
Proceedings of the 8th IEEE GCC Conference and Exhibition, Muscat, Oman, 1-4 February, 2015

978-4799-8422-0/15/$31.00©2015 IEEE

An Intelligent Dynamic Replica Selection Model

within Grid Systems

Nour Mostafa, Ismaeel Al Ridhawi, Ahmed Hamza

College of Engineering and Technology

American University of the Middle East (AUM)

Egaila, Kuwait

{Nour.Moustafa; Ismaeel.Al-Ridhawi; Ahmed.Hamza}@aum.edu.kw

Abstract— Grid systems have emerged as a means of sharing

computational resources and information. Providing services for

accessing, sharing and modifying large databases is a crucial task

for grid management systems. This paper proposes an artificial

neural network (ANN) prediction mechanism that provides an

enhancement to data replication solutions within grid systems.

Current replication services often exhibit an increase in response

time, reflecting the problems associated with the ever increasing

size of databases. The proposed replica selection prediction

model will locate files for incoming jobs using users’ historical

executions. Experimental results demonstrate the significant

gains achieved by the proposed solution in terms of high

accuracy and low overheads.

Keywords— artificial neural networks; data-intensive grids;

distributed databases; replication strategies; cloud computing.

I. INTRODUCTION

Data Grid systems are growing in complexity. They are
handling ever-greater numbers of users, resources and job
requests. The data files produced by and used in Data Grid
systems are also increasing in size and number. Delays in job
execution and longer job execution times are a consequence of
systems having to search for, transfer and process large
volumes of data in response to individual user requests.

While the volume of data that needs to be accessed and
intelligently managed on a Data Grid today is of the order of
terabytes, it is expected to reach petabytes in the near future.
Ensuring efficient access to such huge and widely distributed
data is a serious challenge to network and Grid designers.

 Replication is one widely accepted solution in distributed
environments. By storing data at more than one site, if a data
site fails, a system can operate using replicated data, thus
increasing availability and fault tolerance. At the same time,
as the data are stored at multiple sites, it is often possible to
find the required data close to the site where the request
originated, thus increasing the performance of the system,
reducing bandwidth consumption, and improving scalability
of the overall system ‎[1].

In order to tackle the problem of scalability, we propose a
neural network based intelligent replication service for grid
systems that will optimize the response time in meeting the
user’s‎ data‎ requirements. The proposed model presents a

predictive component to predict the location of data required
by‎ users.‎ This‎ predictive‎ element‎ will‎ determine‎ a‎ file’s‎
location either in cache, local or remote resources by using a
neural‎network‎to‎analyze‎user’s‎past‎history.

II. BACKGROUND & RELATED WORK

Replication is regarded as one of the major optimization
techniques for providing fast data access ‎[2]. Replication
services are designed to facilitate and support data grid
applications. A replication service aims to select the most
appropriate data replica from those available in order to
minimize application access time. Replica catalogues (RCs)
maintain indexes that represent the mapping between logical
file names (LFNs) and physical file names (PFNs). When a
system requests an LFN that does not exist in the local
regional replica catalogue (regionalRC1 in Figure 1), the local
regional RC forwards the request to the root replica catalogue
(TopregionalRC in Figure 1). If the file is registered, the root
replica catalogue gives the local regional RC the address of
the remote regional RC (regionalRC2 in Figure 1) at which the
resource is held. The local regional RC then requests the PFN
from the remote regional RC and the PFN is forwarded to the
system that originated the request.

The following example sets the process in context. A
scientific experiment site generates a large volume of data
which are stored in a data centre. The data centre notifies the
local regional RC of a list of available data sets in the centre.
The local regional RC in turn notifies the root RC of the new
data sets that have been generated and stored in the data
centre. A user submits a job that causes his/her system to
request a copy of a data set. The local regional RC is checked
first and if the data set is stored at the local centre, the PFN
will be sent to the requesting system. Otherwise the local
regional RC will send a request to the root RC and the process
will proceed as described in the preceding paragraph.

Locating files for job requests is one of the most important
issues to be considered by Grid infrastructure developers. The
majority of Data Grid systems locate files by using a replica
catalogue, either hierarchical (as just described) or centralized
‎[3]. The work of Sayal et al. ‎[4] was one of the first replica
approaches.‎Sayal’s‎aim‎was‎to‎select‎the‎closest‎replica‎to‎the‎
user according to selected metrics – e.g. the distance between
the user and the replica, and the latency associated with the

Proceedings of the 8th IEEE GCC Conference and Exhibition, Muscat, Oman, 1-4 February, 2015

World Wide Web and the HyperText Transfer Protocol
(HTTP). The work provided a distributed algorithm for a
replication-based approach to web services: the choice of
location for storing a replica is based on statistics from
previous executions; a server accepts a resource only if the
expected waiting time for its clients is reduced.‎Sayal’s‎work‎
was aimed at web applications and not grid-intensive
applications.

A hierarchical model was introduced by H. Stockinger ‎[5]
and the EU Data Grid project ‎[6]. In this model the elements
of the RC are connected as a web tree. The root of the tree
stores some information about files (e.g. filenames) and a list
of leaf RCs, while the leaf RCs store mappings between
filenames and the resources on which the corresponding
physical files reside. Information is switched between the root
and the leaves if one RC fails to process the query. On the
other hand, a centralized model, of which Napster ‎[7] is an
example, uses only one RC that handles all queries sent by
resources and users. However, as users, resources and queries
grow in number, the RC is likely to prove a major bottleneck
in the system ‎[8].

These approaches use a simple matchmaking approach
based on filename. Replica catalogues work tolerably well for
small systems. However, in more complex configurations, job
turnaround time increases each time a requested file proves
not to be registered in a particular RC and an alternative RC
has to be sought. Current databases already store petabytes of
information and there is a continuing trend towards still larger
databases and increasingly complex retrieval paths. Intelligent
management of very large scale data transfer over wide area
networks is therefore a particularly pressing problem.
Retrieval strategies will increasingly have to cope with
requests for multiple large files stored in dispersed locations.
Centralized algorithms are likely to be ineffective: a
scheduling algorithm that focuses only on maximizing job
utilization, and disregards costs associated with fetching
remote data, is certain to be inefficient ‎[9].

Different distributed replica management strategies have
also been proposed in the literature ‎[10], ‎[11], ‎[12], ‎[13], and
‎[14]. Unfortunately, research to date has described the general

idea of replication and the implementation of replication
services within small systems such as mobile and
disconnected computers or file systems and Internet services.
Now researchers are turning to the problem of scalability in
the face of increasing database size and larger numbers of
data-intensive applications.

In this paper, the proposed solution for locating files uses a
traditional approach for searching, i.e. searching local, top, or
remote replica catalogues. The proposed approach uses an
artificial neural network (ANN) that predicts file locations
after training on characteristics taken from Gridsim ‎[15].
Artificial neural networks are computer programs that are
trained to recognize input patterns and associate them with
particular outputs – in this case the task is to associate
different combinations of job attributes with file locations
‎[16]. ANNs are suitable for training over hundreds or even
thousands of passes through large data sets ‎[17], ‎[18]. Data
Grid deals with such very large data sets. ANNs have an
advantage over a potential rival technology, expert systems
(ES), in that ANNs are domain free, which means chemistry,
physics, computer and genetic domains can work in the same
Grid. ESs, by contrast, are domain-specific. Beltran ‎[19] used
an ES approach in P2P and overlay networks systems. Finally
ANNs are adaptive and need little domain-specific
programming – in marked contrast to ESs ‎[17], ‎[18].

III. A PREDICTIVE ANN MECHANISM

The proposed model introduced in this paper provides an
efficient solution to access local and remote files. The model
assumes the following:

 There will be multiple users, spread over different
remote sites.

 Users will submit a number of tasks (jobs).

 Tasks (jobs) can require one or more files.

 Files can be located in local or remote resources.

Where appropriate, existing techniques for improved file
access – including file replication – are incorporated into the
proposed system. Crucially the proposed system uses the new
ANN prediction tool, reducing the overhead of job turnaround
time by predicting file locations for incoming job queries.

The prediction tool uses‎a‎neural‎network‎trained‎on‎users’‎
past‎history‎to‎anticipate‎a‎file’s‎location‎either‎in‎cache,‎local‎
resources or remote resources. Figure 1 shows the interaction
between a typical current replication model and the new
predictive model.

Artificial neural networks generally have at least three
layers. In such models these layers are referred to as input,
middle (or hidden), and output ‎[20]. Data enter the system at
the input layer. The input data are passed to intermediate
processing units in one or more hidden layers. The hidden
layers process the inputs and pass the new signal on to the
output layer. The network learns through repeated adjustment
of the connection weights between the artificial neurons.
Adjustment proceeds according to a back-propagation learning
algorithm: if the actual output deviates sufficiently from the
desired output, back-propagation causes error information to
be passed back through the network; this error information is

Fig. 1. Interaction between the prediction model and GridSim.

Proceedings of the 8th IEEE GCC Conference and Exhibition, Muscat, Oman, 1-4 February, 2015

used to adjust the connection weights, and the process is
repeated over multiple passes through the training data until
actual and desired output is sufficiently close for training to
stop.

It has been observed that many users of parallel computers
do the same work and use the same data repeatedly ‎[21]. The
proposed model can therefore exploit habitual job parameters
from execution logs (user id, filename, file location, resource
id, etc.) to predict the file locations required for new jobs.
After a task is completed, the parameter sets which are used to
find file locations are stored in an RC database. These
parameter sets are used as training vectors for an artificial
neural network, which will then be used to predict file
locations for future jobs. A large relevant training set is one
factor that increases accuracy of prediction ‎[22].

The neural network tool that has been used in this project
is justNN ‎[23], a prototyping and development system for the
training and testing of multilayer perceptions. A major
advantage of using justNN is that it allows input
characteristics to be defined, and output produced, in the form
of numeric and textual data. This fits with our model
structure.

One way of reducing the expected delays in accessing
remote files is to predict file (i.e. data) requirements and to
pre-load (or pre-access) this data. The proposed prediction
model supports this strategy by predicting file location,
thereby reducing the overheads associated with potentially
complicated searches in local, top and remote replica
catalogues. Importantly, the proposed prediction system
supports a number of Data Grid environments. Our results
(Section IV) show a good performance in small, medium and
large systems, promising a flexible, expandable and
sustainable solution. In current Grid configurations, especially
at times of high system usage, the sequence of accesses within
a hierarchy of replica catalogues becomes a very significant
obstacle to efficient job processing. Using the proposed
prediction model, the replica management service is able to
determine the location of a file in one step and inform the
requesting job immediately.

In the proposed technique, our ANN uses the 4 key
parameters previously identified (User ID, Resource ID,

Required File, and File Size) to predict file locations for new
jobs. If a job completes successfully on the basis of a file
location‎prediction,‎the‎job‎parameters‎are‎stored‎in‎a‎‘history‎
database’‎separate‎from‎the‎RC.‎This‎history‎database‎ is used
to support our prediction model (PM). Each time a job enters
the system, the database is searched, and, if it contains the file
location for a particular job configuration (some instantiation
of the 4 key attributes), the result is sent back. Otherwise the
ANN makes a new prediction, which if successful, is also
added to the prediction model for future use. If a prediction is
incorrect, or if there is no match in the prediction model for an
incoming job, a conventional RC search is initiated.

IV. EXPERIMENTAL EVALUATION

Identification of appropriate features for inclusion in a
training set or corpus plays a vital part in the development of
an artificial neural network. In our case, the candidate
features for the training set included details of users, jobs,
resources and files. They represented a subset of GridSim
characteristics that, to a human observer, are the most likely
predictors of file locations. The data were available from
GridSim’s‎historical‎profiler,‎which‎stores‎user,‎resource,‎and‎
file characteristics for every job run on the system. Having
identified candidate features, we then ran a series of
experiments to help us identify a minimum feature set that
would allow accurate prediction while reducing the
complexity of the prototype‎ANN’s‎processing‎task.‎

Figure 2 illustrates the initial stages of modelling the ANN
training data. A set of 500 feature vectors was used for the
ANN training process. At the start of the process to identify
the minimum feature set, each feature vector comprised a total
of 14 elements as shown below, these being divided into 7 job
characteristics and 7 file characteristics:

1. Job characteristics
1.1. User ID: the user or owner ID of this job.
1.2. Job ID: the job ID - GridLetID.
1.3. Resource ID: the latest resource ID that processes this

Gridlet.
1.4. Actual CPU Time: the total execution time of this job

in a given Grid Resource ID.
1.5. ExecStartTime: The latest executions start time.
1.6. Required File: the list files that this job needs for

execution.
1.7. ExecFinishTime: the finish time of this job in a Grid

Resource.
2. File characteristics:

2.1. Name: the file name.
2.2. Owner Name: the owner name of this file.
2.3. Attribute Size: the size of this object (in byte). This

object size is not the actual file size. Moreover, this
size is used for transferring this object over a
network.

2.4. Size: the file size (in MBytes).
2.5. Resource ID: the resource ID that stores this file.
2.6. Creation Time: the file creation time (in

milliseconds).
2.7. Transaction Time: the last transaction time of this file

(in seconds).

Fig. 2. The acquisition workflow of the required training data.

Proceedings of the 8th IEEE GCC Conference and Exhibition, Muscat, Oman, 1-4 February, 2015

To evaluate the prediction model and determine the
minimum feature set, the prototype ANN was reconfigured
and run with progressively fewer input characteristics. Its
output predictions were then compared on each run to the
actual resource locations in simulated replica catalogues. It
was determined that the input layer can be reduced, without
loss of predictive accuracy, to four critical input
characteristics: user id, resource id, required file, and file size
(Table I).

The generation of the training data (inputs and actual
outputs – the‎ latter‎ being‎ the‎ file‎ locations,‎ the‎ ‘desired‎
output’‎ that‎ the‎ANN‎must‎ attempt‎ to‎ predict)‎was‎ achieved‎
through use of GridSim.

Figure 3, showing output from the ANN development tool
during the first training run, has been split vertically to

accommodate the 14 columns that represent the 14 input
features to the ANN. These columns are followed by a final
column‎ that‎ represents‎ the‎ ANN’s‎ predicted‎ file‎ location‎
(remote, local or cache) for each input vector. In each case,
predicted and actual file location matched.

 Figure 4 shows the changing error results in the course of
the‎first‎training‎run.‎‎In‎an‎artificial‎neural‎network,‎‘error’,‎or‎
‘error‎signal’,‎ is‎ the‎difference‎between‎the‎actual‎output‎and‎
the desired output for a particular ANN configuration and a
particular set of feature vectors. Figure 4 represents the
maximum error rate at a given point in the training process,
the minimum error rate and the average error rate. At the end
of the first training run, with 14 input features and 5 cycles
through‎a‎set‎of‎100‎training‎vectors,‎the‎ANN’s‎average‎error‎
rate was already below (and therefore bettered) the target error
rate, though the maximum error rate was still a little high. In 5
subsequent training runs we used progressively fewer input
features from each of the training vectors but the same number
of training cycles. With only 4 input features the lowest
maximum error rate was achieved at the end of the training
process and the average error rate was still within target. Four
input features – user id, resource id, required file, and file size
– were therefore used for the predictor model that we tested
subsequently. Details of all 6 training runs are shown in Table
I.

 To test our new predictive approach, we generated a
prediction model using actual query data from GridSim and
the resultant file location predictions from our ANN. A
number of jobs were executed, first using the RC model then
the prediction model. The time taken to get file locations in
both models was calculated. The following values were used
in our calculations. Basic job turnaround time (JTTS)
represents the processing overhead for a single job, excluding
times associated with resource search, and is a measure of
overall system performance. Replica catalogue time (RCT)
and prediction model time (PMT) respectively represent time
taken to return a file location by each of the strategies under
consideration. TRC in this instance represents time taken to
access and exit the top replica catalogue. JTT is the total
overhead for the job comprising processing and access times.

TABLE I. MAXIMUM AND AVERAGE ERROR RATES IN TRAINING RUNS.

nuRnTnTniarT Turni

seRnrueF

nuRnTnTgi

seoncuF

mRmnMrMi

Error

aRne

1 41 411 151.0

2 8 411 151.0

3 7 411 151.0

4 0 411 151.0

5 . 411 15110

6 1 411 1510.

Fig 3. Segment of 1st training run.

Fig 4. Learning progress in 1st training run.

Proceedings of the 8th IEEE GCC Conference and Exhibition, Muscat, Oman, 1-4 February, 2015

The following equations are used to calculate JTT.
Using the replica catalogue model:

 JTTRC = JTTS + TRC (1)

Using the prediction model:

 JTTPM = JTTS + PMT (2)

The following is an example of the formulae in action and

uses actual experimental data.

JTTS (basic job turnaround time) = 11.31s

TRC (top replica catalogue time) = 1.34s

PMT (prediction model time) = 0.3s

 JTTRC = 11.31 + 1.34 = 12.65 (3)

 JTTPM = 11.31 + 0.3 = 11.61 (4)

The full simulation results, as shown in Figure 5 and Table
II, show that for all scenarios JTTPM, which uses the prediction
model, is less than JTTRC, which uses replica catalogue model.

The overall time to execute 500 jobs using the RC model
was 6,325 seconds, while the overall time for the same
number of jobs using the prediction model was 5,805 seconds.

The difference between the RC model and the proposed model
is 520 seconds. The proposed model therefore reduces the
overall time taken for job processing by 9%.

It can be seen from Figure 6 that the PM approach
outperforms RC, showing significant time savings across the
complete load range of 500 to 2000 jobs.

V. CONCLUSION & FUTURE WORK

In summary, this paper describes a successful prediction
model for file location. Currently the process of locating files
uses a traditional catalogue search strategy, examining local,
top, and remote replica catalogues. The proposed approach
uses a neural network tool which is responsible for accurately
predicting locations of files based on characteristics taken
from GridSim. Prediction overhead is always required to be at
minimum because it adds to total turnaround time. The
magnitude of the prediction overhead depends on the type of
application being run. For smaller applications, the effect of
prediction delay is more obvious than those affecting
applications with larger execution times. In both cases a
smaller prediction overhead is always desirable. The results
presented in this paper demonstrate that the overhead from our
proposed prediction strategy is consistently lower than that
associated with the established replica catalogue search
strategy. We have demonstrated that that the time taken to get
a file location from an RC is higher than the time taken to get
the same file location using the new prediction model. The
RC model suffers from the problem that it does not store the
user’s‎history‎to‎inform‎its‎decisions‎on‎future‎execution:‎the‎
RC model treats each job as a new job. The prediction model
on the other hand uses past history to inform the system about
incoming queries, and the database is updated constantly with
new predictions generated by the ANN. The resulting
prediction model is simple, has low overhead, and provides
very high accuracy.

We plan to extend our model to include other state-of-the-
art search and prediction mechanisms ‎[24], ‎[25] used in
closely related disciplines to enhance and provide a much
higher accuracy and lower overhead.

REFERENCES

[1] G.‎Sushant‎ and‎R.‎Buyya,‎ “Data‎Replication‎Strategies‎ in‎Wide‎ ‎Area‎‎
Distributed Systems”,‎‎Enterprise‎Service‎Computing:‎From‎Concept‎to‎
Deployment, Robin G. Qiu (ed), pp. 211-241, ISBN 1-599044181-2,
Idea Group Inc.,Hershey, PA, USA, 2006.

[2] H. Bell, G. Cameron, L. Capozza, A. Millar, K. Stockinger, and
F.Zini,‎ “OptorSim‎ - A Grid Simulator for Studying Dynamic Data

Fig 6. Number of jobs versus response time in RC and PM.

TABLE II. SIMULATION RESULTS: JTT USING RC AND PM.

No. of jobs JTT using RC
JTT using

PM
Difference

500 6325s 5805s 520s

100 12650s 11610s 1040s

1500 18975s 17415s 1560s

Total 37950s 34830s 3120s

Average 12650s 11610s 9%

Fig 5. Number of jobs versus response time in RC and PM.

Proceedings of the 8th IEEE GCC Conference and Exhibition, Muscat, Oman, 1-4 February, 2015

Replication Strategies. International Journal of High Performance
Computing Applications, 17(4), 2003.

[3] A.‎Sulistio,‎U.‎Cibej‎,‎B.‎Robic,‎and‎R.‎Buyya,‎“A‎Toolkit‎for‎Modelling‎
and Simulation of Data Grids with Integration of Data Storage,
Replication‎and‎Analysis”,‎Elsevier‎Science,‎17‎January‎2006.

[4] M.‎ Sayal,‎ P.‎ Scheuermann‎ and‎ R.‎ Vingralek,‎ “Content‎ replication‎ in‎
web++”.‎In:‎Proceedings‎of‎ the‎2nd‎IEEE‎International‎Symposium‎on‎
Network Computing and Applications‎ (NCA‟03),‎ April‎ 16-18, IEEE
Computer Society Washington, DC, USA, Doi:
10.1109/NCA.2003.1201130.

[5] H. Stockinger. Database Replication in World wide Distributed Data
Grids. PhD thesis, Fakult¨at f¨urWirtschaftswissenschaften und
Informatik, UniversitätWien, 2001.

[6] The European DataGrid project homepage. http://eu-
datagrid.web.cern.ch/eu-datagrid, 2005.

[7] “Napster,‎http://www.napster.com/”.

[8] S. Venugopal, R. Buyya, and K. Ramamohanarao, 2006. A taxonomy of
Data Grids for distributed data sharing, management, and processing.
ACM Comput. Surv. 38, 1 Jun. 2006.

[9] R.‎Kavitha,‎and‎I.‎Foster,‎“Decouplin‎Computation‎and‎Data‎Scheduling‎
in Distributed Data-Intensive‎Applications”.‎HPDC‎2002:‎352-358.

[10] A.‎S.‎Tanenbaum‎and‎M.‎v.‎Steen,‎”Distributed‎Systems,‎Principles‎and
Paradigms”‎first‎edition,‎Prentice‎Hall,‎‎2002.

[11] D.H.‎ Ratner,‎ “Roam:‎ A‎ Scalable‎ Replication‎ System‎ for‎ Mobile‎ and‎
Disconnected‎ Computing”‎ PhD‎ Thesis‎ ‎ University‎ of‎ California,‎ Los‎
Angeles, CA January 1998.

[12] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Mak, and G.
Popek”Rumor:‎ Mobile‎ Data‎ Access‎ Through‎ Optimistic‎ Peer-to-Peer
Replication,”‎Workshop‎on‎‎Mobile‎Data‎Access,‎November‎1998.

[13] R. Guy, J. Heidmenn, W. Mak, T. Page, G. Popek, and D.
Rothmeier,”Implementation‎ of‎ the‎ Ficus‎ Replicated‎ File‎ system,”‎
Proceedings of the summer Usenix Conference, 1990.

[14] Y.‎ Saito‎ and‎ H.‎ Levy,‎ ”Optimistic‎ Replication‎ for‎ Internet‎ Data‎
Services”,‎ In‎Proc.‎of‎ the‎14th‎Intl‎Conf.‎on‎Distributed‎Computing,‎p.‎
297-314, October 2000.

[15] R.‎Buyya,‎ ‎and‎M.‎Murshed,”‎GridSim:‎a‎ toolkit‎ for the modeling and
simulation of distributed resource management and scheduling for Grid
computing”,‎John‎Wiley‎&‎Sons‎Ltd,‎2002.

[16] S.‎ Yashpal,‎ S.‎ Alok,‎ “NEURAL‎ NETWORKS‎ IN‎ DATA‎MINING”,‎
Journal of Theoretical and Applied Information Technology, 2005 -
2009 JATIT.

[17] C.‎Kriegger‎“Nueral‎Network‎in‎Data‎Mining”,‎1996.

[18] S.‎ Duggal,‎ R.‎ Chhabra‎ ,‎ “Learning‎ Systems‎ and‎ Their‎ Applications:‎
Future‎of‎Strategic‎Expert‎System”.‎Issues‎in‎Information‎Systems,‎Vol.‎
III, 2002.

[19] A.‎ Beltran,‎ “Efficient‎ Access‎ to‎ Distributed‎ Information using
Structured Peer-to-Peer‎ Systems,”‎ PhD‎ Thesis,‎ Queen’s‎ University‎
Belfast, 2008.

[20] C. Krieger, Neural Networks in Data Mining, technician report, 1996.

[21] A.‎Chervenak,‎ I.‎ Foster,‎C.‎Kesselman,‎C.‎Salisbury,‎S.‎ Tuecke,‎ “The‎
Data Grid: Towards Architecture for the Distributed Management and
Analysis‎‎‎of‎‎ ‎‎Large‎Scientific‎‎‎Datasets”.‎‎‎Journal‎‎‎‎of‎ ‎‎ ‎Network‎‎‎
and ComputerApplications, 23: pp. 187–200, 2001.

[22] I. Rao and E.-N.‎ Huh,‎ “A‎ probabilistic‎ and‎ adaptive‎ scheduling‎
algorithm using system-generated predictions for inter-grid resource
sharing”,‎Journal‎of‎‎Supercomput.‎(45),‎185–204 (2008).

[23] “JustNN‎Neural‎Netowork‎software,‎http://www.justnn.com/”.

[24] Y.‎ Al‎ Ridhawi,‎ I.‎ Al‎ Ridhawi,‎ A.‎ Karmouch,‎ A.‎ Nayak,‎ “A‎ context-
aware and location prediction‎framework‎for‎dynamic‎environments”,‎in‎
Proc. 7th IEEE International conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), October 10-12,
2011.

[25] I.‎ Al‎ Ridhawi,‎ N.‎ Samaan,‎ A.‎ Karmouch,‎ “Simulator-Assisted Joint
Service-Level-Agreement and Vertical-Handover Adaptation for Profit
Maximization”,‎ in‎ Proc.‎ 12th IEEE 12th International Symposium on
Applications and the Internet (SAINT), July 16-20, 2012.

