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Shimmy vibration of aircraft nose landing gear is damped and controlled using a nonlinear control which 
is optimal and robust against parametric uncertainties and external disturbances. Shimmy vibration is the 
lateral and torsional vibrations in the wheel of the aircraft that is self-excited and causes instability in 
high speed performances which can damage the landing gear of the aircraft, its fuselage and even may 
result in hurting the passengers. Thus, control and damping of this vibration are extremely important. 
In this paper a robust optimal controller is designed by integrating sliding mode control (SMC) together 
with State-Dependent Riccati Equation (SDRE) to prevent the shimmy vibrations in aircraft nose landing 
gear. The SDRE compensator controls the nonlinear system in an optimal way while the sliding mode 
controller guarantees its stability against uncertainties and disturbances. The proposed controller can 
effectively suppress the shimmy vibration of the landing gear with variable taxiing velocity and wheel 
caster length. To verify the optimal performance and robustness of the proposed controller, vibration 
response of the system is simulated by MATLAB software and its performance and efficiency are verified 
using comparative analysis. Considerable improvement can be seen in the performance of the closed 
loop system since not only the vibrations are effectively damped but also the consumption of energy is 
minimized.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

Shimmy vibration is a very important common phenomenon in 
the landing gear system during either the take off or landing of an 
aircraft. The required energy of this type of vibration is provided 
from the kinetic energy of the forward motion of the aircraft [1]. 
In the landing gear of a taxiing aircraft, shimmy is a state of self-
excited oscillations, caused by the dynamic reaction forces between 
elastic tires and the ground. In fact, shimmy is a combined oscilla-
tory motion of the landing gear in torsional, lateral and longitudi-
nal directions, caused by the interaction between the dynamics of 
the tire and the landing gear, with a frequency range of 10–30 Hz 
[2]. Though it can occur in both the nose and the main landing 
gear, however the shimmy of the nose wheel is more serious and 
common [3]. Shimmy is an unstable phenomenon and it is affected 
by certain combination of parameters such as mass, damping coef-
ficient, geometrical quantities, taxiing speed, excitation forces and 
nonlinearities such as friction and free play. Shimmy not only leads 
to instabilities which degrade comfort, but also it can affect the 
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pilot’s visibility and cause more dangerous results such as loss of 
control, excessive tire wear, failure of mechanical components or 
even collapse of the landing gear as a whole.

The first efforts toward decreasing the destructive effects of 
these vibrations were passive. In order to suppress the shimmy 
motion, a shimmy damper was used in Boeing 737 and Airbus 
A-320 aircrafts as a conventional preventive measure [4]. However, 
as mentioned in [5], shimmy damping requirements often con-
flict with good high-speed directional control; furthermore, once 
the landing gear design is completed, the structural parameters 
for shimmy suppression cannot be changed. Current shimmy sup-
pressing methods are shimmy damper and structural damping. 
The main disadvantages found in the current shimmy dampers in-
clude the need for frequent maintenance and also increasing the 
temperature which causes the hydraulic fluid to expand and leak
through the seals thereby reducing the damping efficiency of the 
device. Hence, when external disturbances or uncertain parame-
ters arise in the landing gear system, no further action can be 
taken. In some operational situations, such as worn parts, severe 
climate, and rough runway, an active control strategy can be effec-
tive for shimmy vibration control. With the advent of high-speed 
and highly reliable microprocessors used in the controller imple-
mentation, the idea of active control of landing gears has gained 
new momentum and is unavoidable.
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Nomenclature

[A] state matrix
A21,...,33 elements of state matrix
a contact patch length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
[B] input matrix
c torsional stiffness of strut . . . . . . . . . . . . . . . . . . . . . N m/rad
C Fα tire side force derivative . . . . . . . . . . . . . . . . . . . . . . . . . 1/rad
CMα tire aligning moment derivative . . . . . . . . . . . . . . . . . m/rad
d(x, t) external disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m
eeff effective caster length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
e wheel caster length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
F y tire side force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
F z vertical force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
Iz moment of inertia of strut about z-axis . . . . . . . . kg m2

J (x) index (cost) function
K (x) state feedback gain matrix of controller
Ke external moment constant
K torsional damping of strut (viscous friction moment 

coefficient) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m/(rad/s)
K constant of tread width tire moment . . . . . . . . N m2/rad
M moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m
M1 spring moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m
M2 damping moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m
M3 total tire moment about z-axis . . . . . . . . . . . . . . . . . . . . N m

M4 tire damping moment from tread width . . . . . . . . . . N m
M5 input moment
Mz tire aligning moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m
L(x(t)) state feedback gain matrix of observer
P (x) transformation matrix
P (x)21,22,23 elements of transformation matrix
Q (x), R(x) weighting matrices
s(x(t), t) integral sliding surface
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
U Lyapunov function
u input in dynamic system
uopt optimal input in dynamic system
V wheel forward velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
x state of dynamic system
y output of dynamic system
y1 lateral shift of leading tire contact point . . . . . . . . . . . . m
α slip angle or deflection angle of tire . . . . . . . . . . . . . . . rad
αg limiting slip angle for aligning moment . . . . . . . . . . . deg
γ appropriate positive constant
δ limiting slip angle for tire side force . . . . . . . . . . . . . . deg
σ relaxation length of tire deflection . . . . . . . . . . . . . . . . . . m
ψ yaw angle of landing gear . . . . . . . . . . . . . . . . . . . . . . . . . . rad
ϕ rake angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
Recently, some active damping solutions have been investi-
gated for general oscillatory systems and different cases have been 
studied. First, simple controllers such as PD were developed to 
damp oscillation of linear second order type systems [6]. After-
ward, modern control theories such as optimal control, adaptive 
control, robust control, fuzzy and neural network based controllers 
were used to design active damping systems for more complex 
oscillatory cases. Active control concept presents a possibility of 
stable control on the vibrating response of the aircraft landing gear. 
Lately, the active or semi-active vertical vibration control for land-
ing gear has attracted the attention of researchers and has shown 
some advantages. Although the concept of active landing gear is 
not new, no aircraft production is yet equipped by such a sys-
tem, as reported in [7]. Furthermore, there is scant research on 
developing the control strategy that can deal with time-varying 
parameters and the uncertainty of the landing gear. These stud-
ies are mostly conducted for the vertical suspension systems so 
far. A common PID was designed for elimination of aircraft landing 
gear vertical vibration in dissertation [8] and the active control is 
compared with semi-active control on aircraft suspension system. 
NASA in [9], started from a simplified model of main landing gear 
of aircraft and implemented an external servo-hydraulic system for 
active control in vertical damping. Thus it can be said that landing 
gear active and semi-active control is restricted to vertical damp-
ing and active suspension [8,10,11] while the extension of active 
concept to landing gear shimmy control is proved to be possible 
and is considered in this paper. The only nonpassive effort which 
is made for nonlinear dynamic model of shimmy of aircraft land-
ing gears is related to [12] where semi-active control is proposed 
for a multi-body aircraft simulation model based on three different 
control laws.

Investigating the mentioned previous researches also shows 
that no study is done yet to control the shimmy vibration in an 
optimal way. Considering the importance of achieving the highest 
accuracy and stability using the least consumed energy encourages 
us to design and implement a proper closed loop optimal control 
system to decrease the unwanted shimmy vibration of the landing 
gear using the minimum input force.
Some research can be mentioned which control the shimmy 
vibration in an optimal way in recent years but all of them use 
linearized approximation of the landing gear dynamics. In [13]
model predictive control (MPC) or receding horizon control (RHC) 
is proposed as an active shimmy suppression strategy for the lin-
earized state space of the system. Kothare et al. [14] consider
robust model predictive control (RMPC) methods for a linear pa-
rameter varying (LPV) system that has both probabilistic uncer-
tainty and time-varying parameters. In [13], an attempt is made 
to apply the proposed robust model predictive control strategy to 
suppress the shimmy during the taxiing and landing of an aircraft 
with linearized model. Pouly et al. [15] present a controller based 
on feedback linearization method and an indirect fuzzy adaptive 
controller is described to perform an active damping of the nose 
landing gear shimmy phenomenon.

It can be seen that, in the mentioned literature, optimal con-
trol of shimmy is done based on the linearized model of the plant. 
A shimmy vibration in aircraft nose landing gear has a highly non-
linear dynamics for which linear control design is far from ade-
quate.

In this paper in order to control the nonlinear state space of 
the shimmy in an optimal way, the concept of SDRE is employed. 
State-Dependent Riccati Equation (SDRE) techniques are rapidly 
emerging as general design and synthesis methods of nonlinear 
feedback controllers and estimators for a broad class of nonlinear 
regulator problems. In essence, the SDRE approach involves mim-
icking standard of linear quadratic regulator (LQR) formulation for 
linear systems [16]. In this paper a nonlinear optimal controller is 
developed for this challenging plant based on the powerful closed 
loop optimizer tool of SDRE. However the vibrating nature of the 
studied plant obliges us to guarantee the stability of the system 
using an additional robust controller. That’s why sliding mode con-
troller is also employed here to neutralize the destructive effects 
of shimmy uncertainties and external disturbances. As a result the 
unwanted shimmy vibration of the aircraft landing gear is opti-
mally damped in this paper using the proposed nonlinear optimal 
and robust controller based on integration of optimal SDRE and ro-
bust sliding mode controlling strategies. This control strategy not 
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Fig. 1. Schematic model of a nose landing gear of an aircraft.
only causes optimal performance of the system but also guarantees 
the robustness of the shimmy response.

The organization of this paper is as follows: Section 2 describes 
a typical landing gear dynamic with nonzero rake angle and shows 
the model for shimmy vibration of an aircraft nose landing gear. 
Section 3 formulates the optimal problem incorporated with slid-
ing mode control. First the optimal control problem based on LQR 
and SDRE methods are explained. Afterwards the robustness of the 
system is fulfilled by attaching a sliding mode controller which 
results in Robust Optimal Sliding-Mode Controller (ROSMC). Fi-
nally a simulation study is performed in Section 4 to confirm the 
controller performance. The simulation results verify the effective-
ness and robustness of the proposed controller. LQR and SDRE are 
compared. Also the optimality and robustness of the system is 
proved by conducting some comparative studies. The correctness, 
efficiency and even superiority of the proposed strategy over tradi-
tional cases are verified by comparing the results with literatures. 
It will be shown that not only the vibrations are actively damped, 
but also the consumption of energy is optimized using the pro-
posed method.

2. Modeling of the nose landing gear shimmy

A landing gear assembly is shown in Fig. 1. The nonlinear 
shimmy dynamic equations are developed. The following equations 
(1)–(8) describe the torsional dynamics of the landing gear that is 

derived using Newton–Euler method for rotational motion of the 
landing gear [12].

Izψ̈ = M1 + M2 + M3 + M4 + M5 (1)

where:

M1 + M2 = cψ + K ψ̇ (2)

M3 = Mz − eeff F y (3)

eeff = e cos(ϕ) + tan(ϕ)
(
R+ e sin(ϕ)

)
(4)

F y =
{

C FααF z, α ≤ δ

C Fα δF z sign(α), α ≥ δ
(5)

Mz =
{

CMα

αg
180 sin( 180

αg
α)F z, |α| ≤ αg

0, |α| ≥ α
(6)
g

M4 = k

V
cos(ϕ)ψ̇ (7)

M5 = Keu (8)

Torsional dynamics of the landing gear is described by equa-
tion (1) where Iz is the moment of inertia about z-axis, M1 is a 
linear spring torque provided by the turning tube and the torque 
link, M2 is a damping moment combined of viscous friction in the 
bearings of the oil pneumatic shock absorber and shimmy damper. 
M3 is composed of aligning torque Mz about the tire’s center and 
cornering force F y . eeff is the effective caster length of landing 
gear. The damping moment M4 due to tread width depends on 
velocity and yaw rate. M5 is the control moment provided by the 
active controller.

The total mass of the aircraft’s fuselage is assumed to be a sin-
gle lumped mass that exerts a vertical force F z on the landing gear.

The lateral deflection of the tire is described by the model of 
an elastic string proposed by Von Schlippe [7]. Using this approx-
imation, the kinematic relation between the lateral shift y1 of the 
leading contact point of the tire and the yaw angle of the wheel ψ
is established in equation (9). ψ̇ is the yaw rate of the wheel.

ẏ1 + V

σ
y1 = V cos(ϕ)ψ + (eeff − a) cos(ϕ)ψ̇ (9)

Additionally, slip angle α can be approximately given by

α ≈ tan(α) = y1

σ
(10)

In the above equations, c, K , k, CMα , C Fα , are experimentally 
measured constants as detailed in Table 1.

3. Control of nose landing gear

Here two strategies of optimization are presented. The first one 
is a linear closed loop optimizer tool which is designed according 
to the linearized model of the system and the second one is a non-
linear optimal controller compatible to the original nonlinear plant 
of the system. The results of these two approaches are compared 
and analyzed and the superiority of the latter case is shown.
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Table 1
System parameters and their values [16].

Parameter Parameters and their values

Description Value Units

Structure parameters
e Caster length 0.12 M
C Torsional stiffness of strut −1 × 105 N m rad−1

K Torsional damping of strut −45 N m s rad−1

Iz Moment of inertia of strut 1 kg m2

ϕ Rake angle 0.1571 rad

Tire parameters
R Radius of nose wheel 0.362 m
a Contact patch length 0.1 m
k Damping coefficient of elastic tyre −270 N m2 rad−1

CMα Self-aligning coefficient of elastic tyre −2 m/rad
C Fα Restoring coefficient of elastic tyre 20 rad−1

σ Relaxation length 0.3 m
δ Restoring force limit 0.087 rad
αg Self-aligning moment limit 0.1745 rad

Continuation parameters
F z Vertical force on the gear 9000 N
v Forward velocity 75 m s−1

3.1. Stability of the system

According to equation (1) and torsional dynamics of the landing 
gear, the Lyapunov function is chosen as equation (11) to represent 
the relative vibratory energy of the landing gear system:

U = 1

2
cψ2 + 1

2
Izψ̇

2 (11)

The rate of change of the Lyapunov function is then:

U̇ = cψψ̇ + Izψ̇ψ̈

= 2cψψ̇ + (Mz − eeff F y) +
(

K + k

V
cos(ϕ)

)
ψ̇2 (12)

For stability of the system, equation (12) must be negative.

3.2. Control design using linear quadratic regulator

The LQR approach for obtaining an optimal solution of the 
control problem has the following procedure [17,18]. According 
to [19], F y and Mz/F z are linearly proportional to sideslip an-
gle within a small range. Based on this assumption, the nonlinear 
dynamic system is linearized using Taylor series expansion and re-
arranged as state-space equations (13). In this series, sine of the 
angle alpha can be estimated as alpha itself whenever the angle 
is sufficiently small. So the state can be summarized after this as-
sumption.

ẋ = Ax + Bu

⇒ d

dt

[
ψ

ψ̇

y1

]
=

⎡
⎣ 0 1 0

A21 A22 A23

A31 A32 A33

⎤
⎦

[
ψ

ψ̇

y1

]
+

[0
1
0

]
M5

y = Cx ⇒ y = [ψ] = [ 1 0 0 ]

[
ψ

ψ̇

y1

]
(13)

where A ∈ Rn×n is the dynamic matrix, B ∈ Rn×m is the input 
matrix, C ∈ Rp×n is the output matrix, x ∈ Rn is the state vector, 
u ∈ Rm is the control law, y ∈ Rp is the output vector. The LQR 
requires controllability condition of the linearized system. In the 
above equation we have:

A21 = c
, A22 = (K + k

V cos(ϕ))
,

Iz Iz
A23 = (cMα − eeff cFα )F z

Izσ
, A31 = V cos(ϕ),

A32 = (eeff − a) cos(ϕ), A33 = − V

σ
(14)

where u = M5 is the torque of the shimmy plant and can be con-
sidered as the controlling input of the system. In order to find the 
optimum value of the input, following Riccati equation needs to be 
calculated:

AT P + P A − P B R−1 BT P + Q = 0 (15)

where P ∈ Rn×m is a solution of Riccati equation, Q and R are 
the positive definite weighting matrices related to the gain of the 
states x(t) and control effort u(t), respectively. The optimal control 
problem is to define the control variables that solve a system of 
equations, while minimizing a specific functional called the perfor-
mance index. In this paper, the equations of motion of the shimmy 
problem are rewritten using the optimal control formulation, that 
is, they are written in terms of the state and control variables. 
A performance index is also chosen for the problem that minimizes 
the energy consumed during the shimmy oscillations. Special care 
is given to define the performance index, writing it in terms of the 
control variables and in agreement with the formalism adopted. 
We select the weight matrices of LQR based on the time domain 
specifications of the system to be controlled. The open loop eigen-
values of the system are found to be −250, +20.15 ± 500i. The 
positive imaginary part of eigenvalues suggests that the open loop 
system is unstable in nature and emphasizes the necessity for a 
feedback controller. Since the given system has only one input, 
then, we select coefficients for the matrices Q and R as bellow 
to satisfy the required settling time and overshoot:

Q = 100

[1 0 0
0 1 0
0 0 1

]
, R = {0.01} (16)

The control input is optimized in this method considering the 
following index function in which the error is minimized together 
with the control effort:

J =
∞∫

t0

(
X T Q X + uT Ru

)
dt (17)

And this objective function is as below for the landing gear sys-
tem which is the case study of this paper:

J =
∞∫

t0

(
100X T X + 0.01uT u

)
dt

=
∞∫

t0

(
100

(
ψ2 + ψ̇2 + y2

1

) + 0.01M2
5

)
dt (18)

It can be proved that using the LQR approach the optimal con-
trolling input is as below which is calculated here for the studied 
shimmy plant:

u = −R−1 BT P x = −(P21ψ + P22ψ̇ + P23 y1) (19)

3.3. Control design via state-dependent Riccati equation

The SDRE nonlinear regulator has the same structure as the Lin-
ear Quadratic Regulator (LQR), except that all of the matrices are 
state-dependent. The SDRE approach for obtaining a suboptimal 
solution of the control problem has the following procedure [20,
21]. The original nonlinear model of the system should be repre-
sented in the following nonlinear state-space form. Direct param-
eterization is used to convert the nonlinear dynamics of the form 
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ẋ = f (x) + g(x) to the State Dependent Coefficient (SDC) form, as 
follows:

ẋ = A(x)x + B(x)u, y = C(x)x (20)

Applying the above procedure for the nonlinear system of 
shimmy equations (1)–(8), the state-space equations of the non-
linear model can be written as [19]:

x1 = ψ → ẋ1 = x2

x2 = ψ̇ → ẋ2 = ψ̈ = 1

Iz

(
cx1 + K x2 + k

V
cos(ϕ)x2 + M3 + M5

)

x3 = y1 → ẋ3 = V cos(ϕ)x1 + (eeff − a) cos(ϕ)x2 − V

σ
x3 (21)

Thus A(x) can be written as:

A(x) =
⎡
⎣ 0 1 0

A21 A22 A23(x)

A31 A32 A33

⎤
⎦ (22)

where

A21 = c

Iz
, A22 = (K + k

V cos(ϕ))

Iz
,

A23(x) = M3

Izx3
= M3

Iz y1
, A31 = V cos(ϕ),

A32 = (eeff − a) cos(ϕ), A33 = − V

σ
(23)

Here again we have u = M5. In this case the following state-
dependent Riccati equation should be solved:

AT (x)P (x) + P (x)A(x) − P (x)B(x)R−1(x)BT (x)P (x) + Q (x) = 0

(24)

where Q (x) and R(x) are positive definite state dependent weight-
ing matrices of state x(t) and control effort u(t), respectively. The 
following values are assumed for the matrices C(x), Q (x) and R(x)
of SDRE control:

C = (1 0 0 ) ,

Q (x) = 100

⎡
⎣1 + abs(x1) 0 0

0 1 + abs(x2) 0

0 0 1 + abs(x3)

⎤
⎦ ,

R = {0.01} (25)

The control input is calculated so that the following state de-
pendent performance index is minimized:

J (x) = 1

2

∞∫
t0

(
X T Q (x)X + uT R(x)u

)
dt (26)

The mentioned objective function which is again the summa-
tion of error and input can be calculated as below for the landing 
gear system of the present case study:

J =
∞∫

0

(
100

(
ψ2 + ∣∣ψ3

∣∣ + ψ̇2 + ∣∣ψ̇3
∣∣ + y2

1 + ∣∣y3
1

∣∣)

+ 0.01
(

K (x)X
)2)

dt (27)

where state dependent coefficient of K (x) is the optimal gain of 
SDRE. In the multivariable case, there always exist an infinite num-
ber of SDC parameterizations. Therefore, the choice of the matrix 
A(x) isn’t unique [20]. The pair {A(x), B(x)} is a controllable pa-
rameterization of the nonlinear system in a region � if {A(x), B(x)}
is pointwise controllable in the linear sense for all x ∈ �. Therefore, 
the choice of A(x) must be such that the state dependent con-
trollability matrix [B(x)A(x)B(x) . . . An−1(x)B(x)] has full rank [21]. 
Finally the nonlinear optimal feedback control input for shimmy 
case results as:

uopt = −R−1(x)BT (x)P (x)x

= −(
P21(x)ψ + P22(x)ψ̇ + P23(x)y1

)
(28)

Pij(x) is the element of P ∈ Rn×m related to the row i and 
the column j that can be determined by simultaneous solving of a 
system of equations related to Riccati equation which can be done 
here numerically since they are state dependent. By solving the 
Riccati equation, the transformation matrix P is obtained and the 
resultant state feedback gain is calculated using the transformation 
matrix.

3.4. Sliding mode control

During the last two decades, variable structure systems (VSS) 
and sliding mode control (SMC) have received significant interest 
and have become well-established research areas with great po-
tential for practical applications. The discontinuous nature of the 
control action in SMC is claimed to result in outstanding robust-
ness features for both system stabilization and output tracking 
problems. This good performance also includes insensitivity to pa-
rameter variations and rejection of disturbances [22].

Uncertainty for the above mentioned nonlinear state space can 
be defined as:

ẋ = F (x) + g(x)u(t) + g(x)d(x, t), x(0) = x0 (29)

where d(x, t) is an unknown function representing the uncertain-
ties including internal parameter variations, external disturbances 
and un-modeled dynamics. Another assumption is regarded as fol-
lows:

d(x, t) ≤ dm (30)

where dm is the maximum range of disturbance and it is a positive 
constant. Integral sliding mode control is an improvement to con-
ventional sliding mode control that uses a nonlinear sliding surface 
having an integral term. The main idea of integral sliding mode 
control is to compose two parts of the controller, i.e. the continu-
ous and discontinuous parts. The continuous component is used to 
control the nominal system while the discontinuous component is 
used to reject disturbances and to suppress parametric uncertain-
ties [23]. So in the simple case, the integral sliding surface s(x, t)
and the control signal u(t) are given by:

s
(
x(t), t

)
= G(x)

(
x(t) − x(0)

) − G(x)

t∫
t0

(
F (x) + g(x)uC (t)

)
d(τ ) (31)

u(t) = uC (t) + ud(t) (32)

where x(0) is the initial value of the states, G ∈ Rm×n satisfies that 
GB is nonsingular, uC (t) is the nominal control signal and ud(t) is 
a discontinuous control signal given by

uC (t) = −KC x(t)

ud(t) = −Kd fs(s) (33)

KC is the gain of continues part, f s(s) is the switching function 
and Kd is an appropriate positive constant. Then the problem of 
integral sliding mode control is to find control signal u(t) in equa-
tion (30), and matrix G(x) such that the sliding surface given by 
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equation (29) and its derivative remain zero for all time t > 0. In 
sliding mode, we have s = 0, ̇s = 0. We can obtain the equivalent 
control law ueq as follows:

ṡ = G(x)
(
ẋ − (

F (x) + g(x)uC (t)
))

= G(x)
(

F (x) + g(x)u(t) + g(x)d(x, t) − (
F (x) + g(x)uC (t)

))
= G(x)

(
g(x)u(t) + g(x)d(x, t) − g(x)uC (t)

) = 0

ueq = −[
G(x)g(x)

]−1[
G(x)g(x)d(x, t) − G(x)g(x)uC (t)

]
(34)

Substituting (33) and (34), the equivalent controller becomes:

ueq = −[
G(x)g(x)

]−1[
G(x)g(x)d(x, t) + G(x)g(x)KC x(t)

]
(35)

According to above equations, the sliding surface and the con-
trolling input of landing gear system can be rewritten as:

ṡ = G(x)

⎡
⎣[ 0

1
0

]
u(t) +

[ 0
1
0

]
d(x, t) −

[0
1
0

]
KC

⎡
⎣ x1

x2

x3

⎤
⎦

⎤
⎦

ṡ = 0 ⇒ ueq = − 1

G12(x)

⎛
⎝G12(x)d(x, t) + G12(x)KC

⎡
⎣ x1

x2

x3

⎤
⎦

⎞
⎠

= −d(x, t) − KC

⎡
⎣ x1

x2

x3

⎤
⎦ (36)

If the nominal controller is chosen as uC (t), a simple solution to 
get the sliding condition when the dynamic parameters have un-
certainty or with the advent of disturbance is the switching control 
law [23]:

u = uC (t) − Kd sgn(s) (37)

where the switching function sgn(s) is defined as:

sgn(s) =
{

1 s > 0
−1 s < 0
0 s = 0

(38)

To eliminate the chattering phenomenon tanh(s) is used instead 
of sgn(s) and so the control input can be improved as follows:

u = −KC

⎡
⎣ x1

x2

x3

⎤
⎦ − Kd tanh(s) (39)

3.5. Design of robust optimal sliding-mode controller (ROSMC)

In this section, the problem of robustifying the SDRE for a class 
of uncertain nonlinear systems is considered. An optimal controller 
is designed for the nominal system and an integral sliding surface 
[24] is constructed. Consider a class of uncertain nonlinear systems 
as equation (29). If we assume d(x, t) = 0, the form of the nonlin-
ear system equation (29) can be described as:

ẋ = A(x)x + g(x)u(t) (40)

According to the optimal control theory, there exists an optimal 
feedback control law that minimizes the index equation (26). The 
optimal feedback control law can be then described as equation 
(28), and the closed-loop system dynamics becomes:

ẋ(t) = (
A(x) − B(x)R−1(x)BT (x)P (x)

)
x(t) (41)

According to optimal control theory, the closed-loop system is 
asymptotically stable. However, if the control law equation (28) is 
applied for an uncertain system equation (29) or a system with ex-
ternal disturbances as we face for the case of shimmy phenomena, 
the state trajectory will deviate from the optimal trajectory and 
even the system may become unstable. To solve this problem, in-
tegral sliding mode (ISM) control technique is employed here to 
increase the robustness of the optimal control law. As a result, 
the state trajectory of the uncertain system of equation (29) is the 
same as that of the optimal trajectory of the nominal system of 
equation (40) while the uncertainty and external disturbances are 
neutralized at the same time.

For designing the robust optimal sliding mode controller, con-
sidering the uncertainty of equation (29), a new integral sliding 
surface is defined in the form of:

s
(
x(t), t

) = G(x)
(
x(t) − x(0)

)

− G(x)

t∫
t0

(
A(x) − B(x)R−1(x)BT (x)P (x)

)
x(τ )d(τ )

(42)

Differentiating equation (42) with respect to t and considering 
equation (29), we obtain:

ṡ
(
x(t), t

) = G(x)ẋ(t) − G(x)
[

A(x) − B(x)R−1(x)BT (x)P (x)
]
x(t)

= G(x)
(

A(x)x + B(x)u(t) + g(x)d(x, t)
)

− G(x)
[

A(x)x(t) − B(x)R−1(x)BT (x)P (x)x(t)
]

= G(x)
[

B(x)u(t) + g(x)d(x, t)

+ B(x)R−1(x)BT (x)P (x)x(t)
]

(43)

For landing gear system this surface can be written as:

ṡ
(
x(t), t

) = G(x)

[[0
1
0

]
u(t) +

[ 0
1
0

]
d(x, t)

−
[0

1
0

](
P21(x)ψ + P22(x)ψ̇ + P23(x)y1

)]
(44)

Considering the system of equation (43), we can obtain the 
equivalent control law ueq as:

ṡ
(
x(t), t

) = 0

⇒ ueq = −[
G(x)B(x)

]−1[
G(x)B(x)R−1(x)BT (x)P (x)x(t)

+ G(x)g(x)d(x, t)
]

(45)

By substituting equations (44), (45) for the shimmy case, the 
equivalent controller and the control law for landing gear system 
can be extracted as:

ṡ
(
x(t), t

) = 0

⇒ ueq = −G12(x)
(
d(x, t) − (

P21(x)ψ + P22(x)ψ̇ + P23(x)y1
))

(46)

Substituting equation (45) into equation (29), the sliding mode 
dynamics becomes:

ẋ(t) = A(x)x(t) + B(x)ueq(t) + d(x, t)

= A(x)x(t) − B(x)
([

G(x)B(x)
]−1

× [
G(x)B(x)R−1(x)BT (x)P (x)x(t)

+ G(x)g(x)d(x, t)
]) + g(x)d(x, t)

= (
A(x) − B(x)R−1(x)BT (x)P (x)

)
x(t)

= A(x)x(t) + B(x)uopt(t) (47)
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Comparing equation (47) with equation (41), we can see that 
the sliding mode of uncertain nonlinear system of equation (29)
is the same as optimal dynamics of equation (41); therefore, the 
sliding mode is also asymptotically stable, and the sliding motion 
guarantees the closed loop system to be globally robust against 
the uncertainties which satisfies the matching condition. For the 
uncertain system of equation (29), the following control law is pro-
posed:

u(t) = ueq(t) + udis(t)

ueq(t) = −R−1(x)BT (x)P (x)x(t)

udis(t) = −[
G(x)B(x)

]−1 × (
γ tanh(s)

)
(48)

where tanh(s) = [tanh(s1), . . . , tanh(sm)]T and γ is appropriate 
positive constant. Therefore, the control law for the landing gear 
system can be presented as:

u(t) = ueq(t) + udis(t)

= −G12(x)
(
d(x, t) − (

P21(x)ψ + P22(x)ψ̇ + P23(x)y1
))

− γ tanh(s)

G12(x)
(49)

Here ueq(t) which is used to stabilize and optimize the nomi-
nal system is the continuous part of the control law while udis(t)
which is the discontinuous part provides complete compensation 
for uncertainties of the system.

From equation (42), we have s(0) = 0; which is the initial con-
dition on the sliding surface. According to [24], uncertain system of 
equation (29) achieves global sliding mode with the integral slid-
ing surface of equation (42) and the control law of equation (48). 
So the designed system is globally robust and optimal.

The efficiency and applicability of the proposed robust optimal 
control for the shimmy vibration of aircraft nose landing gear is 
shown in the simulation results.

4. Nonlinear observer design based on the nonlinear system

State Variable Feedback (SVFB) is straightforward, but it needs 
online feedback of all of the states while in reality all of the states 
are seldom available for measurements specially for vibrating sys-
tems like shimmy. Given only measurements of some specified 
outputs of a dynamic system, all the states can be reconstructed 
using an observer if the system satisfies a property known as ob-
servability. Here we would like to design an observer that can 
estimate the internal state x(t) given knowledge of the control in-
puts u(t) and the outputs y(t).

In this section a nonlinear continuous-time observer is pre-
sented based on the (SDRE) filter with guaranteed exponential 
stability. For a nonlinear state space, let us introduce an observer 
as follows [25]:

˙̂x = A
(
x̂(t)

)
x̂(t) + B

(
x̂(t)

)
u(t) + L

(
x(t)

)(
y(t) − C

(
x̂(t)

)
x̂(t)

)
(50)

where the n × p matrix L(x(t)) is time varying and is called the ob-
server gain. The observer has n internal states x̂(t) and two inputs, 
where x̂(t) provides an estimate of the full state x(t) if L(x(t)) is 
correctly chosen. We define the observer gain by:

L
(
x(t)

) = P
(
x(t)

)
C T (

x̂(t)
)

R−1 (51)

where P (x(t)) is a steady state solution of the difference Riccati 
equation, obtained by solving equation (52):

AT (x)P (x) + P (x)A(x) − P (x)C T (x)R−1(x)C(x)P (x) + Q (x) = 0

(52)
For the landing gear system it can be written as:

L
(
x(t)

) = P
(
x(t)

)
C T (

x̂(t)
)

R−1

= [ P 11(x(t)) P 21(x(t)) P 31(x(t)) ]T

This is an n-th order dynamic system, with initial state x̂(0)

equal to the initial estimate of the states. The observer gain matrix 
L(x(t)) must be selected so that, even though the initial estimate 
x̂(0) is not equal to the actual initial state x(0), as time passes the 
state estimate x̂(t) converges to the actual state x(t). The quantity 
ỹ(t) = y(t) − ŷ(t) is called the output estimation error. To choose 
L(x(t)), the state estimation error is defined as x̃(t) = x(t) − x̂(t), 
and its dynamics can be written as:

˙̃x(t) = ẋ(t) − ˙̂x(t)
= A

(
x(t)

)
x + B

(
x(t)

)
u(t) − A

(
x̂(t)

)
x̂(t) − B

(
x̂(t)

)
u(t)

− L(t)
[

y(t) − C
(
x̂(t)

)
x̂(t)

]
(53)

Adding and subtracting A(x̂(t))x(t) to the whole equation to-
gether with adding and subtracting C(x̂(t))x(t) into the bracket 
lead to:

˙̃x(t) = A
(
x̂(t)

)
x(t) − A

(
x̂(t)

)
x(t) + A

(
x(t)

)
x + B

(
x(t)

)
u(t)

− A
(
x̂(t)

)
x̂(t) − B

(
x̂(t)

)
u(t) − L(t)

[
C
(
x̂(t)

)
x(t)

− C
(
x̂(t)

)
x̂(t) + C

(
x(t)

)
x(t) − C

(
x̂(t)

)
x(t)

]
(54)

So the error dynamics are given by:

˙̃x(t) = [
A
(
x̂(t)

) − L(t)C
(
x̂(t)

)]
x̃ + 


(
x(t), x̂(t), u(t)

)
− L(t)�

(
x(t), x̂(t)

)
(55)

where



(
x(t), x̂(t), u(t)

)
= [

A
(
x(t)

) − A
(
x̂(t)

)]
x(t) − [

B
(
x(t)

) − B
(
x̂(t)

)]
u(t)

�
(
x(t)

) = [
C
(
x(t)

) − C
(
x̂(t)

)]
x(t) (56)

For the landing gear system it can be rewritten in this way:



(
x(t), x̂(t), u(t)

) =
⎡
⎣0 0 0

0 0 M3
Iz

( 1
x3

− 1
x̂3

)

0 0 0

⎤
⎦

⎡
⎣ x1

x2

x3

⎤
⎦ ,

�
(
x(t)

) = [0] (57)

Thus we have:

˙̃x(t) =
⎡
⎣ −P 11(x(t)) 1 0

A21 − P 21(x(t)) A22
M3
Izx3

A31 − P 31(x(t)) A32 A33

⎤
⎦

⎡
⎣ x1 − x̂1

x2 − x̂2

x3 − x̂3

⎤
⎦

+
⎡
⎣ 0 0 0

0 0 M3
Iz

( 1
x3

− 1
x̂3

)

0 0 0

⎤
⎦

⎡
⎣ x1

x2

x3

⎤
⎦

=
⎡
⎢⎣

−P 11(x(t)) 1 0

A21 − P 21(x(t)) A22
M3
Iz

( 2
x3

− 1
x̂3

)

A31 − P 31(x(t)) A32 A33

⎤
⎥⎦

⎡
⎣ x1

x2

x3

⎤
⎦

−
⎡
⎣ −P 11(x(t)) 1 0

A21 − P 21(x(t)) A22
M3
Izx3

A31 − P 31(x(t)) A32 A33

⎤
⎦

[ x̂1
x̂2
x̂3

]
(58)

This equation is known as the error dynamics. Integrating the 
dynamics of the main nonlinear system together with the error 
dynamics of the mentioned nonlinear observer and defining the 
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Fig. 2. Stability zones.

Fig. 3. (a) Yaw-angle time response for V = 30 m/s and (b) Yaw-angle time response for V = 48 m/s.
augmented system state as [xT x̃T ]T , which has 2n components we 
have the following overall closed loop state space:[

ẋ
˙̃x
]

=

⎡
⎢⎢⎣

0 1 0
A21 − K11(x) A22 − K12(x) A23(x) − K13(x) 0

A31 A32 A33

0 0 0

0 0 M3
I z

( 1
x3

− 1
x̂3

)

0 0 0

−P 11(x(t)) 1 0

A21 − P 21(x(t)) A22
M3
I z x3

A31 − P 31(x(t)) A32 A33

⎤
⎥⎥⎦

[
x

x̃

]
,

x =
⎡
⎣ψ

ψ̇

y

⎤
⎦ , x̃ =

⎡
⎣ x̃ψ

x̃ψ̇

x̃y

⎤
⎦ (59)

5. Computer simulations

In this section, a numerical simulation is presented to inves-
tigate the superiority of the proposed controlling method. The 
employed values of the plant parameters and their related phys-
ical meaning are listed in Table 1. Initial states are selected as 
ψ0 = 0.1, ψ̇0 = 0, y0 = 0.1, and the taxiing speed is considered 
V = 30, 48, 70 m/s.

First of all in order to check the stability of the system, Lya-
punov function of shimmy vibration is provided. According to 
equation (12), the stability zones are shown for the phase diagram 
in Fig. 2. Dark colors area in which the derivative of energy is neg-
ative are stable parts as shown.

As it can be seen there are some zones in the phase diagram 
in which the vibration of the open loop shimmy is unstable. How-
ever using the proposed controlling strategies, the stability of the 
system throughout its dynamic workspace is guaranteed. Response 
of the open loop system is compared with the response of the 
simple closed loop controller in Fig. 3. It can be seen that the 
passive system is stable in speed 30 m/s while it is unstable in 
70 m/s and its limit cycle zone is related to speed 48 m/s. Em-
ploying, the closed loop control not only the system stability is 
provided but also the shimmy vibration of the aircraft landing 
gear is considerably suppressed. Here, the control gain is chosen 
as Kc = 103 [ 7 0.1 −20 ]. Fig. 4 compared response of the open 
loop and close loop system in speed 70 m/s and the control input 
of the closed loop system.

It can be seen that yaw angle is damped to zero before 0.15 s. 
Moreover, the system responses and control input for LQR and the 
simple closed loop control is also depicted in Fig. 5 to show the 
superiority of using LQR in optimizing the shimmy.

Fig. 6 compares the system responses and control input of LQR 
and SDRE. It is obvious that due to the possible flexibility of choos-
ing the state depended matrices of R(x) and Q (x) in SDRE, the sys-
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Fig. 4. (a) Yaw-angle time response and (b) input of close loop control for V = 70 m/s.

Fig. 5. (a) Comparison of yaw-angle time response between LQR and simple control and (b) comparisons of their control inputs.

Fig. 6. (a) Comparison of yaw-angle time response between LQR and SDRE and (b) comparison of their control inputs.
tem can be controlled more accurately by the aid of SDRE method. 
Also the significant limitation of LQR which has an acceptable per-
formance just around the chosen operating point is canceled here 
and the controller is totally applicable for the whole of the plant 
workspace. It is shown in Fig. 6 that the performance of the LQR 
is strengthened even more for the case of SDRE while the required 
input is smoother too.

In order to show the correctness and superiority of the pro-
posed controllers over the traditional employed systems the results 
of LQR and SDRE are compared with the results of Refs. [13,14] in 
Fig. 7. It can be seen that employing the LQR results in state con-
vergence which is almost the same as that in [13,14] with smaller 
overshoot when dealing with taxiing velocity. However, for the 
case of SDRE the improvement of the accuracy and stability for 
SDRE is more observable. The responses of the LQR controller are 
also compared with semi-active controller in [26]. It was seen in 
this reference that active controller provides a better response and 
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Fig. 7. (a) Comparisons of yaw-angle time response between references and LQR and (b) comparisons of yaw-angle time response between references and SDRE.

Fig. 8. (a) Comparison of yaw-angle time response between SMC and SDRE and (b) comparison of their control inputs.

Fig. 9. (a) Comparison of yaw-angle time response with disturbance between SDRE and ROMC and (b) comparison of their control inputs.
sooner damping rather than semi-active and that’s why full active 
controllers are discussed in this paper.

In order to show the necessity of robustness of the designed 
controller, external disturbance or parametric uncertainty should 
be engaged. Assume that there is an external disturbance in the 
applied torque of the aircraft landing gear, which can be modeled 
as:
d(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

20 000(t − 0.2) 0.2 ≤ t ≤ 0.3

2000 0.3 ≤ t ≤ 0.5

0 t ≤ 0.2

0 t ≥ 0.3

⇒ dm = 2000 (N m)

(60)

Fig. 8 compares the system responses of SDRE and SMC for the 
system of equation (29) considering the disturbance d(x, t). It can 
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Fig. 10. (a) Comparison of yaw-angle time response with disturbance between SMC and ROMC and (b) comparison of their control inputs.
be seen that although these controllers are optimal but they are 
not robust enough facing the mentioned disturbances. It is also 
notable that vibrating response of the system during implemen-
tation of the disturbance is limited to its end time in where the 
change of input is abrupt and during its initial moments the re-
sponse is smooth since the disturbance is continues here. But again 
here the pattern and amplitude of the vibration of each method are
the same as initial vibration of the system.

That’s why another extra upgrading is proposed for the de-
signed system and the optimal controller is equipped by an ad-
ditive robust sub-controller, i.e. sliding mode (ROSMC). Fig. 9 com-
pares the system response of SDRE and ROSMC for the system of 
equation (29) considering the disturbance d(x, t). It can be seen 
from Fig. 9(a) that although both controllers are optimal, but at the 
instant when the system is subject to uncertainties, the response of 
the system with SDRE control deviates from the optimal trajectory, 
while the response of the system with ROSMC keeps the nominal 
path of the desired setpoint. This correction is provided thanks to 
applying the required torque in the input of the system as can be 
seen in Fig. 9(b). So it can be concluded that the proposed ROSMC 
has a better performance rather than simple SDRE.

Finally it is proved that the proposed ROSMC is even better that 
simple sliding mode. The comparison of SMC and ROSMC can be 
seen in Fig. 10. It can be seen that for the case in which an exter-
nal disturbance is applied to the system, the performance of the 
designed nonlinear robust optimal controller i.e. ROSMC is consid-
erably better than its equivalent sliding mode controller, i.e. SMC. 
Both controllers show a good robust reaction however the simple 
sliding mode is not optimal enough and its accuracy is not accept-
able compared to its energy consumption.

Figs. 11 and 12 compare the system responses of SDRE, SMC 
and ROSMC for the system of equation (29) considering the distur-
bance d(x, t).

Fig. 13 shows the disturbance and switching function in the 
optimal sliding mode controller.

In order to have a more general and realistic sense of the men-
tioned observations and comparison which is investigated through 
the mentioned methods and also show the efficiency of the pro-
posed method, the net area under the curve of the error and also 
control input of all of the methods are computed versus time 
which is in fact a criteria of the optimization objective function 
and its results are summarized in Table 2 for the shimmy vibration. 
It can be seen that for the case in which no external disturbance 
is engaged, the results of SDRE for both error and input are better 
than LQR since the original system is nonlinear. The same result is 
also valid for the case that we have external disturbance however 
the value of error is not acceptable for these two approaches. So 
Fig. 11. Yaw-angle time response with disturbance and its comparison between SMC, 
SDRE and ROSMC.

Fig. 12. Comparison of input with disturbance between SMC, SDRE and ROSMC.

we need robust methods. Finally investigating the results of SMC 
and the proposed ROSMC shows that although the criteria value of 
input is increased which is unavoidable for compensating the er-
ror, but this increase is extremely lower for the proposed method 
while the error is also considerably better for this case.
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Fig. 13. (a) Disturbance in system, (b) Sliding functions in ROSMC.

Table 2
Net area under the curve of the error and also control input.

Controller Curve

Yaw angle versus time 
without disturbance

Input moment versus 
time with disturbance

Yaw angle versus time 
without disturbance

Yaw angle versus time 
with disturbance

LQR 0.0014 68.8393 0.0051 79.7248
SDRE 0.0006 68.6196 0.0044 79.0312
SMC – – 0.0020 663.4573
ROSMC – – 0.0007 571.8559

Fig. 14. The response of the landing gear with variable speed of aircraft and its comparison between SMC, SDRE and ROSMC.
Finally the response of the landing gear with variable speed of 
the aircraft is also obtained and is depicted in Fig. 14 to show 
the efficiency of the proposed method in the entire possible sit-
uations of the aircraft. Here the time dependent setpoint of the 
aircraft velocity and its engaged external disturbance are consid-
ered as Fig. 16 and different controlling strategies are employed in 
order to investigate their performance. It can be seen that again 
the best performance is related to ROSMC and using this method 
the response is stable and the vibrations after each changing of 
the input or disturbance are immediately damped (lower than 1 s) 
with the least amount of overshoot. Required input torque can be 
seen in Fig. 15. Not only the consumption of the energy is opti-
mum but also for each change of setpoint input or disturbance, it 
changes in a way to damp the vibrations rapidly. It can be seen 
that though SDRE is optimum but it has unwanted vibrations af-
ter each change of velocity or implementing the disturbance since 
it has no compensation in its input. On the other hand although 
the SMC doesn’t have the mentioned problem but its vibrations 
after each switching and consequently it’s required torque is sig-
nificantly higher.

As it was mentioned, in order to implement the mentioned 
controllers it is first required to feedback all of the states. Con-
sidering the vibrating nature of the plant, this importance is not 
possible for all of the states through sensor installation and a non-
linear observer is thus required. For evaluating the gains of the 
observer pole placement of errors of the observer is performed. To 
provide an acceptable performance of the system it is required that 
the error of the observer could be damped faster enough respect 
to the time constant of the state errors. In order to check this con-
dition, time response of the error of yaw angle, yaw rate ψ̇ , and 
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Fig. 15. Control input of the landing gear with variable speed of aircraft and its comparison between SMC, SDRE and ROSMC.

Fig. 16. (a) Disturbance in system, (b) variable velocity of the aircraft.
the lateral shift y1 are shown in Fig. 17 for both the observer and 
the controller. Faster damping of the observer states respect to the 
plant states confirms the acceptable performance of the designed 
observer since the error of the observer is damped roughly during 
0.1 period of settling time of the main states.

6. Conclusion

A robust and optimal nonlinear controller was designed for 
neutralizing the destructive effect of shimmy phenomenon in the 
nose landing gear of the aircraft. Both linear and nonlinear closed 
loop optimization approaches were employed to minimize the un-
wanted vibrations together with the consumption of energy. LQR 
was used for linear approach while SDRE was employed for nonlin-
ear optimization. The sliding mode control strategy has been used 
to design a robust controller for the nonlinear system with uncer-
tainties and disturbances. An integrated controlling strategy was 
proposed combined of SDRE together with sliding mode in order 
to cancel the uncertainty and disturbances effects of the vibrat-
ing response of the shimmy at the same time with minimizing 
the consumption of energy. In order to provide the required actual 
value of all the states of the plant which is not easily measurable 
because of the high frequency vibrating nature of the shimmy, an 
optimal nonlinear observer was designed and implemented. The 
efficiency and robustness of the proposed controllers were veri-
fied using simulation in MATLAB and comparative analysis of the 
results. The results show that all of the mentioned designed con-
trollers are able to stabilize the shimmy vibrations of the landing 
gear aircraft while the passive system suffers from instability. Af-
terwards, the response of these optimized closed loop controllers 
was compared with their equivalent ordinary closed loop con-
troller in which no optimization tool was employed. The results 
showed the superiority of the proposed optimal controller since a 
better accuracy was fulfilled using lower amount of controlling in-
put. LQR and SDRE controllers were also compared by which better 
performance of the nonlinear optimizer tool of SDRE was proved 
since the original system is itself nonlinear. It was also seen that 
in presence of external disturbances, the performance of SMC as 
a robust controller is more acceptable rather than the simple op-
timal cases while the norm of input is not as optimized as the 
proposed optimal controllers. Finally in a complete comparative 
simulation in which the SDRE, sliding mode and the proposed op-
timal sliding mode systems are compared, it was shown that the 
proposed ROSMC based on SDRE has the best controlling perfor-
mance on shimmy plant since the robustness and optimality are 
satisfied simultaneously and it is able to guarantee the stability 
and accuracy of the system even during the effect of noises and 
disturbances. The efficiency of the proposed method was also in-
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Fig. 17. (a) Error of the observer states, (b) response of the system with observe.
vestigated for a simulation with variable speed of aircraft and also 
checking and comparing the objective function values for each ap-
proach. The correctness, efficiency and superiority of the proposed 
controlling algorithm for the studied plant were finally investigated 
and proved by the aid of comparing the results with the results of 
references with traditional controllers. Considering the mentioned 
observations it can be concluded that the proposed robust optimal 
controller of ROSMC based on SDRE has the best overall perfor-
mance compared to simple controllers and also LQR in order to 
damp the destructive effect of shimmy in all of environmental sit-
uations.
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