implementation
of supervised learning mechanism that corrects false positive
detections.
Appendix A.

See Figs. A1–A5.

1102 R. Ligeiro / Applied Soft Computing 24 (2014) 1095–1104

Fig. A1. Metrics of the “[4h00,8h00[” period interval (5 virtual users).

Fig. A2. Metrics of the “[8h00,12h00[” period interval (25 virtual users).

R. Ligeiro / Applied Soft Computing 24 (2014) 1095–1104 1103

Fig. A3. Metrics of the “[12h00,16h00[” period interval (15 virtual users).

Fig. A4. Metrics of the “[16h00,20h00[” period interval (10 virtual users).

1104 R. Ligeiro / Applied Soft Computing 24 (2014) 1095–1104

h00[”

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[
[

[36] M. Jaradat, R. Langari, A hybrid intelligent system for fault detection and sensor
Fig. A5. Metrics of the “[20h00,24

eferences

[1] Jmeter, http://jakarta.apache.org/jmeter/
[2] Cacti, http://www.cacti.net/
[3] Nagios, http://www.nagios.org/
[4] JBoss RHQ, http://www.jboss.org/jopr/
[5] Hyperic, http://www.hyperic.com/
[6] N. Delgado, A.Q. Gates, S. Roach, A taxonomy and catalog of runtime software-

fault monitoring tools, IEEE Trans. Softw. Eng. 30 (2004) 859–872.
[7] D. Radjenovic, M. Herico, R. Torkar, A. Zivkovic, Software fault prediction met-

rics: a systematic literature review, Inf. Softw. Technol. 55 (2013) 1397–1418.
[8] S. Forrest, S. Perelson, L. Allen, R. Cherukuri, Self-nonself discrimination in a

computer, in: IEEE Symp. Res. Secur. Priv., Los Alamitos, CA, 1994.
[9] J. Kephart, A biologically inspired immune system for computers, in:

Proceedings of Artificial Life IV: The Fourth International Workshop on the
Synthesis and Simulation of Living Systems, MIT Press, 1994, pp. 130–139.

10] L.N. de Castro, F.J. Von Zuben, The clonal selection algorithm with engineering
applications, in: GECCO’00 – Workshop Proceedings, 2000, pp. 36–37.

11] L.N. de Castro, J. Timmis, Artificial Immune Systems as a Novel Soft Computing
Paradigm Soft Computing, vol. 7, Springer-Verlag, 2003, pp. 526–544.

12] L.N. de Castro, Fundamentals of Natural Computing: Basic Concepts, Algo-
rithms, and Applications, Chapman & Hall/CRC Computer & Information Science
Series, 2006.

13] M. Mitchell, Complexity: A Guided Tour, Oxford University Press, New York,
2009.

14] D. Floreano, C. Mattiusi, Bio-Inspired Artificial Intelligence: Theories, Methods,
and Technologies, The MIT Press, Cambridge, MA, 2008.

15] A. Perelson, G. Weisbuch, Immunology for physicists, Rev. Mod. Phys. 69 (4)
(1997) 1219–1267.

16] H. Pagels, The Dreams of Reason: The Computer and the Rise of the Sciences of
Complexity, Simon and Schuster, New York, 1988.

17] A. Somayaji, S. Hofmeyr, S. Forrest, Principles of a computer immune system,
in: Proceedings of the Second New Security Paradigms Workshop, 1997.

18] P.J.C. Branco, J.A. Dente, R.V. Mendes, Using immunology principles for fault
detection, IEEE Trans. Ind. Electron. 50 (2) (2003).
19] D. Peters, Automated Testing of Real-Time Systems; Technical Report, Memo-
rial University of Newfoundland, 1999.

20] P. D’haeseleer, S. Forrest, P. Helman, An immunological approach to change
detection: algorithms, analysis and implications, in: Proc. of the IEEE Sympo-
sium on Computer Security and Privacy, 1996.

[

 period interval (20 virtual users).

21] D. Dasgupta, S. Forrest, Novelty-detection in time series data using ideas from
immunology, in: Proc. International Conference on Intelligent Systems, Reno,
Nevada, 1996.

22] A. Hofmeyr, S. Forrest, Architecture for an artificial immune system, Evol. Com-
put. 8 (4) (2000) 443–473.

23] Z. Ji, D. Dasgupta, Revisiting negative selection algorithms, Evol. Comput. 15 (2)
(2007) 223–251.

24] S. Wong, M. Aaron, J. Segall, K. Lynch, S. Mancoridis, Reverse engineering
utility functions using genetic programming to detect anomalous behav-
ior in software, in: Proc. 17th Working Conference on Reverse Engineering,
2010.

25] A. Avizienis, J. Laprie, Dependable computing: from concepts to design diver-
sity, Proceedings of the IEEE 74 (May (5)) (1986) 629–638.

26] A. Avizienis, J. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy
of dependable and secure computing, IEEE Transactions on dependable and
secure computing 1 (1) (2004).

27] A. Avizienis, J. Laprie, B. Randell, C. Landwehr, Fundamental Concepts of
Dependability; Tech. Rep. N01145, LAAS-CNRS, 2001.

28] M. Hsueh, T. Tsai, R. Iyer, Fault injection techniques and tools, IEEE Comp. 30
(4) (1997) 75–82.

29] S.J. Perry, Java Management Extensions, O’Reilly Media, Sebastopol, CA, 2002.
30] Server Administration Guide, Oracle Utilities Meter Data Management, Version

2.0.0 (OUAF 4.0.2), E18183-01, 2010.
31] Memory Management in the Java HotSpotTM Virtual Machine, Sun Microsys-

tems, Santa Clara, CA, 2006.
32] R. Sutton, A. Barto, Reinforcement Learning: An Introduction, The MIT Press,

Cambridge, MA/London, England, 1998.
33] J. Holland, Adaptation in Natural and Artificial Systems;, University of Michi-

gan Press, Cambridge, MA/London, England, 1975, Reprinted by The MIT Press
(1992).

34] UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/
35] C. Catal, B. Diri, Investigating the effect of dataset size metrics sets and fea-

ture selection techniques on software fault prediction problem, Inf. Sci. 179 (8)
(2009) 1040–1058.
fusion, Appl. Soft Comput. 9 (2009) 415–422.
37] I. Aydin, M. Karakose, E. Akin, A multi-objective artificial immune algorithm for

parameter optimization in support vector machine, Appl. Soft Comput. 11 (1)
(2011) 120–129.

http://jakarta.apache.org/jmeter/
http://www.cacti.net/
http://www.nagios.org/
http://www.jboss.org/jopr/
http://www.hyperic.com/
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0030
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0035
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0040
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0045
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0050
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0055
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0060
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0065
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0070
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0075
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0080
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0085
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0090
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0095
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0100
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0105
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0110
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0115
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0120
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0125
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0130
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0135
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0140
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0145
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0145
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0145
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0145
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0145
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0145
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0145
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0145
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0145
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0145
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0155
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0160
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0165
http://archive.ics.uci.edu/ml/
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0175
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0180
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185
http://refhub.elsevier.com/S1568-4946(14)00386-X/sbref0185

	Monitoring applications: An immune inspired algorithm for software-fault detection
	1 Introduction
	1.1 Self/non-self discrimination
	1.2 Vaccination
	1.3 Adaptive immune response

	2 Preliminary knowledge
	3 Algorithm
	4 Results
	5 Discussion and conclusion
	References
	References

