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Abstract—Generating realistic, branch-covering string in-
puts is a challenging problem, due to the diverse and complex
types of real-world data that are naturally encodable as strings;
for example resource locators, dates of different localised
formats, international banking codes, and national identity
numbers. This paper presents an approach in which examples
of inputs are sought from the Internet by reformulating
program identifiers into web queries. The resultant URLs
are downloaded, split into tokens, and used to augment and
seed a search-based test data generation technique. The use
of the Internet as part of test input generation has two key
advantages. Firstly, web pages are a rich source of valid inputs
for various types of string data that may be used to improve
test coverage. Secondly, the web pages tend to contain realistic,
human-readable values, which are invaluable when test cases
need manual confirmation due to the lack of an automated
oracle. An empirical evaluation of the approach is presented,
involving string input validation code from 10 open source
projects. Well-formed, valid string inputs were retrieved from
the web for 96% of the different string types analysed. Using
the approach, coverage was improved for 75% of the Java
classes studied by an average increase of 14%.

Keywords-Automatic test data generation; search based
testing; string inputs; web queries;

I. INTRODUCTION

The automatic generation of structural software test data

has received much attention in the literature of late. Dif-

ferent approaches have been proposed; including dynamic

symbolic execution [1], [2] and search-based testing [3].

This particular paper concerns the search-based approach to

test data generation. Search-based approaches employ meta

heuristic search techniques, such as Genetic Algorithms,

to optimise a fitness function describing the test goal, for

example the coverage of a particular branch in a piece

of software. Not only has the approach been shown to

be an effective technique for generating software test data

[4], but it is also extremely flexible, allowing different test

objectives to be tackled by simply changing the fitness

function. To date, search-based testing has been applied not

just to structural testing [4], but also to functional testing

[5], web testing [6], interaction testing [7] and stress testing

[8], amongst others.

One important activity in structural test data generation

involves deriving suitable values for string inputs. Strings

present additional challenges above those of other basic

data types, such as integers. In general, strings may be

of variable length, contributing to enormous input domain

sizes, and consequently very large search spaces. Many

forms of real world data may be naturally represented as

strings; for example resource locators, dates of different

localised formats, international banking codes, and national

identity numbers. In order to cover a particular program

branch, a string may need to satisfy a series of complex con-

ditions involving regular expressions, substring comparisons

or checksum operations. An additional issue is the hitherto

overlooked problem concerning the generation of realistic,

comprehensible values that a human tester would be likely

to generate and use to exercise a program. Automatic test

generators take cues from program code only, leading to the

likely generation of arbitrary values such as ‘!&ˆ@s.sd’

for an email address, rather than natural, instantly-readable

strings such as ‘bill@microsoft.com’. This is an impor-

tant consideration when test cases require manual evaluation

by a human, due to the lack of an automated oracle (as is

often the case in practice).

Internet web pages are a rich source of examples of string

data that may be re-used as a natural source of inputs

for a wide variety of programs, and one that has hitherto

remained unexploited in structural test data generation. This

paper presents a novel approach in which real examples of

string inputs are sought from the Internet by performing

web queries based on key identifiers appearing in the source

code of the program under test. The resultant URLs are

downloaded and tokenised, and the strings used to augment

and seed a search-based test data generation technique. The

paper presents an empirical study using 20 Java classes

from 10 open source projects. The code studied centred

on validation routines for a number of different data types

based on strings. The web query approach was capable of

retrieving examples of valid, well-formed string inputs for

96% of string types analysed. Furthermore, the string values

obtained enabled the coverage of several ‘hard-to-execute’

branches. Branch coverage was improved for 75% of the

Java classes studied by an average of 14%.

The contributions of this paper are therefore as follows:

1) An approach for generating test cases involving string

inputs by formulating web queries and retrieving po-

tential string values from the Internet

2) An empirical study demonstrating the effectiveness of

the approach. The study shows that valid, well-formed

string inputs can be found for the programs concerned

by reformulating program identifiers into web queries,

and that the strings found are capable of improving the

test coverage of the source code of a program.
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1 class DDMMYYYYDate {
2 int d=0, m=0, y=0;

3 DDMMYYYYDate() {}

4 void parse(String s) {
5 int b1 = s.indexOf("/");
6 if (b1 != -1) {
7 int b2 = s.indexOf("/", b1+1);
8 if (b2 != -1) {
9 d = Integer.parseInt(s.substring(0, b1));

10 m = Integer.parseInt(s.substring(b1+1, b2))
11 y = Integer.parseInt(s.substring(b2+1));
12 } } }

13 boolean isValid() {
14 if (d > 0 && d <= 31)
15 if (m > 0 && m <=12)
16 return true;
17 return false;
18 }

...

Figure 1. Class intended to validate dates in the form ‘DD/MM/YYYY’

The paper begins by reviewing important background

(Section II). Section III presents our approach for using

identifiers in web queries, and extracting example strings.

Section IV describes how these strings are then incorporated

into the test data generation process. Section V then eval-

uates the approach using Java code drawn from a number

of open source projects. Section VI then presents related

work, while Section VII closes with concluding remarks and

avenues for future work.

II. BACKGROUND

A. Search-Based Unit Testing of Object-Oriented Software

Search-based testing applies optimisation techniques to

generate test cases for branch coverage. In the case of unit

testing object-oriented software, the search must find a test

case that instantiates the class under test with the correct

constructor parameters, followed by a sequence of method

calls to the object and accompanying input parameter values.

For example, a test case causing ‘isValid’ method of

Figure 1 to return true would be:

DDMMYYYYDate d = new DDMMYYYYDate();
d.parse("12/10/2007");
d.isValid();

A popular choice of search technique for generating

object-oriented unit tests are Evolutionary Algorithms [9],

[10], [11]. Evolutionary Algorithms work to evolve test

cases using a process inspired by Darwinian evolution and

the principle of the survival of the fittest. The ‘fitness’

of a test case is computed by a fitness function that is

to be minimised by the algorithm. Test cases deemed to

be ‘close’ to executing the target structure are rewarded

with lower values than those judged to be further away.

A test case covering the target is awarded the optimal

value of zero. The fitness computation involves the so-called

approach level and the branch distance. The approach level

measures how close the test case was to covering a target

in terms of its execution path, based on the target’s control

dependencies. For a structured program, the approach level

reflects how deeply the nesting structure surrounding the

target is penetrated. For example, if the target is the ‘return

true’ statement (line 16) of Figure 1, the approach level is

1 or 0 if the execution path fails to take the true branches

at lines 14 or 15 respectively. The approach level is 2 if the

isValid method is not executed by the test case at all.

The second component of the fitness function is the

branch distance. Where the path diverges from the target,

the branch distance assesses how close the test case was to

executing the alternative outcome at the decision statement.

Different branch distance formulas are applied depending on

the type of predicate appearing in the branching statement.

For predicates of the form ‘a == b’ the branch distance is

|a − b| +K, where K is a positive constant value (K = 1
in this paper). The closer a and b are to being equal, the

lower the branch distance. (For a full list of predicates and

associated branch distance formulas, see Tracey et al. [12].)

The approach level and branch distance are combined into

one value by normalising the branch distance and adding it to

the approach level. In this paper, the normalisation function

proposed by Arcuri [13] is used, d
d+1 , where d is the branch

distance.

An Evolutionary Algorithm consists of a number of key

steps, maintaining a set of candidate solutions (i.e. test cases)

to the problem at hand, called the ‘population’, with the aim

of evolving fitter candidate solutions. Each candidate solu-

tion — referred to as an ‘individual’ — must be represented

in a particular format for later manipulation, referred to as

‘chromosomes’. The first generation of the population is

randomly generated. The loop of the algorithm then begins,

first assessing each individual for fitness, and then invoking

a selection process, biased towards the fittest individuals,

in which chromosomes are put forward for crossover. In

crossover, two ‘parent’ individuals are spliced together to

form two ‘offspring’ candidate solutions. In terms of test

cases, this involves recombining the constructor and method

call sequence. For example, the test cases

(p1) d = new DDMMYYYYDate(); (p2) d = new DDMMYYYYDate();
d.parse("12/10/2007"); d.isValid();
d.parse("7/4/2010"); d.isValid();

may be recombined after the second statement (with the

crossover point denoted by the dotted line) to form two

offspring test cases:

(o1) d = new DDMMYYYYDate(); (o2) d = new DDMMYYYYDate();
d.parse("12/10/2007"); d.isValid();
d.isValid(); d.parse("7/4/2010");

The offspring are then mutated at random. In terms of

a test case, this may involve inserting a method call or

constructor, removing it entirely, or changing a parameter

value. For both crossover and mutation, a stage of ‘repair’

may be required to remove references that are left unused as

a result or either operator, or new objects being created using

randomly-selected constructors if the original constructor
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was removed or is not present in the offspring of a new

test case. The final stage of the loop involves reinsertion of

the newly generated individuals into the population to form

a new generation of candidate solutions, in which some or

all of the original population are replaced with the newly-

generated offspring. The algorithm continues to iterate with

each successive generation until an appropriate test case is

found, or some stopping criterion is fulfilled (e.g., a limit on

the number of generations or fitness function evaluations).

B. Search-Based Generation of String Values

String inputs and parameter values present problems for

automatic test generators, for two reasons:

1) Complexity. Conditions involving strings tend to be com-

plex and hard to solve; potentially involving regular ex-

pressions, substring comparisons and checksum operations.

A further confounding factor is that strings may be of a

variable length, resulting in potentially infinite search spaces.

Appropriate string values for a branch may therefore be very

hard to find, forming pathological ‘needle in a haystack’

problems.

2) Realistic test data. Automatic test data generators tend

to be based on information derived almost exclusively from

the program itself, resulting in the production of arbitrary

string values that can cover branches, but are not necessarily

realistic or easily comprehensible from a human point of

view. Such string values are a poor match with that which

would be produced by a human tester. This results in test

cases that are harder to manually check [14] where an

automated oracle does not exist (as is often the case in

practice).

Despite over 500 papers being written on Search-Based

Testing [15], there have been very few papers addressing the

problem of generating string values for test cases. Previous

work in testing procedural C programs treated strings as

fixed-length arrays of characters [16]. The eToc tool of

Tonella [9] allows for variable length strings to be generated.

Optional ‘generators’ may be supplied by a tester in order to

generate specific types of required string. Ideally, however,

string generation should be fully automatic.

Alshraideh and Bottaci [17] consider search-based string

generation for programs written in the JScript language.

A large improvement in coverage was found when string

literals found in the program code were used to seed the

first generation of the evolutionary search. String literals can

act as full or partial examples of strings that are expected

as inputs to a program; however, there is no guarantee that

useful string literals will always be present in the code being

tested.

This paper proposes a novel approach that seeks realistic

examples of string inputs through targeted web queries, by

using identifiers appearing in the program under test.

III. USING WEB QUERIES TO FIND STRING TEST

INPUTS ON THE INTERNET

This section describes our strategy for finding string inputs

on the Internet, implemented in a tool called Delver. Web

queries are generated from key identifiers found in the source

code of the Java class under test. The web query strings are

then inputted into a search engine. The search engine results

are then harvested, with potential string inputs extracted for

later use in test case generation.

A. Generating Web Queries

Program identifiers are intended to describe different types

of data in order to aid human understanding of a program,

and as such are likely to form useful web queries in finding

information about the individual words from which they

are formed. Where an identifier name corresponds to some

common concept, the contents of the URLs returned in the

search engine’s results are likely to include examples of that

concept. For example, a web search using the query email
address is likely to return web pages that contain examples

of email addresses.

Delver performs web queries using three program identi-

fiers related to the string method parameter for which input

values are sought:

1) The identifier of the string method parameter. The

name of the method parameter for which values are

sought is an obvious source of potential information

about the types of values that it is supposed to be used

for. This is the case for the string method parameter

emailAddress in Figure 2a.

2) The method identifier. Sometimes programmers use

non-informative generic method parameter names,

such as text, str, or value. This may be because the

concept is already embodied in the method name

involving the string parameter, as seen in Figure 2b.

3) The class identifier. The method name may also have

a non-informative generic name if the class has few

responsibilities other than to represent a data type itself

and the operations that may be performed on it. In

this case, the name of the parameter’s class may be a

valuable source of keywords, as in Figure 2c.

Delver generates a set of queries for each identifier by

applying a range of processing steps (summarised in the

pull-out of Figure 4).

Generation of the base query. The first step involves creation

of the base query. Program identifiers are often formed from

concatenations of terms which need to be separated back

into individual words to form useful web queries. The base

query is therefore formed by splitting identifiers into words

according to the underscoring or camel casing style used.

For example ‘anEmailAddress’ and ‘an email address’ both

become ‘an email address’. In addition, identifiers often con-

tain stop words, very common words which are not useful
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class Mailer { class Util { class EmailAddress {

boolean isValid(String emailAddress) { boolean isEmailAddress(String str) { boolean isValid(String str) {
... ... ...

(a) Parameter name (b) Method name (c) Class name

Figure 2. How parameter, method and class identifiers may hold keywords indicating the type of information to be held in a string parameter

Quoting
Pluralised Prefixed style

email address (base query) � � None
email addresses � � None
“email address” � � Full
“email addresses” � � Full
list of email address � � None
list of email addresses � � None
“list of email address” � � Full
“list of email addresses” � � Full
“list of” “email address” � � Separated
“list of” “email addresses” � � Separated

Figure 3. Queries generated for the identifier ‘emailAddress’

for web queries, including ‘the’, ‘and’ and ‘a’. Following

standard practice in Information Retrieval [19] these are

removed. Thus, ‘an email address’ simply becomes ‘email
address’.

Additional queries are generated from the base query by

applying combinations of further operations, intended to

increase the number of sources for examples of relevant

string inputs. These are as follows:

Pluralisation. Delver generates pluralised versions of the

base query by pluralising the last word using the ModeShape

library [20]. For example, ‘email address’ becomes ‘email
addresses’.

Prefixing. In order to direct the web search towards pages

containing lists of examples for the identifier, versions of

the base query are formed by prefixing the query with ‘list
of’; for example ‘list of email addresses’.
Quoting. Quoting words in a web query signals to the search

engine that those terms must be found as a complete phrase

in the web pages to be retrieved. This is useful to ensure that

identifier words are kept together in the web pages returned

in the search engine’s results. Delver generates additional

queries by adding quotes around the entire query, and in the

presence of a ‘list of’ prefix, by adding quotes around the

prefix and remainder of the query separately.

In total, 10 queries are generated for each identifier, as

seen from the matrix in Figure 3, which shows the queries

generated from the identifier ‘emailAddress’.

B. Performing Web Queries and Processing Resultant Pages

Queries are performed using Microsoft’s Bing [18] – the

only major Internet search engine providing free API access

at the time this research was conducted. Delver uses version

2.0 of Bing’s API [21] to retrieve search engine results. The

localisation was set to ‘en-GB’, with URL results of a non-

HTML content type (e.g. PDFs, Word document files) to be

ignored. The API limits the results to the first 50 web pages

for each query.

The query results are processed by first downloading the

contents of each URL and stripping out HTML tags. The

remaining text is then tokenised according to whitespace,

and placed into a list of unique tokens for use as potential

string values in the test case generation process, as described

in the next section.

IV. TEST CASE GENERATION USING

WEB QUERY RESULTS

For OO unit test case generation, finding inputs is only

one part of the problem, since method call sequences are

required to construct relevant objects and bring those objects

into the correct state for a branch to be covered. Another

issue is how the string values found from the web should be

incorporated into the test generation process, since the web

queries are likely to result in a large number of values.

Delver employs the following strategy, involving three

distinct phases.

1) Run short evolutionary searches to generate initial

method call sequences.

2) Inject tokens found by the web queries, one by one,

into those method call sequences in place of existing

values for string method parameters. Store any new

test cases covering any new branches unexecuted in

the previous phase.

3) Perform further evolutionary searches to cover any

remaining uncovered branches, using the test cases

stored as a result of the last step as seeded individuals

in the first generation of the new search.

Phase 1. Initial Evolutionary Searches

Delver uses an improved version of the eToc tool [9]

(hereon referred to as eToc+) to search for branch-covering

test cases, the general scheme for which was described

Section II-A. Space does not allow for full details regard-

ing eToc to be reproduced here (the interested reader is

referred to [9]). The following paragraphs therefore serve

to describe in detail the differences between eToc+ and

eToc only, in order for the experiments carried out in this

paper to be replicated. eToc+ makes use of the full fitness

function combining approach level and branch distance as

described in Section II-A (eToc uses the approach level
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Examples for each phase with respect to Figure 1:

Phase 1. 
Initial Evolutionary Searches
Generate method call sequences 
that execute or come as close as 
possible to covering each branch

Phase 2. 
Injection of Web Values
Perform web queries, replace existing 
string parameter values with web values 
in each method call sequence generated

Phase 3. 
Further Evolutionary Searches
Use new test cases as seeds to execute 
any further uncovered branches

.java file

Extract 
identifiers 
relevant to each 
string method 
parameter

strings

Construct 
base queries 
(split identifiers 
into words)

Generate set 
of queries

Perform 
queries on 
Bing, download 
resulting web 
pages

Tokenise web 
pages 
according to 
white space 

Store unique
strings found
in a list

Inject values 
into test cases

DDMMYYYYDate d = new DDMMYYYYDate();
d.parse("1//");
d.isValid();

[True branch from line 15 targeted but not covered]

DDMMYYYYDate d = new DDMMYYYYDate();
d.parse("7/4/2010");
d.isValid();

[True branch from line 15 covered with web value
‘7/4/2010’]

DDMMYYYYDate d = new DDMMYYYYDate();
d.parse("7/47/2010");
d.isValid();

[False branch from line 15 covered using above
test case as a seed]

Figure 4. Overview of the steps involved in the test generation process behind Delver, utilising the results of web queries

only, resulting in a more coarse-grained fitness function).

eToc+ uses the chromosome encoding of test cases and the

same crossover mechanism as eToc. Likewise, mutation of

the constructor and method call sequence remains as for

eToc, however mutation of parameter values is improved for

eToc+. Whereas eToc completely replaces values with new

randomly-generated ones, eToc+ applies a more incremental

approach based on existing values. This allows the search to

use mutation to improve parameter values with respect to fit-

ness, rather than having to start over again following a value

being overwritten with a random value. Gaussian mutation

is used for numeric values. For string values, characters are

inserted, removed or replaced with an equal probability at a

randomly-chosen location. Characters are chosen randomly

from the set of 95 printable ASCII characters (0x20–0x7E).

eToc+ uses stochastic universal sampling [22], together

with linear ranking [23] of individuals, which prevents super-

fit individuals dominating the selection process. eToc+ keeps

hold of the very best individuals using elitist reinsertion. The

top 10% of individuals in the population are automatically

allowed to survive into the next generation, with the remain-

ing 90% of individuals replaced with offspring.

eToc+ attempts each branch one at a time, starting with

the most deeply nested branches first. If a different branch

is covered in the process of the search for a target branch,

that test case is stored, meaning that a dedicated search for

that branch is not required.

The initial evolutionary searches are run for 100 gener-

ations with a population size of 100 for each uncovered

branch.

Phase 2. Injection of Web Values

For each branch uncovered in Phase 1, the method call

sequence with the best fitness found is taken and used as

a starting point for Phase 2. The starting test case is used

as a skeleton into which string values found from the web

queries are inserted. Web queries are performed as described

in Section III, and the unique tokens found are stored in a list

for each string parameter. The starting test case is taken, and

the string values in it are replaced using the next token on the

list for each respective parameter. The new test case is then

executed to see if the branch is covered. If the branch was

not covered, this step is repeated, until either the branch is

covered, or web values on each parameter list are exhausted.

Phase 3. Further Evolutionary Searches Using Seeds

Since Phase 2 does not involve any evolutionary search,

it does not allow for further branches to be covered that

may be executed by simple crossover or mutation of test

cases that rely on a string value found by a web query. For

example, a string value corresponding to a web token may

only need to be altered slightly through mutation to cover

some hitherto uncovered branch. Or, some deeply-nested

branch may be dependent on a web string value, but require

some other aspect of the test case to be altered – e.g. through

the insertion of an additional method call into the test case,

or the alteration of a method parameter of a non-string type.

Phase 3 allows for additional ‘corner-case’ branches of this

type to be covered, with a further Evolutionary Search in

which the first generation is seeded with test cases found to

executed new branches from Phase 2. The generation size

for the search consists of 100 individuals as for Phase 1.

If there are more than 100 potential seeds, 100 seeds are

chosen at random from the pool for the first generation. If

there are fewer than 100 seeds, the population is filled up

with randomly-generated test cases. The search proceeds for

100 generations for each uncovered branch.

A schematic of the overall process can be seen in Figure

4, with examples of test cases produced at each stage for the

program of Figure 1. Phase 1 fails to generate a test case
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Table I
CLASSES TESTED USING THE APPROACH

Project (Source code URL) Class LOC Branches String data types validated

Chemeval (chemeval.sf.net) org.openscience.cdk.index.CASNumber 102 7 CAS registry numbers

Conzilla (www.conzilla.org) se.kth.cid.identity.MIMEType 107 15 MIME types
se.kth.cid.identity.PathURN 60 12 Path URNs
se.kth.cid.identity.ResourceURL 72 15 Resource URLs
se.kth.cid.identity.URI 228 41 URIs
se.kth.cid.identity.URN 60 9 URNs

Efisto (efisto.sf.net) com.efisto.util.Util 244 30 Dates in the java.text.SimpleDateFormat
format ‘dd.MM.yyyy’ and
‘EEE, dd MMM yyyy HH:mm:ss zzz’

GSV05 (gsv05.sf.net) stempeluhr.validation.TimeChecker 82 8 24 hour times
JXPFW (jxpfw.sf.net) org.jxpfw.util.CLocale 81 10 POSIX locale identifiers

org.jxpfw.util.InternationalBankAccountNumber 481 52 Bank identifier codes (BICs)
International bank account numbers (IBANs),
IBAN country codes

LGOL (lgol.sf.net) uk.gov.tameside.apps.validation.DateFormatValidator 105 9 Dates in the format ‘dd/mm/yyyy’
uk.gov.tameside.apps.validation.NumericValidator 86 9 Strings that represent integers
uk.gov.tameside.apps.validation.PostCodeValidator 162 16 UK postcodes

OpenSymphony (www.opensymphony.com) webwork.examples.userreg.Validator 150 24 Email addresses and
US social security numbers (SSNs)

PuzzleBazar (code.google.com/p/puzzlebazar) com.puzzlebazar.client.util.Validation 80 24 Email addresses

TMG (tmgerman.sf.net) net.sf.dblp2db.dblpstat.db.fields.Isbn 238 36 International standard book numbers (ISBNs)
net.sf.dblp2db.dblpstat.db.fields.Month 164 18 Month names (‘January’, ‘February’, etc.)
net.sf.dblp2db.dblpstat.db.fields.Year 75 9 Four digit years

WIFE (wife.sf.net) com.prowidesoftware.swift.model.BIC 84 12 Bank identifier codes (BICs)
com.prowidesoftware.swift.model.IBAN 172 26 International bank account numbers (IBANs)

Total 2,833 382

that executes the true branch from line 15 of the class –

failing to find an appropriate string in the ‘DD/MM/YYYY’

format. The method call sequence found with the best fitness

for this branch is used in Phase 2 for the injection of string

values found from the web queries for the parameter. The

web value ‘7/4/2010’ is injected as a string value, and the

target is covered. This test case is then used to seed the

discovery of test cases covering further unexecuted branches

in Phase 3. The test case is mutated through the insertion of

an additional digit to the month, resulting in an invalid date

that covers the previously uncovered false branch from line

15.
V. EMPIRICAL EVALUATION

An empirical study was performed with two objectives;

the first to evaluate the effectiveness of the web queries in

finding appropriate string values, and second, to evaluate

the effect of the approach on branch coverage. The research

questions addressed by the study were therefore as follows:

RQ1. Do web searches using identifiers result in pages
containing appropriate string values? Which types of web
search query are the most effective in finding appropriate
strings?

The first research question concerns the foundation of the

approach. Can the use of web queries formed from program

identifiers result in URLs containing examples for the string

parameters concerned? For example, given an parameter

representing an email address, do any of the tokens found

using the generated web queries correspond to valid email

addresses, and if so how many? Is there a particular type

of query formulation (i.e. using prefixes, pluralisation or

quotes) that is more effective in finding valid examples for

an input parameter of a string type?

RQ2. What is the effect on coverage when using string values
found using web queries?

Does the incorporation of web values improve the cover-

age of a program, when compared to standard search-based

generation of test cases for object-oriented classes, and if so

when and by how much?

The research questions were addressed using classes

drawn from open source code, as described in the next

section.

A. Case Studies

The case studies investigated in the empirical study

concern input validators, program routines that are widely

found in web and GUI applications to check inputs entered

by an end user. Such case studies are ideal for use in

evaluating Delver, since they tend to perform relatively

complex operations and checks on different types of strings,

for which generating valid inputs by standard search-based

techniques is challenging.

Twenty Java classes were studied from 10 open source

projects, which contained 24 different input validation rou-

tines for various types of string, along with further code

involving string parameters, which was also tested. Table

I provides more in-depth detail. ‘Chemeval’ is a chemical

evaluation framework that examines molecular structure to
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assist in hazard assessment. One class was tested, which

is responsible for representing so-called ‘CAS numbers’,

unique identifiers assigned by the Chemical Abstracts Ser-

vice to chemical substances. A CAS number is a string

consisting of up to 10 digits, separated by hyphens, the

last digit serving as a check digit. CAS numbers begin

at ‘50-0-0’, the number for formaldehyde, while water is

‘7732-18-5’. ‘Conzilla’ is a knowledge management tool.

Six classes were tested, including one representing valid

MIME types, whilst the other five are responsible for val-

idating and manipulating different types of URI. ‘Efisto’

is a tool for sending files via a web location. One class

was tested, involving the manipulation and validation of

dates supplied as strings in two different formats. ‘GSV05’

is a mobile attendance recorder. One class was tested,

for validating 24 hour times supplied as strings. ‘JXPFW’

stand for ‘Java eXPerience FrameWork’, a utility library.

Two classes were tested, which validate and manipulate of

POSIX locale identifiers, Bank Identifier Codes (BICs) and

International Banking Account Numbers (IBANs). ‘LGOL’

is a framework designed to assist Java application devel-

opment for local governments in the UK. Three classes

were tested, involving string inputs representing dates in the

format ‘dd/mm/yyyy’, integer numbers and UK postcodes.

‘OpenSymphony’ is a web development framework. A utility

class was tested for validating email addresses and US

social security numbers (SSNs). ‘PuzzleBazar’ is a web-

based platform for uploading and playing puzzles. One

class was tested, which validates email addresses. ‘TMG’

stands for ‘Text Mining for German documents’ and contains

classes for interfacing with the DBLP research publication

database. Four classes were tested, involving the validation

of International Standard Book Numbers (ISBNs), month

names and year numbers. Finally, ‘WIFE’ is a framework

for managing SWIFT messages between international banks.

Two classes were tested, involving the validation of BICs

and IBANs.

B. Answers to Research Questions

RQ1. Do web searches using identifiers result in pages
containing appropriate string values? Which types of web
search query are the most effective in finding appropriate
strings?

In order to answer this question, web values were run

through the validation routines in each project, and the

number of valid values found recorded. The web values

assessed were those found as a result of web queries

generated from the identifiers related to the string parameter

to each validation routine in question.

The results for each of the 24 types can be found in Table

II. The table shows that valid string values were found in

every case apart from one of the date string types in the

Efisto project. The web pages returned by the search engine

Table II
AGGREGATED RESULTS OF WEB QUERIES FOR EACH STRING TYPE

‘Valid’ is the number of web values found for each string type that passed the
corresponding validity check routine in the project from the total number of values
found. The 24-hour validation routine of ‘GSV05’ was found to contain a bug, so a
secondary figure is reported in brackets which refers to the number of valid values
following correction of the bug

Project String type Valid Total

Chemeval CAS number 16,869 181,805

Conzilla MIME type 7,065 124,924
Path URN 1 216,403
Resource URL 3 125,218
URI 6,457 112,621
URN 83 87,884

Efisto Date (dd.MM.yyyy) 1,839 222,045
Date (EEE,ddMMMyyyyHH:mm:sszzz) 0 283,458

GSV05 24 hour time 985 (1,058) 112,239

JXPFW BBAN 9,063 89,873
POSIX locale identifier 2,108 151,310
2 letter country code 234 138,266
IBAN 123 101,896

LGOL Date (dd/mm/yyyy) 116 148,594
Integer 4,275 170,020
UK Postcode 8 182,353

OpenSymphony Email address 14,776 123,169
SSN 22,293 178,059

PuzzleBazar Email address 439 156,636

TMG ISBN 10,256 139,099
Month 12 253,308
Year 22,436 126,102

WIFE BIC 11,995 185,692
IBAN 1,023 209,252

did involve dates of this format, but due to whitespace

tokenisation procedure in Delver, and the use of space

characters in the date format, the relevant portion of text

was always split into different tokens. This resulted in the

string parameter being set to only a part of the overall valid

string, during phase 2 of the test case generation process.

Furthermore, the common representation for a UK postcode

also involves a space, and as such the figure for the number

of valid post codes is restricted to the smaller number of

postcode examples found without spaces in results with

LGOL.

High numbers of valid inputs were found in all other

cases, with a few exceptions. The representation for a Path

URN used in Conzilla is extremely rare, and as such only

one value was found – an example documented in the Path

URN specification itself. The representation of a resource

URL prefix of ‘res://’ is similarly rare, and only 3

values were found. The number of unique values for months

appears low relative to the other types, but the complete set

of 12 month names, ‘January’ through to ‘December’, was

successfully enumerated by the web searches. Furthermore,

as discovered later when evaluating test cases generated as

part of RQ2, the code for validating 24-hour time strings

was found to contain a bug. Table II therefore records two

values, the second value for the corrected version of the

code, which successfully validated a further 73 strings.
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PuzzleBazar − Email address
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JXPFW − 2 letter country code

JXPFW − POSIX locale identifier
JXPFW − BBAN

GSV05 − 24 hour time
Efisto − Date (EEE, dd MMM yyyy ...)

Efisto − Date (dd.MM.yyyy)
Conzilla − URN
Conzilla − URI

Conzilla − Resource URL
Conzilla − Path URN

Conzilla − MIME type
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Conzilla − URN
Conzilla − URI

Conzilla − Resource URL
Conzilla − Path URN
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(a) With and without the prefixing the query with ‘list of’ (b) With and without pluralisation of identifiers (c) With and without the use of quotes

Figure 5. The percentage of unique valid string values found using different query formulations (as described in Section III-A). In each case, the ‘both’
category refers to the percentage of valid values found independently by both types of query being compared

In order to determine which types of query were most

effective, valid tokens were placed into different sets ac-

cording to the strategy used and counted. Figure 5a shows

the proportion of valid tokens found when using the ‘list

of’ prefix in the query as opposed to not doing so. With the

exception of SSN strings for the OpenSymphony project,

the majority of valid strings were found when the ‘list

of’ prefix was used. For path URNs (Conzilla) and month

names (TMG), all valid values were returned by both types

of query; i.e. with and without the prefix. Pluralization of

identifiers has no such obvious trend, as seen in Figure 5b.

All valid values were found without pluralisation in the case

of resource URLs (Conzilla). Neither does a clear trend exist

with the use of quotes, as seen in Figure 5c, where the results

depend heavily on the identifiers string type concerned.

In conclusion to this research question, appropriate values

can be found by performing web queries based on program

identifiers related to string parameters. The number of appro-

priate values may vary in relation to a number of factors such

as the formatting of the string (i.e., the inclusion of spaces),

and whether the string type relates to a common concept

for which examples are plentiful on the web. However, no

specific query formulation stands out as being a clearly

better than any of the others; instead the inclusion of all

web query variants helped increased the number of unique

valid values found overall.

RQ2. What is the effect on coverage when using string values
found using web queries?

The approach implemented in the Delver tool was com-

pared against extended use of eToc+. For each uncovered

branch, eToc+ continues searching until there has been no

improvement in the best fitness value found in the last 1,000

generations, i.e. the search had stagnated. As such, each

uncovered branch gets at least 100,000 fitness evaluations,

with the possibility of more if progress is being made.

Table III
BREAKDOWN OF PERFORMANCE BY BRANCH

‘Sig.’ denotes the number of branches for which the success rate of coverage was
significantly improved using Delver compared to eToc+ alone (to search stagnation).
‘New’ is the number of branches that were only ever covered using Delver, i.e. were
never covered using eToc+ alone. ‘Total’ refers to the total number of branches in
each class

Project Class Sig. New Total

Chemeval CASNumber 3 3 7

Conzilla MIMEType 0 0 15
PathURN 8 5 12
ResourceURL 7 3 15
URI 0 0 41
URN 4 1 9

Efisto Util 5 2 30

GSV05 TimeChecker 2 2 8

JXPFW CLocale 1 0 10
InternationalBankAccountNumber 7 2 52

LGOL DateFormatValidator 1 1 9
NumericValidator 0 0 9
PostCodeValidator 0 0 16

OpenSymphony Validator 0 0 24

PuzzleBazar Validation 1 0 24

TMG Isbn 10 10 36
Month 2 1 18
Year 0 0 9

WIFE BIC 0 0 12
IBAN 0 0 26

Total 51 30 382

Table III provides a breakdown of branches which

experienced significantly improved coverage using the web

value approach. The number of times a branch was success-

fully covered in each of the 50 runs for Delver and extended

eToc+ searches was compared using a two-sided Fisher’s

Exact Test at a confidence level of 0.999. The test indicated

a significant difference in the two sets of 50 runs with each

tool for 51 branches. In each significant case, Delver covered

the branch in a higher number of runs than eToc+. That is,

30 of these 51 branches were covered by Delver but never by

eToc+. eToc+ run to stagnation does not cover any branches
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Table IV
COVERAGE USING THE DIFFERENT ALGORITHMS

The performance of Delver compared to the use of eToc+ alone – without the benefit
of web searches, and run to stagnation (no improvement in fitness for the last 1,000
generations). Where not tied, the figure for the tool with the overall highest coverage
is shown in bold

Project / Class Mean Coverage % (Standard Deviation)

Delver eToc+

Phase 1 Phase 2 Phase 3

Chemeval
CASNumber 57.1 (0.0) 100.0 (0.0) 100.0 (0.0) 57.1 (0.0)

Conzilla
MIMEType 86.7 (0.0) 86.7 (0.0) 86.7 (0.0) 86.7 (0.0)

PathURN 0.0 (0.0) 50.0 (2.9) 60.2 (7.6) 0.5 (3.5)

ResourceURL 36.8 (5.6) 66.7 (3.7) 82.1 (7.9) 41.3 (5.4)

URI 39.4 (4.2) 46.3 (0.3) 46.3 (0.0) 46.2 (1.0)

URN 42.2 (7.9) 75.6 (4.4) 88.4 (2.2) 54.4 (12.9)

Efisto
Util 70.3 (1.0) 86.7 (0.0) 86.7 (0.0) 72.3 (2.1)

GSV05
TimeChecker 78.3 (5.4) 100.0 (0.0) 100.0 (0.0) 75.0 (0.0)

JXPFW
CLocale 89.4 (4.2) 100.0 (0.0) 100.0 (0.0) 95.6 (4.9)

InternationalBankAccountNumber 77.6 (3.7) 97.6 (1.0) 97.7 (0.7) 86.3 (2.4)

LGOL
DateFormatValidator 88.9 (0.0) 100.0 (0.0) 100.0 (0.0) 88.9 (0.0)

NumericValidator 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

PostCodeValidator 81.3 (0.0) 81.3 (0.0) 81.3 (0.0) 81.3 (0.0)

OpenSymphony
Validator 51.7 (2.6) 54.2 (0.0) 54.2 (0.0) 54.2 (0.0)

PuzzleBazar
Validation 83.6 (4.8) 99.5 (1.3) 99.5 (1.3) 96.3 (2.5)

TMG
Isbn 66.9 (3.0) 91.7 (0.0) 97.0 (1.1) 69.4 (0.0)

Month 88.9 (0.0) 100.0 (0.0) 100.0 (0.0) 89.0 (0.8)

Year 77.8 (0.0) 77.8 (0.0) 77.8 (0.0) 77.8 (0.0)

WIFE
BIC 95.3 (4.1) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

IBAN 89.2 (1.5) 92.3 (0.0) 92.3 (0.0) 92.0 (1.0)

Average 87.5 73.2

that Delver does not. It achieves a higher success rate than

Delver for covering one particular branch (covering it in all

50 runs – Delver covers its only 41 times), but the difference

was not significant at the 0.999 level.

Results comparing Delver with extended eToc+ searches

for branch coverage of each individual class are shown in

Table IV. As the table shows, coverage was improved for

15 of the 20 classes, comparing the final coverage figure

for Delver after phase 3 with that of eToc+ run to search

stagnation (far right column). Coverage levels were identical

for the remaining six classes. The class experiencing the

biggest improvement was the PathURN class of the Conzilla

case study. With evolutionary search alone, it is difficult to

obtain any coverage at all. The constructor of the class calls

the URN superclass, and if the string is not a valid URN,

an exception is thrown before any of the code in PathURN

can actually be executed. Large improvements were also

obtained for CASNumber (Chemeval), ResourceURL and

URN (Conzilla), Isbn and Months (TMG). In each case,

a string value found via a web search for the parameter led

to the coverage of several additional nested branches. These

values could not be found using evolutionary search alone.

The Delver approach was also responsible for finding

a bug in GSV05. After tokenising the inputted string,

the check for a 24-hour time includes the branching sub-

condition ‘minute > 0’, which should instead be correctly

written ‘minute >= 0’. This bug was exposed by a test

case from each of the 50 runs of Delver, which incorrectly

deemed the web value ‘8:00’ to be invalid. By contrast,

eToc+ run to search stagnation, never found a test case that

could be used to expose this particular problem.

In conclusion for this research question, the use of web

values has the effect of improving test coverage. Further-

more, a bug was exposed with Delver that could not be

exposed using the standard evolutionary approach alone.

VI. RELATED WORK

Despite the large amount of work devoted to structural

test case generation, there has been comparatively little work

on generating string inputs. Previous work in search-based

testing has largely ignored the problem, treating strings as

fixed-length arrays of characters [16], or has required spe-

cialist ‘generators’ to be written [9]. Alshraideh and Bottaci

[17] proposed new fitness functions for string generation,

but found the improvements made were only moderately

successful compared with the seeding of string literals found

in the source code of the program into the first generation

of the test data search. However, useful string literals may

not always be available. In contrast, this paper proposes an

approach where useful strings may be incorporated into the

search-based test case generation process that are sourced

from Internet web pages.

Dynamic Symbolic Execution (DSE) [1], [2] executes a

program under test simultaneously on symbolic and concrete

inputs in order to exercise branch constraints. Symbolic

PathFinder [24] and Reggae [25] are two DSE tools that

have handling for string constraints. There are further solvers

available with the attempt for string constraint solving,

such as HAMPI [26] and Kaluza [27] which currently

lack integration with DSE tools. However, like search-based

techniques using structural information only, DSE tends not

to generate realistic strings.

Realistic test cases are important for human comprehen-

sion of test cases and lowering ‘oracle costs’ – manual

evaluation whether a test case produces the correct result

or not. McMinn et al. discuss realistic test input generation

in relation to the oracle cost problem and propose using

human-provided seeds for search-based test case generation

[14]. Fraser and Zeller [28] propose the mining of software

repositories to incorporate common usage patterns of APIs

in object-oriented test case generation. Bozkurt and Harman

[29] investigate realistic test data generation for service-

oriented software. They propose using the outputs of other

known and existing web services for re-use as inputs to the

services under test (for example, an ISBN from a book web
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service). However, none of these works use web queries

and the extraction of tokens from web pages to improve

structural test data generation involving string input, which

is the contribution of this paper.

VII. CONCLUSIONS AND FUTURE WORK

This paper has introduced an approach for generating test

inputs for string types by performing web queries. The web

values obtained are used in conjunction with evolutionary

search. An empirical study presented in the paper showed

that valid string values can be obtained using this method,

and those values can be used to improve coverage of

classes when compared to running evolutionary searches to

stagnation without the benefit of web queries.

There are several avenues for future work, including the

incorporation of the wealth of recent work in the area of

program identifier analysis, which may help refine the web

queries used and the corresponding results obtained. The

approach to splitting identifiers into constituent words used

in this paper is based on underscoring and camel casing.

However more advanced algorithms can be employed, for

example that of Madani et al. [30] which uses techniques

from the field of speech recognition. The work of Lawrie et
al. [31] may help in expanding programmer-shortened words

and abbreviations back into their original form, for example

the use of ‘str’ instead of ‘string’. The extraction of

domain information with respect to program identifiers may

also prove useful in constructing web queries and removing

identifier words that are not useful search terms. Abebe

and Tonella [32] perform a deeper analysis of identifiers

to extract more general concepts, while Binkley et al. [33]

propose algorithms for improving identifier informativeness

using part of speech information.

The use of web queries to find example strings may

also aid the DSE approach to test case generation, and

future work will also evaluate the method in the context

of symbolic execution tools.
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nizing words from source code identifiers using speech recognition techniques,”
in European Conference on Software Maintenance and Reengineering (CSMR
2010), 2010, pp. 68–77.

[31] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source code vocabulary,”
in Working Conference on Reverse Engineering (WCRE 2010), 2010, pp. 3–12.

[32] S. L. Abebe and P. Tonella, “Natural language parsing of program element
names for concept extraction,” in International Conference on Program Com-
prehension (ICPC 2010), 2010, pp. 156–159.

[33] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier informativeness
using part of speech information,” in Working Conference on Mining Software
Repositories (MSR 2011), 2011, pp. 203–206.

151150


