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Abstract—This paper proposes the implementation of a zero-
order Takagi–Sugeno–Kang (TSK)-type fuzzy neural network
(FNN) on graphic processing units (GPUs) to reduce training time.
The software platform that this study uses is the compute unified
device architecture (CUDA). The implemented FNN uses struc-
ture and parameter learning in a self-constructing neural fuzzy
inference network because of its admirable learning performance.
FNN training is conventionally implemented on a single-threaded
CPU, where each input variable and fuzzy rule is serially pro-
cessed. This type of training is time consuming, especially for a
high-dimensional FNN that consists of a large number of rules.
The GPU is capable of running a large number of threads in par-
allel. In a GPU-implemented FNN (GPU-FNN), blocks of threads
are partitioned according to parallel and independent properties
of fuzzy rules. Large sets of input data are mapped to parallel
threads in each block. For memory management, this research
suitably divides the datasets in the GPU-FNN into smaller chunks
according to fuzzy rule structures to share on-chip memory among
multiple thread processors. This study applies the GPU-FNN to
different problems to verify its efficiency. The results show that
to train an FNN with GPU implementation achieves a speedup of
more than 30 times that of CPU implementation for problems with
high-dimensional attributes.

Index Terms—Classification, compute unified device architec-
ture (CUDA), fuzzy neural networks (FNNs), graphic processing
unit (GPU), neural fuzzy systems.

I. INTRODUCTION

R ESEARCHERS have successfully applied fuzzy neural
networks (FNNs) in several areas, such as classification

and regression. The fuzzy IF–THEN rule derivation is often dif-
ficult and time consuming, and it requires expert knowledge.
FNNs provide a solution to address the common bottleneck in
fuzzy system design. Many researchers have proposed FNNs
with parameter and/or structure learning [1]–[15]. In [1] an
adaptive-network-based fuzzy inference system (ANFIS) is pro-
posed. The ANFIS is learned through parameter learning. The
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structure of the ANFIS is fixed, and the input space is par-
titioned in a grid type. This kind of partition faces the curse
of dimensionality because the number of fuzzy rules increases
exponentially as the dimension of the input space increases.
To address this problem, many FNNs with offline [3] or on-
line [2], [4]–[15] structure-learning ability have been proposed.
These structure-learning algorithms determine the number of
rules using the idea of clustering. The objective is to design
a well-performed FNN with the least number of rules. How-
ever, the problems considered in the FNNs [3]–[12], [15] are
regression problems, where the network input dimensions are
smaller than 10. For these low-dimensional regression prob-
lems, an FNN with a small rule set may achieve satisfactory
performance. For many problems, such as pattern classifica-
tion, tens or hundreds of attributes are fed as inputs to an FNN.
These high-dimensional classification problems usually require
an FNN with a large rule set to achieve good performance. Even
an FNN with a small rule set may achieve good performance
for some of these high-dimensional problems, and the user may
need to try a larger rule set to see whether or not much better per-
formance can be achieved. To train an FNN with a large rule set
for high-dimensional problems is a computationally intensive
task. The aforementioned FNNs are implemented on a single-
threaded CPU, where datasets are processed in series instead of
in parallel. For some problems, FNN training on a CPU may take
several days. FNNs are suitable for implementation on parallel
processing units because they can be expressed as data-parallel
computations due to the parallel processing property of fuzzy
rules and input variables. This property motivates the proposal
to implement FNN using graphic processing units (GPUs) [16].
The GPU-implemented FNN (GPU-FNN) that are considered
in this paper uses the structure and parameter learning in a
self-constructing neural fuzzy inference network (SONFIN) [2].
Like the FNNs in studies [3]–[12] and [15], the structure and
parameter learning algorithms in the SONFIN were proposed to
design a well-performed fuzzy system with the least number of
rules. This study uses SONFIN learning because of its powerful
learning ability with a simple structure-learning approach. As
mentioned earlier, for the problems with high-dimensional in-
puts, a large number of rules may be inevitable to achieve good
performance even with network structure/parameter learning.
The GPU-FNN is proposed to address this computationally in-
tensive problem.

The GPU is a many-core multithreaded multiprocessor orig-
inally developed as a configurable graphics processor but re-
cently used as a programmable parallel processor [16]. The

1063-6706/$26.00 © 2011 IEEE
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Fig. 1. Structure of the GPU-FNN.

GPU executes multiple threads in parallel that makes possi-
ble the parallel processing of enormous datasets and arithmetic
operations in only one PC. GPU computing is becoming one
of the mainstream computing systems [17]. The GPU is espe-
cially well suited to solve computationally intensive problems
that can be expressed as data-parallel or task-parallel compu-
tations. Researchers have successfully applied GPU computing
to problems that are traditionally addressed by the CPU [16],
[18]–[21], with the GPU performance outpacing its CPU coun-
terpart. Though the GPU provides a platform for parallel pro-
cessing, performance of a problem that runs on it still depends
heavily on how the developer manages blocks of thresholds
and datasets. The proposed GPU-FNN uses a fuzzy rule-based
approach for block–thread and dataset management. This ap-
proach efficiently partitions the GPU-FNN operations into sev-
eral blocks of threads and the GPU-FNN datasets into chunks
for sharing among threads. The software for the implementa-
tion of the GPU-FNN is the compute unified device architecture
(CUDA) [22] that is developed by NVIDIA [23]. The CUDA
makes it possible for developers to implement parallel algo-
rithms on NVIDIA’s GPU with high-level language. This paper
verifies learning speed improvement of the GPU-FNN through
comparisons with its CPU counterpart by the usage of four
high-dimensional classification problems.

This paper is organized as follows. Section II describes the
structure and learning of the GPU-FNN. Section III describes the
basic concept of GPU hardware and CUDA software. Section IV
introduces the block-thread and data management in the GPU-
FNN by the use of the CUDA. Section V applies the GPU-
FNN to solve different problems and demonstrates the
learning-time speedup in comparison with its CPU counter-
part. Section VI presents discussions on the performance of the
GPU-FNN. Finally, Section VII presents the conclusion.

II. GRAPHIC-PROCESSING-UNIT-IMPLEMENTED FUZZY

NEURAL NETWORK STRUCTURE AND LEARNING

A. Structure of a Graphic-Processing-Unit-Implemented Fuzzy
Neural Network

This section describes the GPU-FNN structure. The zero-
order Takagi–Sugeno–Kang (TSK)-type GPU-FNN consists of
four layers, as shown in Fig. 1. Each rule in the GPU-FNN has

the following form:

Rule k: IF x1 is Ak1 And, . . . , And xn is Akn

THEN yl is wkl , k = 1, . . . , r (1)

where Akj is a fuzzy set, wkl is a real number, and r is the
total number of rules. The function of each layer is described as
follows.

In Layer 1, each node corresponds to one input variable. The
node first scales the range of each input variable, if necessary,
and transmits scaled input values to the next layer.

In Layer 2, each node corresponds to one fuzzy set and cal-
culates a membership value. In this layer, the fuzzy set Akj is
employed with the following Gaussian membership function:

Mkj (xj ) = exp

{
−

(
(xj − mkj )

2

σ2
kj

)}
(2)

where mkj and σkj denote the center and width of the fuzzy set,
respectively. The number of fuzzy sets in each input variable is
equal to the number of fuzzy rules.

In Layer 3, each node represents a fuzzy logic rule and per-
forms antecedent matching of this rule by the use of the follow-
ing AND operation:

μk (
⇀
x) =

n∏
j=1

Mkj (xj ) (3)

where
⇀
x = [x1 , . . . , xn ]. The number of nodes in this layer is

equal to the number of rules r.
In Layer 4, the number of output nodes is equal to the number

of output variables. Each node performs as a defuzzifier by the
use of a weighted average operation. The consequent parameter
wkl functions as link weight. The defuzzified output can be
written as follows:

yl = Φ ·
r∑

k=1

wklμk , Φ = 1
/ r∑

i=1

μi, l = 1, . . . , L (4)

where L is the number of output variables.

B. Structure Learning

Initially, there are no rules in the GPU-FNN. All rules are
constructed by the online structure learning that is used in the
SONFIN [2]. The firing strength μk (

⇀
x) in (3) is used as the

criterion to judge if a new fuzzy rule will be generated. For
the first incoming datum

⇀
x(0), a new fuzzy rule is generated

with the center and width of the Gaussian membership function
assigned as follows:

m1j = xj (0), j = 1, . . . , n, and σ1j = σinit (5)

where σinit(=0.35 in this paper) is a prespecified value that de-
termines the initial width of the first cluster. For the succeeding
incoming data (t), find

K = arg max
1≤k≤r(t)

μk (
⇀
x(t)) (6)

where r(t) is the number of existing rules at time t. If μk ≤ μth ,
a new rule is generated, where μth ∈ (0, 1) is a prespecified
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threshold that decays with training iteration number. Once a
new rule is generated, the next step is to assign the center and
width of the corresponding membership function. Here, these
values are assigned by

m(r(t)+1)j = xj (t) (7)

σ(r(t)+1)j = β · ‖⇀
x − ⇀

m K ‖.2 (8)

where coefficient β (=0.5 in this paper) determines the overlap-
ping between two rules in the input space. This paper sets β to
be half the distance between membership function centers of the
new rule and the Kth rule so that there is a suitable overlapping
between the two neighboring rules.

For parameter learning, a gradient descent algorithm tunes all
consequent and antecedent parameters. Details of the learning
algorithm are described as follows. Let yd

l be the lth desired out-
put for an input datum. The objective function to be minimized
is defined by

E =
1
2

L∑
l=1

(yl − yd
l )2 . (9)

The antecedent and consequent parameters are updated by

wkl(t + 1) = wkl (t) − η
∂E

∂wkl
,

∂E

∂wkl
=

(
yl − yd

l

)
· Φ · μk

(10)

mkj (t + 1) = mkj (t) − η
∂E

∂mkj
,

∂E

∂mkj

=
L∑

l=1

[
(
yl − yd

l

)
· (wkl − yl)] · Φ · μk

· 2 (xj − mkj )
(σkj )

2 (11)

σkj (t + 1) = σkj (t) − η
∂E

∂σkj
,

∂E

∂σkj

=
L∑

l=1

[
(
yl − yd

l

)
· (wkl − yl)] · Φ · μk

· 2 (xj − mkj )
2

(σkj )
3 (12)

where η is a learning constant that controls the converging speed
of the gradient decent algorithm.

III. BASIC CONCEPTS OF GRAPHIC PROCESSING UNIT AND

COMPUTE UNIFIED DEVICE ARCHITECTURE

Recently, the GPU has been transformed into the general-
purpose GPU. The programmable GPU has evolved into a high
parallel, multithreaded, multicore processor with huge compu-
tational power and memory bandwidth. This paper uses a GPU-
accelerated solver for FNN implementation. The GPU used is
the NVIDIA Tesla C1060 computing processor, which is an
extended computing card, connected to a PC by means of a
PCI-Express interface. The NVIDIA Tesla C1060 has a total

Fig. 2. Block diagram of the NVIDIA Tesla C1060 computing processor
hardware.

Fig. 3. CUDA programming model.

of 4 GB of dedicated memory with a 102 GB/s peak memory
bandwidth. This architecture can satisfy the requirements of
massive data-parallel operations. Fig. 2 shows the hardware of
the Tesla C1060. Thirty streaming multiprocessors (SMs) make
up the Tesla C1060. Each SM is a single-instruction-multiple-
data (SIMD) processor and is composed of eight streaming
processors (SPs). Each SM has 16 KB of the on-chip shared
memory. The shared memory is a type of high-speed memory,
and data can be read (or written) by all eight SPs in an SM. The
Tesla C1060 has read-only texture memory (cache) and constant
spaces. Textures can be used to avoid uncoalesced loads from
global memory, thereby improving performance.

Fig. 3 shows the CUDA programming model. The model is
a set of massive threads that run in parallel. A thread block
is a number of SIMD threads that work on an SM at a given
time, can exchange information through the shared memory, and
can be synchronized. The operations are systematized as a grid
of thread blocks. For operation parallelism, the programming
model allows a developer to partition a program into several
subproblems, each of which is executed independently on a
block. Each subprogram can be further divided into finer pieces
that perform the same function for execution on different threads
within the block. For dataset parallelism, datasets can be divided
into smaller chunks that are stored in the shared memory, and
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Fig. 4. Flow chart of GPU-FNN implementation for each incoming data (t), where GPU(a,b) means that there are a blocks and b threads per block to implement
a function, and SM and GM represent the shared memory and global memory, respectively.

each chunk is visible to all threads of the same block. This local
data arrangement approach reduces the need to access off-chip
global memory, which reduces data access time.

In GPU-FNN, blocks of threads are partitioned based on fuzzy
rules so the number of blocks is equal to the number of fuzzy
rules. This partition method makes good use of the parallel
and independent properties of fuzzy rules. The partition method
also considers the ease of the block number scalability when
the rule number changes in the structure-learning process of
the GPU-FNN. For memory management in the GPU-FNN,
datasets are also divided into chunks according to the fuzzy
rules. By this means, datasets used in the same fuzzy rule are
fast read (with coalescing data access) from global memory
and are allocated to the same shared memory. As introduced
in Section IV-A, these rule-relevant datasets are stored in the
concatenated shared memory to make possible the use of tree-
reduction techniques for membership value multiplication and
firing strength summation. The GPU-FNN enables the function
of texture memory fetching. The proposed memory management
approach reduces data access time.

IV. GRAPHIC-PROCESSING-UNIT-IMPLEMENTED FUZZY

NEURAL NETWORK USING THE COMPUTE

UNIFIED DEVICE ARCHITECTURE

The GPU-FNN network output functions in (2)–(4) and the
parameter learning functions in (10)–(12) are parallel. There-

fore, these functions are implemented by the use of GPUs,
as introduced in the following sections. The structure-learning
functions in (5)–(8) are simple and do not possess much paral-
lelism. Therefore, these functions are implemented in the CPU.
Fig. 4 shows the flowchart of the GPU-FNN implementation,
where the number of blocks and the number of threads per block
for each network function, and the input–output memory access
of each thread is also indicated in the flowchart. Fig. 5 shows the
timing of each GPU-FNN function for an input data ⇀

x(t). For
clarity, it is assumed that no rules are generated (which holds
for most input data) after structure learning in this figure. If a
new rule is generated, then additional GPU time of T1 + T2 is
necessary for the computation of membership functions and fir-
ing strength of the new rule. The implementation idea in Fig. 5
is that the same mathematical function with the only difference
in rule, input, or output indexes is implemented in parallel by
the use of blocks of threads. These functions mainly include
the membership function in (2), rule strength in (3), output
computation in (4), consequent parameter update in (10), and
antecedent parameter update in (11) and (12). For the GPU-FNN
with high-dimensional inputs, the number of functions that can
be implemented in parallel is large. For example, there are 500
membership functions that can be implemented in parallel for a
GPU-FNN with 10 rules and 50 inputs. The maximum number
of parallel processing thresholds in a block is relatively too small
to implement these functions. Therefore, this paper implements
GPU-FNN by the usage of blocks of thresholds. The number of
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Fig. 5. Timings of the functions implemented by the use of the GPU-FNN, where the white block and shaded block in the GPU represent a “block” and “thread,”
respectively.

Fig. 6. Block-thread partition to calculate the membership value Mkj when the rule number is r = 3, and the input variable number is n = 3.

blocks is equal to the number of rules as explained in Section III.
The following details the implementation approach.

A. Rule Firing Strength Calculation

Fig. 6 shows the partition of the membership function calcu-
lation in (2) into blocks of threads. The number of blocks (grid
dimension) is equal to the number of fuzzy rules r. Block k is
responsible for the calculation of the n membership valuesMkj ,

j = 1, . . . , n, for rule k. The number of threads (block dimen-
sion) in each block is equal to the number of input variables n.
Each thread does the same function of membership value com-
putation, with the only difference being input data values, and
puts the computed result into the shared memory. In each block,
a tree-reduction technique is used to implement the product of all
of the membership values [see (3)] stored in the shared mem-
ory. Fig. 7 shows the tree-reduction technique for multiplica-
tion implementation. The concatenated data s[0], . . . , s[2q − 1]
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Fig. 7. Tree-reduction multiplication technique to calculate the membership
product to obtain the rule firing strength.

Fig. 8. Block-thread partition to compute the product wk l · μk , when the rule
number is r = 3, and the output variable number is L = 2.

(q = �log2 n�) in the shared memory are divided into two parts,
s[0], . . . , s[2q−1 − 1] and s[2q−1 ], . . . , s[2q − 1], where s[i] =
1 for n ≤ i ≤ 2q − 1. Fig. 7 shows the case when q = 2. In
the first stage, a total of 2q−1 multiplications, s[0] · s[2q−1 ],
s[1] · s[2q−1 + 1], . . . , and s[2q−1 − 1] · s[2q − 1] are executed
in parallel by threads. The pairwise parallel multiplication ap-
proach continues for q times after which all data are multiplied
and the final result (μi) is stored ins[0]. Without the use of the
tree-reduction operation, the n − 1 multiplications for the com-
putation of μi in each block takes n − 1 multiplication times
while the tree reduction takes only qmultiplication times. Take
the case when n = 100 as an example. It takes 10 and 99 mul-
tiplication times for implementations with and without the use
of the tree-reduction technique, respectively. The reduction in
time is much significant for an FNN with a higher number of
input dimensions as considered in this paper.

B. Network Output Calculation

One block with multiple threads by the use of the tree-
reduction technique in Section IV-A (with multiplication re-
placed by summation) is applied to find the firing strength sum-
mation

∑r
k=1 μk in (4). The reciprocal of the summation value

Φ is calculated and stored in the shared memory.
Fig. 8 shows the block-thread partition for computing wkl · μk

in (4). The number of blocks is equal to the number of rules r,

and the number of threads per block is equal to the number of
output variables L. Each thread in the same block k computes
the same function of multiplication wkl · μk , with μk read from
the shared memory. Then, the GPU-FNN uses one block with
L threads to compute yl . In this block, thread l, first, computes
the summation of all wkl · μk (i.e.,

∑r
k=1 wklμk ) and, then,

multiplies the summation value with Φ to get the network output
yl .

C. Consequent Parameter Learning

Fig. 9 shows the block–thread partition for consequent pa-
rameter learning in (10). The number of blocks is equal to r and
the number of threads in each block is equal to L. Each thread
computes the same function (10) with the only difference being
input data values. The lth thread in the kth block computes the
update of wkl . Data Φ and μk are stored in the shared memory
of each block because each thread of the same block uses the
same Φ and μk values, which reduces the time to access data
from global memory.

D. Antecedent Parameter Learning

Fig. 10 shows the block–thread partition for antecedent pa-
rameter learning in (11) and (12). The number of blocks is equal
to r and the number of threads in each block is equal to n. Each
thread computes the same parameter update functions in (11)
and (12) with the only difference being input data values. Like
consequent parameter tuning, Φ and μk are read from the shared
memory in each block. In addition, the repeated used data xj ,
mkj , and σkj are prestored in registers to reduce access time.

V. EXPERIMENTS

The GPU-FNN was implemented on a PC with a dual
2.66 GHz Intel CPU Nehalem X5550 with 24 GB RAM and one
NVIDIA Tesla C1060 computing card with NVIDIA driver ver-
sion 8.15.11.9038 and CUDA 2.3, running Linux CentOS 5.41 .
The GPU-FNN was written in C++ by the use of NVIDIA’s
CUDA. Implementation of the same FNN by the use of the
CPU was conducted on the same computer for learning time
comparison. The CPU and GPU codes were implemented with-
out the use of OpenMP, message passing interface (MPI), or any
other multitask library. Four classification problems and one re-
gression problem were solved by the GPU-FNN. Table I shows
statistics of datasets (which include attribute format, the num-
bers of attributes, classes, training, and test data) in Examples
1–5. It should be emphasized that in these examples the major
concern is the speed of the GPU-FNN instead of the classifica-
tion performance. Therefore, this paper does not do any cross
validation in the classification problems.

Example 1 (DNA Dataset 1). The DNA dataset is from the
Statlog collection [26]. This dataset consists of 3186 samples
in which 2000 samples are used for training and the left 1186
samples are used for testing. Each sample consists of 180 at-
tributes, each of which takes the binary value 1 or 0. The dataset
has three classes in total. This experiment set the learning rate
η to 0.02. The same learning rate was also used in the following
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Fig. 9. Block-thread partition to update the consequent parameter wk l when the rule number is r = 3, and the output variable number is L = 2.

TABLE I
STATISTICS OF DATASETS IN EXAMPLES 1–5 USED FOR GPU-FNN EVALUATION

TABLE II
GPU-FNN CLASSIFICATION PERFORMANCE FOR DIFFERENT NUMBERS OF RULES AND THE TRAINING TIME AND TEST ERROR RATE

COMPARISON BETWEEN GPU AND CPU IN EXAMPLE 1

Fig. 10. Block-thread partition to update the antecedent parameters mkj and
σk j when rule number r = 3 and input variable number n = 3.

three classification examples. The number of iterations was set
to 5000. Table II shows the training time, and training and
testing results of the GPU-FNN for different thresholds μth .
Table II shows that a larger value of μth generates a larger num-
ber of rules and smaller values of training error rates in general.

When the number of rules is large, overtraining occurs and the
test error rate increases. Table II also shows the training time
and test error rates of CPU implementation for these different
numbers of rules. The test error rates of the GPU and CPU
implementations are the same. The results show that the GPU
implementation significantly reduces training time compared
with CPU implementation, especially when the rule number is
large. A speedup of 36 times is achieved when the rule num-
ber is 137. The classification performance of the GPU-FNN
was compared with reported results of different classifiers [24].
Table III shows the classifiers used for comparison, which
include FNN [25], radial-basis-function-kernel-based support
vector machine (SVM) [27], reduced SVM (RSVM) [28], and
support-vector-based FNN (SVFNN) [24]. The results indicate
that the GPU-FNN achieves a lower test error rate than the
classifiers used for comparison with a much smaller model size.

Example 2 (DNA Dataset 2). The DNA dataset is
from the University of California-Irvine (UCI) repository
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TABLE III
COMPARISONS OF DIFFERENT CLASSIFIERS FOR THE DNA DATASET IN EXAMPLE 1

TABLE IV
GPU-FNN CLASSIFICATION PERFORMANCE FOR DIFFERENT NUMBERS OF RULES AND THE TRAINING TIME AND TEST ERROR RATE

COMPARISON BETWEEN GPU AND CPU IN EXAMPLE 2

TABLE V
GPU-FNN CLASSIFICATION PERFORMANCE FOR DIFFERENT NUMBERS OF RULES AND THE TRAINING TIME AND TEST ERROR RATE

COMPARISON BETWEEN GPU AND CPU IN EXAMPLE 3

(http://archive.ics.uci.edu/ml/). The task is to classify two types
of splice junctions in DNA sequences: exon/intron (EI) or in-
tron/exon (IE) sites. This dataset consists of 1000 training sam-
ples and 2175 test samples. Each sample consists of 60 attributes.
The number of iterations was set to 500. Table IV shows the
training time, training, and testing results of the GPU-FNN for
different thresholds μth .When the number of rules is too small
(such as five rules), the test error rate is high. As in Example
1, when the number of rules is large, overtraining occurs and
the test error rate increases. Table IV also shows the training
time and testing result of the CPU. As in Example 1, the test
error rates of the GPU and CPU implementations are the same.
Table IV shows that the GPU implementation, significantly, re-
duces training time compared with CPU implementation except
when the rule number is very small. When the rule number is 5,
the GPU implementation shows more training time than CPU
implementation. Analysis of the break on GPU speedup is given
in Section VI.

Example 3 (Handwritten ZiPcode Recognition). The task is
to classify ten handwritten digits automatically scanned from
the envelopes by the U.S. Postal Service. The dataset is from
(http://www-stat.stanord.edu/ElemStatLearn) [29]. The dataset
consists of 7291 samples for training and 2007 samples for test-
ing. Each sample consists of 256 attributes, which represent
the 256 pixel values in each 16×16 gray image. The number
of training iterations was set to 500. Table V shows the per-
formance of the GPU-FNN for different numbers of thresholds
and rules. The performance is poor when the number of rules
is smaller than 10. Table V also shows the training time and
test result of CPU implementation. As in Examples 1 and 2, the
test error rates of the GPU and CPU implementations are the
same. Table V shows that the GPU implementation significantly
reduces training time compared with CPU implementation.

Example 4 (Insurance Company Dataset). The dataset is from
the UCI repository. The dataset consists of 5822 samples (5822
customer records) for training and 4000 samples for testing,
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TABLE VI
GPU-FNN CLASSIFICATION PERFORMANCE FOR DIFFERENT NUMBERS OF RULES AND THE TRAINING TIME AND TEST ERROR RATE

COMPARISON BETWEEN GPU AND CPU IN EXAMPLE 4

TABLE VII
GPU-FNN IDENTIFICATION PERFORMANCE FOR DIFFERENT NUMBERS OF RULES AND THE TRAINING TIME AND TEST RMSE

COMPARISON BETWEEN GPU AND CPU IN EXAMPLE 5

with each sample that consists of 86 attributes. The dataset has
two classes in total. Each attribute is normalized in [0, 1]. The
number of iterations was set to 5000. Table VI shows the per-
formance of the GPU-FNN for different numbers of thresholds
and rules. The GPU-FNN achieves a training error rate of 0%
when the rule number is 527, and the test error rate is 9.275%.
Table VI also shows the training time and test result of CPU
implementation. As in Example 2, Table VI shows that GPU im-
plementation significantly reduces the training time compared
with CPU implementation except for a very small number of
rules. When the rule number is 808, the CPU implementation
takes more than 6 d for training. GPU implementation takes
approximate 6 h. Different from the comparison results in Ex-
amples 1 to 3, Table VI shows that there is a small difference
between the test error rates of GPU and CPU implementations
for a large number of rules. In contrast with Example 1, the
input attributes in the example are real numbers instead of bi-
nary numbers. In contrast with Examples 2 and 3, the number
of training iterations in this example is ten times longer. A
larger number of training iterations causes a larger difference
in the learned FNNs parameter values between GPU and CPU
implementations.

Example 5 (Plant Identification). In Examples 1 to 4, the
number of GPU-FNN inputs are larger than 50. This example
studies the GPU-FNN performance when the input dimension
is small. This example uses the GPU-FNN to identify a nonlin-

TABLE VIII
COMPARISONS OF DIFFERENT FNNS FOR THE IDENTIFICATION

PROBLEM IN EXAMPLE 5

ear system. The plant that is to be identified is guided by the
difference equation

yd(t + 1) =
yd(t)

1 + y2
d (t)

+ u3(t). (13)

In accordance with [2], [7], the training patterns are generated
with u(t) = sin(2πt/100). For the purpose of comparisons,
50 000 training data and 200 testing data are produced. The
GPU-FNN inputs are yd(t) and u(t), and the desired output is
yd(t + 1). Performance is evaluated by the use of the root-mean-
squared error (RMSE). The learning coefficient η is set to 0.07.
Table VII shows the performance of the GPU-FNN for different
numbers of thresholds and rules. Because the input dimension
is small, Table VIII shows that a small number of rules achieve
good performance. Table VIII also shows the training time and
test result of CPU implementation. The test RMSE difference
between GPU and CPU implementations is smaller than 10−7
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TABLE IX
TRAINING TIME COMPARISONS OF DIFFERENT GPU IMPLEMENTATION APPROACHES AND CPU FOR THE DATASET (ATTRIBUTES = 60) IN EXAMPLE 2

for different numbers of rules. Unlike the results in Examples
1–4, this example shows that the training time of the GPU im-
plementation is smaller than that of CPU implementation for
different numbers of rules. Because there are only two network
inputs in this example, training time of CPU implementation is
less than 1 s even when the rule number is 31. For this kind of
simple learning problem, it is unnecessary to use the GPU-FNN
for implementation. Benefits and disadvantages of the usage of
the GPU-FNN in contrast to the CPU-FNN are discussed in the
next section.

For comparison purposes, Table VIII shows the reported test
errors of different FNNs that were applied to the same problem
[7], which include an evolving Takagi–Sugeno fuzzy model
(ETS) [5], a simplified version of the ETS (Simpl_ETS) [6],
and a sequential adaptive fuzzy inference system (SAFIS) [7].
These FNNs use first-order TSK-type rules, where the number of
consequent parameters in each rule is larger than the GPU-FNN.
The results show that the test error of the GPU-FNN is smaller
than those of the FNNs used for comparison. The number of
rules in the GPU-FNN is approximately half of those in the ETS
and simpl_ETS. The GPU-FNN uses one more rule than the
SANFIS. However, the total number of network parameters in
the SANFIS is 56 and is larger than the number of 45 in the
GPU-FNN. This example shows that the GPU-FNN, as well
as other FNNs with structure/parameter learning, is proposed
to decrease the space of the fuzzy system and achieve good
performance at the same time. However, as shown in Examples
1 to 4, there are still several problems (especially, for problems
with high-dimensional attributes) that need a large set of rules
to achieve good performance. Implementation by the usage of
the GPU-FNN for these problems helps reduce training time to
obtain a well-performed model.

VI. DISCUSSIONS

A. Analysis

This section analyzes the benefits and shortcomings of the
GPU-FNN in contrast to the CPU-FNN. In the GPU-FNN, there
are nr, nr, and nL threads to compute the membership func-
tions, update antecedent parameters, and update consequent pa-
rameters, respectively. The speedup of the GPU-FNN heavily
depends on the network input and output dimensions, and the
number of rules. In Examples 1 and 3, the input and output
dimensions of the GPU-FNN are larger than 100 and 2, respec-
tively. The results in Tables II and V show that the GPU-FNN
shows a speedup in training time, even when the number of
rules is smaller than 5. In Examples 2 and 4, there are only

two network outputs and the network input dimension is in the
range of [50, 100], which is smaller than those in Examples 1
and 3. The results in Tables IV and VI show that the GPU-FNN
achieves a speedup when the number of rules is large (such as
larger than 30). When the number of rules is too small (such as
smaller than 10), the GPU-FNN takes longer training time than
CPU-FNN. However, Tables II and V show that the training and
test performances have an obvious degradation for a small set of
rules. As a result, FNNs with a large set of rules are inevitable in
the two examples. The results in Examples 1 to 4 show that the
GPU-FNN achieves a significant speedup for the problems with
the number of attributes being larger than approximately 50. For
the problems whose number of attributes is smaller than 50, an
FNN with a small number of rules may achieve good perfor-
mance. For these problems, the GPU implementation may take
longer training time than CPU implementation (as Example 5
shows) though the former uses multiple thresholds. The major
reasons are explained as follows. First, the GPU implementa-
tion needs additional data transfer between different memories,
such as between host (PC) and global memory, and between
global memory and shared memory. Second, the processing
speed of the CPU is faster than the multicore processor in the
GPU. As a result, a sufficient number of parallel processing
threads in the GPU-FNN implementation is necessary to show
its benefits. Therefore, the proposed GPU-FNN is most suitable
to train FNNs with high-dimensional inputs (in particular, for
those higher than 50).

B. Comparisons

This section compares the GPU-FNN implementation per-
formance with another new GPU design approach. As stated in
Section VI-A and shown in Fig. 6, computation of the firing
strength μi in (3) is implemented by the use of the blocks of
threads followed by the tree-reduction technique. Each thread
in Fig. 6 does little work and only computes a membership
value Mkj . This section tries a different design approach. In
the new design approach, a block of threads that executes the
membership functions for a single rule is implemented. That is,
there are r threads in a block and the kth thread computes the n
membership values Mkj , j = 1, . . . , n, followed by their direct
product to get μk . Each thread in this new design does much
work than the GPU-FNN. The total number of parallel pro-
cessing tasks in this new design is r in contrast with nr in the
original GPU-FNN implementation. Tables IX and X show the
training times of this new design [denoted as GPU (new)] for the
datasets in Examples 2 (attributes = 60) and 5 (attributes = 2),
respectively. Table IX shows that the new GPU implementation
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TABLE X
TRAINING TIME COMPARISONS OF DIFFERENT GPU IMPLEMENTATION APPROACHES AND CPU FOR THE DATASET (ATTRIBUTES = 2) IN EXAMPLE 5

approach takes long training time than the GPU-FNN imple-
mentation whether a large or a small rule set is implemented. In
contrast with CPU, the GPU (new) implementation also helps
reduce training time for a large set of rules. In Example 5, the
FNN input dimension is only 2. Table X shows that training
time of the GPU-FNN is only slightly shorter than that of the
GPU (new) because the number of threads n in each block of the
GPU-FNN is only 2. In conclusion, the GPU-FNN is much more
efficient than the GPU (new) design approach. The speedup in
training time increases with the number of FNN inputs n.

VII. CONCLUSION

This paper proposes the implementation of an FNN on a
GPU to reduce FNN training time. In the GPU-FNN, blocks
of threads are partitioned according to the parallel and inde-
pendent properties of fuzzy rules. This partition makes good
use of the shared memory and parallel processing properties
of threads. Experimental results show that the GPU implemen-
tation significantly reduces training time compared with CPU
implementation for FNNs with high-dimensional inputs. This
GPU-FNN makes it more practical to apply an FNN to solve
different problems, especially those with high-dimensional at-
tributes. Experimental results of training and test error rates of
the GPU-FNN demonstrate that it is worthwhile to implement
an FNN on a GPU. More applications of the GPU-FNN will be
studied in the future.
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