
Automatic Test Data Generation for Software Path Testing
using Evolutionary Algorithms

Gen�iana Ioana La�iu, Octavian Augustin Cre�, Lucia V�cariu
Computer Science Department

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

e-mail: gentiana.latiu@cs.utcluj.ro, octavian.cret@cs.utcluj.ro, lucia.vacariu@cs.utcluj.ro

Abstract — Software testing is a very expensive and time
consuming process. Test methods which generate test data based
on the program’s internal structure are intensively used. This
paper presents a comparison between three important
Evolutionary Algorithms used for automatic test data generation,
a technique that forces the execution of a desired path of the
program called target path. Two new approaches, based on
Particle Swarm Optimization and Simulated Annealing
algorithms, used in conjunction with the approximation level and
branch distance metrics, are compared with Genetic Algorithms
for generating test data. The results obtained based on the
proposed approaches suggest that evolutionary testing strategies
are very well suited to generate test data which cover a target
path inside a software program.

Keywords — software testing, evolutionary algorithms, path
testing.

I. INTRODUCTION
Software testing is the most significant analytic quality

assurance measure for software products [1]. It is an
expensive process which increases the total development
cost of a software product. The automation process of test-
data generation is an important step in reducing the cost of
software development and maintenance [2].

A promising achievement in Software Testing is
considered to be the use of Evolutionary Algorithms for
structural testing. The structural testing method uses the
internal structure of the software application in order to
derive test cases. Application of Evolutionary Algorithms in
Software Testing is often called in the literature Evolutionary
Testing. The first work in applying Evolutionary Algorithms
to generate data for structural testing was presented by
McMinn in [3]. The aim of applying evolutionary testing to
software testing is the generation of a quantity of test data,
leading to the best possible coverage of the respective
structural test criterion [1]. The main benefit of evolutionary
testing is that it can be applied for software products which
have a large input domain.

For the Evolutionary testing to succeed, it needs to be
given some guidance (heuristics), represented in the form of
a cost function that links a program input to a measure of
how “good” it is, where “good” means the appropriateness of
the current individual to the problem solution [4].
Evolutionary testing has been used by Korel for generating

test data, which should traverse a selected path inside the
program [5]. Korel’s method uses data flow graph and a
function minimization approach to generate test data which
is based on the execution of the software product under test
[6]. In the work of Watkins, Roper, Weichselbaum and
Pargas et al. [1] the fitness of an individual is determined
based on the coverage percentage, that is measured for the
associated individual data, i.e. test data sets that cover more
program branches than others are assigned higher fitness
values.

The research presented in this paper builds on automatic
generation of test data for covering a selected path. In
Section II a theoretical background related to software
testing and evolutionary algorithms is presented. Section III
discusses the application of three Evolutionary Algorithms
(Genetic Algorithms, Simulated Annealing Algorithm and
Particle Swarm Optimization Algorithm) for path testing.
Section IV presents experimental results obtained by
applying Evolutionary Algorithms for target path testing on a
number of commonly known programs that are used as
benchmarks for comparison purposes. Section V concludes
the paper and presents directions for future research.

II. THEORETICAL BACKGROUND

A. Software Testing
The definition of software testing was given by Miller:

“The general aim of testing is to affirm the quality of
software systems by systematically exercising the software
in carefully controlled circumstances” [7]. Software testing
procedure also represents a dynamic analysis of a software
program, requiring execution of the program in order to
produce results which are then compared with the expected
outputs [8]. Software testing may be categorized in three
major classes: black-box testing, white-box testing and grey-
box testing [9].

Black-box testing is referred in the literature as functional
testing, because it focuses on the program’s outputs
generated in the response to certain input data and execution
conditions. With black-box testing technique, the software
tester does not have access to the source code of the software
product. Based on the product’s requirements, the tester
knows what to expect the black box to yield. For this testing

2012 Third International Conference on Emerging Intelligent Data and Web Technologies

978-0-7695-4734-3/12 $26.00 © 2012 IEEE

DOI 10.1109/EIDWT.2012.25

1

procedure, testers just utilize functional requirements of the
software product for designing the test cases.

White-box testing methodology is referred in the
literature as structural testing, because it takes into account
the internal structure of the system. During white-box
testing, the tester is aware of the internal structure of the
software product and designs test cases by executing
different methods with specific parameters.

Grey-box testing is a software testing technique that uses
a combination of black-box testing and white-box testing
techniques. Grey-box testing is just partially based on the
internal structure of the software product. During grey-box
testing, the tester tests the software product from the outside,
but he/she is better informed because he/she is partially
aware of the internal structure of the software product.

B. Evolutionary Algorithms
Evolutionary Algorithms are stochastic iterative

procedures for generating tentative solutions for a given
problem. The algorithms manipulate a collection of
individuals, each of which comprises one or more
chromosomes [10].

C. Genetic Algorithms
Genetic Algorithms (GAs) are a subclass of the

Evolutionary Algorithms, because they are inspired from
biological evolution processes. GAs were first introduced in
1970s by Holland [11] and are currently used for solving
optimization and search problems. A basic GA is composed
of the steps shown in Fig. 1.

 Start

Generate initial
population

Evaluate
population

Select best
individuals

Perform crossover

Perform mutation

Termination
criterion met?

End Yes

No

Figure 1. Genetic Algorithms

During the GA process, the population is represented by
chromosomes. The main idea for GAs is to guide a
population of individuals from an initial collection of values
to a point in the solutions space where the fitness function is
optimized, i.e. has the biggest value.

The main operators used by GAs are: selection, crossover
and mutation. Through the selection process, the best
individuals are chosen to form the next population of
individuals. There are many methods of selection: roulette
wheel selection, Boltzman selection, tournament selection,

rank selection, steady state selection and some others [12].
Crossover and mutation are two operators that strongly
influence the performance of the GA. Crossover selects
genes from parent chromosomes and creates new offsprings.
Mutation changes the new offspring by randomly selecting
one gene and changing it from 1 to 0 or 0 to 1. The crossover
and mutation procedures should be performed with some
probability, which represents crossover and mutation rates.

D. Simulated Annealing
Simulated annealing (SA) is a probabilistic search

method proposed by Kirkpatrick, Gelett and Vecchi [13] in
1983 and by Cerny in 1985 [14] for finding the global
minimum of a cost function that may possess several local
minima values. Goldman and Mays in their publication [15]
presents a water distribution system developed using
Simulated Annealing approach. They stated that Simulated
Annealing algorithm has the flexibility to consider different
objective functions and constraints.

The essence of the SA process is an analogy with the way
molten metals cool and anneal. For slowly cooled process,
the system is able to find the minimum energy state [16].
The main steps for the SA method are illustrated in Fig. 2.

SA constitutes a method that is suitable for solving large
scale optimization problems [16] (e.g. scheduling
problems).

Lower temp
bound reached?

Reached max tries
for current temp?

Start

Randomize
configuration for

current temp

Better than
current solution?

Decrease temp by
specified rate

Replace current
solution with a new one

Stop
No

No

No

Yes

Yes

Yes

Figure 2. Simulated Annealing

E. Particle Swarm Optimization
Particle Swarm Optimization (PSO) is an evolutionary

computation technique developed by Kennedy and Eberhart
in 1995 [17]. The PSO technique is similar to the genetic
algorithm method, because it begins with a group of
randomly generated individuals (called the initial population)
and also utilizes a fitness value to evaluate each particle from
the population. For each potential solution in PSO, a
randomized velocity is assigned. During the PSO process,
each particle tracks its coordinates (location and velocity),

2

which are associated with the best solution it has achieved so
far.

The particle swarm optimization concept consists of, at
each step, changing the velocity (accelerating) each particle
towards its best fitness (pbest) achieved so far and the overall
best value obtained so far by any particle in the population
(gbest). Acceleration is weighted by a random term w
(weight inertia). Separate random numbers are generated for
acceleration towards pbest and gbest locations [18].

The main steps of the particle swarm optimization
method are illustrated in Fig. 3. The PSO algorithm is used
in many areas including neural networks,
telecommunications, control, data mining, power systems,
signal processing, etc.

 Start

Generate initial
population

Termination
criteria met?

Evaluate

Update velocity

Update position

Stop
No Yes

Figure 3. Particle Swarm Optimization

F. Software Path Testing
Path testing is a structural testing method that involves,

using the source code of a program, to attempt finding every
possible executable path in the program [19]. The path
testing problem is considered to be an NP-complete problem
[20].

For guiding search algorithms to generate test data which
cover the target path, special heuristics are used to define the
fitness function. The two main heuristics used for evaluating
test data are the approximation level and the branch distance.

The first heuristic, approximation level, calculates the
distance in branching nodes between the actual test data and the
optimal test data, which would cover the target path (Fig. 4).
This metric specifies how far away the individual is from
fulfilling the target path branching condition [21]. Fig. 4
illustrates the target path which contains three decision nodes:
A, B and C. If the individual diverges from the target path at
the level of node A, the approximation level used for
calculating the fitness function will be 2, because there are two
critical branching nodes between the path taken by the
individual during execution and the target path. If the
individual diverges away at level of node B or level of node C,
then the approximation level value will be 1, respectively 0.

The second heuristic, branch distance, is performed in
order to distinguish between different individuals who
execute the same program path [21]. Branch distance is

calculated for an individual by using branching conditions in
the branching node in which the target node is missed. The
branching conditions are evaluated based on a table – Table I
shows an example of such a distance function [5].

A

B

C

Level 2

Level 1

Level 0

Figure 4. Aproximation level

Because the branch distance is less important than the
approximation level, it is usually normalized in the range
[0..1]. This guarantees that a better approximation level is
always preferred regardless of the branch distance measure
[22].

TABLE I. KOREL’S DISTANCE FUNCTION

No Branch
Predicate

Branch Function

1 A = B ABS(A-B)
2 A � B K
3 A < B (A-B) + K
4 A � B (A-B)
5 A > B (B-A) + K
6 A � B (B-A)
7 X OR Y Min(Distance(X), Distance(Y))
8 X AND Y Distance(X) + Distance(Y)

In our experiments, a normalized value of the branch

condition is used (1):

1+
=

dist

dist
dist branch

branchbranch (1)

III. AUTOMATIC TEST DATA GENERATION
Our approach is based on using three evolutionary

algorithms (GA, SA and PSO) for solving the path testing
problem. The original feature of this approach is the usage of
SA and PSO algorithms in conjunction with the
approximation level and branch distance metrics – the
association of GAs with these metrics was already reported
in the literature [1]. The metric used in this method
calculates the difference between the selected path to be
traversed, and the actual path traversed by the input values.

The three evolutionary algorithms described in the
Section II try to find test data which cover particularly the
chosen branch – it is important to compare these algorithms
in order to determine which one is most appropriate for
solving the path testing problem.

For generating test data which traverses the target path
for a given problem there are five steps to follow [23]:

3

1. Construction of a control flow graph – it helps testers
to select the target path.

2. Selection of the target path – the most important paths
should be considered target paths.

3. Fitness function construction – the fitness function
should be used for evaluating the distance between the actual
path, which is traversed by actual test data, and the target
path.

4. Program instrumentation – it consists of inserting
probes at the beginning of every block of the source code to
monitor the program’s execution.

5. Test data generation and execution of instrumented
program – initial test data are generated and then the
evolutionary process chooses the best ones in order to
achieve the target path.

For all the used algorithms the previous five steps were
performed. The current test data evaluation was realized
using the sum between the approximation level and the
normalized branch distance – this approach applied for
Simulated Annealing and Particle Swarm Optimization
algorithms constitutes an original contribution.

For each search algorithm there are some important
parameters which must be set up before launching the
execution of the algorithm.

For the Genetic Algorithm the most important parameters
are: population size, number of generations, crossover
method, crossover rate, mutation rate, and selection
procedure. The population size represents the total number
of individuals in each population. Each individual from the
population is represented by an array of bits, which encode
the input parameter values for the program under test. For
example in case of the triangle classification function each
individual is encoded as an array of 24 bits, each byte
representing the value of a triangle edge. The number of
generations represents the total number of iterations for
which the algorithm is executed.

For the Simulated Annealing algorithm there are three
important parameters, which should be set up before starting
the algorithm implementation: the initial temperature, the
final temperature, which should have a very low value, and
the alpha parameter which has the value equal with 0.999
and is used to decrease at each step the current temperature
value. For Simulated Annealing, the random configuration
for the initial temperature is composed by an array of bits,
which represents the values of the input parameters of the
function under test.

For the Particle Swarm Optimization algorithm the
number of particles and the total number of iterations should
be chosen. Each particle location is characterized by an array
of bits which represents the test values for the input
parameters. Velocity and position of the current particle are
calculated based on the formulas (2), (3):

))1((())()(1 −⋅−⋅⋅+= txprandctwvtv ibestii
))1((()2 −⋅−⋅⋅+ txgrandc ibest (2)

)()1()(tvtxtx iii +−= (3)

where we have the following parameters: inertia weight
(w), cognitive weight (c1) and social weight (c2). The inertia
weight represents the weighting contribution of the previous
velocity for calculating the particle’s actual velocity. It is
used to calculate the new velocity of the particle according to
its previous velocity. The cognitive weight and social weight
are learning factors. The combination of cognitive weight
and social weight parameters determines the convergence
property of the algorithm.

IV. EXPERIMENTAL RESULTS
The proposed methodology was applied on a subset of

some of the most commonly used benchmark programs:
• triangle classification program;
• quadratic equation solver;
• determination of ascendant order for a group of three

numbers;
• a program for finding three numbers which have the

sum equal with 250;
• a program that finds three numbers which have the

product 0;
• the minimum function;
• the maximum function;
• the middle value function;
• the Fibonacci function;
• a program for finding three numbers which have the

arithmetic mean value equal to 150.
Next, the step by step procedure for generating test data

is illustrated just for the most significant example, which is
the triangle classification function. This benchmark is widely
used in the software testing literature (see [23]) and that is
why the most important aspects of our approach will first be
illustrated on this benchmark; for the other nine benchmarks,
the procedure is similar and only the final results will be
presented.

The triangles classification program receives as inputs
three integers which represent the triangle’s edges and
checks if they can form a triangle. Fig. 5 presents the pseudo
code for this program, while Fig. 6 shows its control flow
graph, designed using Visio tool .

TriangleClasification (int x, int y, int z)

begin
if ((x + y > z) and (y + z > x) and (z + x > y))
 if ((x != y) and (y != z) and (z != x))
 “Triangle is scalene”
 else
if ((x == y) and (y != z) or (y == z) and (z != x) or (z ==

x) and (x != y))
 “Triangle is isosceles”
 else

“Triangle is equilateral”
 else

“Not a triangle”
end

Figure 5. Triangle classification program

4

According to the probability theory, the path for the
equilateral triangle is the most difficult one to cover and
therefore this was chosen to be the target path. The source
code instrumented for the triangle classification program is
shown in Fig. 7.

private void

TriangleClassification(in
t x,int y,int z)

(x+y>z)&(y+z>x)&
(z+x>y)?

(x!=y)&(y!=z)&(z!=x)?

Yes

(x == y) & (y != z) | (y == z) &
(z != x) | (z == x) & (x != y)

“Not a triangle”No

“Triangle scalene”

“Triangle isosceles”

“Triangle equilateral”

Yes

No

No

Yes

Figure 6. Triangle classification flow chart (generated by Visio)

TriangleClassification (int x, int y, int z)
begin
 approximation_level: = 2;
 fitness:=0;
 k: =1;
if ((x + y > z) and (y + z > x) and (z + x > y))
 approximation_level: = 1;
 if ((x != y) and (y != z) and (z != x))
 fitness + = (3*k /3*k + 1) + approximation_level;
 else
 approximation_level = 0;
 if ((x == y) and (y != z) | (y == z) and (z != x) | (z == x) and

 (x != y))
 fitness +=(min(min(|x-y|+2*k,|y-z|+2*k),|z-x|+2*k)) /

 (min(min(|x-y|+2*k,|y-z|+2*k),|z-x|+2*k) + 1)) +
 approximation_level;

 else
 fitness += ((x + y + z + 3 * k) / ((x + y + z + 3 * k) + 1))

 + approximation_level;
end

Figure 7. Triangle classification instrumented pseudocode

The test data generation was performed using all the
three evolutionary algorithms discussed above. The
experimental settings for these algorithms are presented in
Table II:

TABLE II. EVOLUTIONARY ALGORITHMS SETTINGS

Search Algorithm Triangle
classification

Quadratic
equation

Ascendant order
array values, Sum,
Prod, Min, Max,

Middle, Fibonacci,
Average

GA

Pop. size 40 40 10
Crossover
rate (one
point
crossover)

0.75 0.75 0.75

Mutation rate 0.1 0.1 0.1
Generations 100 1000 100

SA
Initial temp 100 400 100
Epsilon 0.001 0.001 0.001
Alpha 0.999 0.999 0.999

PSO

No of
particles 40 40 10

w 0.796 0.796 0.796
c1 1.4962 1.4962 1.4962

c2 1.4962 1.4962 1.4962

Iterations 100 1000 100

Based on some recommended parameter values presented
in [25] and [26] for GA, we used some values adapted to the
search space of each function under test. For the population
size parameter, we have chosen a medium value, because if it
is too small the algorithm may prematurely converge and if it
is too large then the computation time will increase.
Typically the number of individuals in the population
(population size) should be between 100 and 1000. For the
crossover rate a value between 0.5 and 1.0 was chosen [27].
For the mutation rate the typical values should be very small
(0.1%), because if the values are higher the algorithm will
degrade into a random search [28].

For SA, the initial temperature, cooling parameter and
final temperature values were chosen to be close to the
values published in [29].

The values for the parameters used in PSO were chosen
based on [30]. The number of iterations is the same for each
algorithm and was chosen based on some previous
experiments of ours. There isn’t a typical value which should
be used for setting the number of iterations. This value is
tightly coupled with the problem to be solved. The number
of particles parameter was chosen to be 10 except for the
triangle classification problem and the quadratic equation
solver, where the number of particles was set to 40. The
number of iterations parameter was chosen to be 100, except
for the quadratic equation solver, where it was set to 1000.
These values are different because the experiments have
shown that 10 particles are not able to solve the problem in
only 100 iterations.

The evolutionary algorithms parameters values should be
chosen based on each developer/tester’s previous experience,
because there aren’t universally accepted “best values”
which should be used for solving each search problem.

All the experiments were performed on a computer having
the following configuration: Intel I3 processor, 2.2 GHz,
Windows 7 Operating System. Fig. 8 illustrates a comparison
between all the three evolutionary algorithms. It presents the

5

iteration number at which each evolutionary algorithm finds the
solution for the target benchmark. Fig. 9 presents the time spent
by each evolutionary algorithm for solving each benchmark.

Figure 8. Iteration at which Evolutionary Algorithms solved each function

(10 executions were performed for each algorithm)

Figure 9. Time spent by each Evolutionary Algorithm to solve each
function (average time for 10 separate experiments)

Fig. 10 ÷ Fig. 19 present a comparison between the three
evolutionary algorithms in generating test data which cover
the target path for each benchmark. Each figure corresponds
to a benchmark and for each benchmark (except for the
quadratic equation function) each algorithm was executed
for 100 generations. For the quadratic equation (Fig. 11) the
SA algorithm was not able to solve the benchmark in 100
generations; therefore the runs were performed for 1000
generations. It was decided to increase the number of
generations in order to be able to observe the convergence
of SA in this case.

Each algorithm was executed 10 times for each
benchmark and the best execution was posted on the graphic.
For guiding the search process of all the three evolutionary
algorithms the same original metric presented in Section III,
composed by summing up the normalized value of the
branch distance and the approximation level, was used.

Figure 10. Convergence comparison for triangle problem based on 100
runs

Figure 11. Convergence comparison for quadratic equation based on 1000
runs

Figure 12. Convergence comparison for ascendant array values problem
based on 100 runs

Figure 13. Convergence comparison for Sum function problem based on
100 runs

Figure 14. Convergence comparison for Prod function problem based on
100 runs

6

Figure 15. Convergence comparison for Min function problem based on
100 runs

Figure 16. Convergence comparison for Max function problem based on
100 runs

Figure 17. Convergence comparison for Middle value function problem
based on 100 runs

Figure 18. Convergence comparison for Fibonacci function problem based
on 100 runs

Figure 19. Convergence comparison for Arihmetic Mean function problem
based on 100 runs

The results show that evolutionary algorithms are useful
in finding test data for a target path using the branch distance
and approximation level metrics. Table III shows a
comparison between each algorithm’s convergences. It
presents the number of iterations needed by each
evolutionary algorithm to generate appropriate test data for
covering the target path.

For all the benchmarks, except Sum and Prod, the
Simulated Annealing algorithm is able to generate test data
which covers the target path quicker than the other two
algorithms. For the Sum and Prod benchmarks (which have
the same structure of their data flow graph), the fastest
algorithm which generates test data is the Genetic Algorithm.
So for the software problems which have the same very basic
tree complexity as Sum and Prod benchmarks the Genetic
Algorithm should be used for generating test data.

TABLE III. EVOLUTIONARY ALGORITHMS CONVERGENCE (MEASURED
IN NUMBER OF ITERATIONS)

Tc Qe Asc S P Min Max Mid Fib Avg

GA 36 16 3 13 20 40 42 29 48 26

SA 12 15 3 20 38 2 2 2 43 20

PSO 57 13 4 67 75 4 4 2 63 44

V. CONCLUSIONS AND FUTURE WORK
In this paper, three evolutionary algorithms: Genetic

Algorithm (GA), Simulated Annealing (SA) and Particle
Swarm Optimization (PSO) were used for generating test
data for software path testing. A significant number of
different benchmarks conduct the study to a clear conclusion:
evolutionary algorithms are very appropriate for generating
test data for covering a target path.

Experimental results show that the best evolutionary
algorithm for path testing is the Simulated Annealing one
(SA) with a starting temperature of 100.0º, because the
quality of the test data produced by this algorithm is higher
than the quality of the other data produced by the two others
algorithms. The quality of the test data produced by SA is
higher than the data produced by the other two algorithms,
because it manages to generate test data which cover the
target path quicker (SA converges faster than GA and PSO).

7

It is interesting to notice that for very simple functions
like Sum and Prod, the GA yields the results faster, but in
this case also SA comes on the second position. As the
complexity of the software program under test increases, SA
reveals to be the best solution.

Evolutionary algorithms are also useful for reducing the
time required for path testing. In our research, these
algorithms were adapted for structural testing in order to
reduce execution time and generate suitable test data for
covering the target path.

As a working methodology: in order to generate test data
which cover the target path in software programs, the testers
should first generate the programs’ flow graphs and then,
based on the flow graphs structure, they can decide which
evolutionary algorithm(s) should be used for generating test
data. Our recommendation is to use Simulated Annealing
(SA) with a starting temperature of 100.0º, because it is the
fastest to converge.

Future work will involve using evolutionary algorithms
for path testing in larger projects and compare them with
other evolutionary techniques to assure their efficiency in
structural testing. A testing framework based on evolutionary
algorithms could be designed and implemented, in order to
make the test data generation process completely automated.

REFERENCES

[1] J. Wegener, A. Baresel, H. Sthamer, "Evolutionary test environment

for automatic structural testing", Information and Software
Technology vol. 43, pp. 841-854, December 2001, doi:
10.1016/S0950-5849(01)00190-2

[2] R.P.Pargas, M.J.Harrold, R.R.Peck, "Test-Data Generation Using
Genetic Algorithms", Journal of Software Testing, Verification and
Reliability, vol. 9, pp. 263-282, December 1999, doi:
10.1002/(SICI)1099-1689(199912)9

[3] P. McMinn, Search-based, "Software Test Data Generation: A
Survey", Journal of Software Testing Verification and Reliability,
vol. 14, pp. 105-156,June 2004, doi:10.1002/stvr.294

[4] N. Tracey, J. Clark, K. Mander, J. McDermid, "An Automated
Framework for Structural Test-Data Generation",13th IEEE
International Conference on Automated Software Engineering,pp.
285,October 1998, doi: 10.1109/ASE.1998.732680

[5] B. Korel. “Automated software test data generation”, IEEE
Transactions on software engineering 16, no. 8,August 1990, doi:
10.1109/32.57624

[6] H-H. Sthamer, "The Automatic Generation of Software Test Data
Using Genetic Algorithms", Phd. Thesis, 1995.

[7] E.F. Miller, "Introduction to Software Testing Technology, Tutorial:
Software Testing & Validation Techniques", Second Edition, IEEE
Catalog No. 180-0,pp. 4-16., 1980.

[8] L. Luo, "Software Testing Techniques, Technology Maturation and
Research Strategies", Institute for Software Research International,
Carnegie Mellon University, Pittsburgh, USA, 2009, class report.

[9] A.Sofokleous, A. Andreou, "Automatic, evolutionary test data
generation for dynamic software testing", Journal of Systems and
Software, vol. 81, pp. 1883-1898, 2008, doi:
10.1016/j.jss.2007.12.809

[10] E. Alba, C. Cotta, "Evolutionary Algorithms", Handbook of
Bioinspired Algorithms and Applications,pp. 3-19, Chapman &
Hall/CRC Computer & Information Science Series, September 2005.

[11] M. Srinivas, "Genetic Algorithms: A Survey", Journal Computer, vol.
27, pp. 17-26 June 1994, doi: 10.1109/2.294849

[12] D. Whitley, "A genetic algorithm tutorial, Statistics and Computing",
Statistics and Computing, vol. 4, pp. 65-85, 1994, doi:
10.1007/BF00175354

[13] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi,, "Optimization by
Simulated Annealing", Statistical Science, vol. 220, pp. 671-680,
May 1983.

[14] V. Cerny, “Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm”, Journal of Optimization
Theory and Applications, vol. 45, pp. 41-51, 1985, doi:
10.1007/BF00940812

[15] F. Goldman, L. Mays, "Water distribution system operation:
Application of Simulated Annealing", Water Resources Systems
Management Tools, December 2004.

[16] F. Kolahan, M. Hossein Abolbashari, S. Mohitzadeh, "Simulated
Annealing Application for Structural Optimization", Engineering and
Technology, pp. 326-329, 2007, ISSN 1307-7473

[17] J. Kennedy, R. Eberhart, "Particle swarm optimization", Proceedings
of IEEE International Conference on Neutral Networks, pp. 1942-
1948, 1995, doi: 10.1371/journal.pone.0021036

[18] R. Eberhart, Y.Shi, "Particle Swarm Optimization: Developments,
Applications and Resources", Proceedings Congress Evolutionary
Computation, pp. 81-86, 2001, doi: 10.1109/CEC.2001.934374

[19] L. Gregory, "Advanced Topics in Computer Science: Testing",Path
Testing, Dissertation Paper, December 2006.

[20] P.Mishra, B.S.P.Mishra, Eccentric "Test Data generation for Path
Testing Using Genetic Algorithm", International Proceedings of
Computer Science and Information Technology, vol. 2, pp. 536, July
2009.

[21] J. Wegener, K. Buhr, H. Pohlheim, "Automatic Test data Generation
for Structural Testing of Embedded Software Systems by
Evolutionary Testing", Research and Technology, GECCO '02
Proceedings of the Genetic and Evolutionary Computation
Conference, 2002, doi: 10.3724/SP.J.1001.2009.00580

[22] A. Arcuri, "It Does Matter How You Normalise the Branch Distance
in Search Based Software Testing", Software Testing, Verification
and Validation, pp. 205-214, April 2010, doi: 10.1109/ICST.2010.17

[23] P. Nirpal, V. Kale, "Comparison of Software Test Data for Automatic
Path Coverage Using Genetic Algorithm", International Journal Of
Computer Science & Engineering Technology (IJCSET), vol. 1,pp.
12-16., February, 2011.

[24] Visio software http://office.microsoft.com/en-us/visio/
[25] DeJong,K.A and Spears,W.M "An Analysis of the Interacting Roles

of Population Size and Crossover in Genetic Algorithms”, Proc. First
Workshop Parallel Problem Solving from Nature, Springer-
Verlag,pp. 38-47, Berlin, 1990.

[26] J.Grefenstette,”Optimization of Control Parameters for Genetic
Algorithms”,IEEE Trans. Systems,Man, and Cybernetics, vol. 16, pp.
122-128,January 1986.

[27] M.Srinivas, L.M. Patnaik, “Adaptive Probabilities of Crossover and
Mutation in Genetic Algorithms”, IEEE Transactions On Systems
Man and Cybernetics, vol. 24, pp. 656-66, April, 1994, doi:
10.1109/21.286385

[28] L.Yalan, C.Nie, J.Kauffman, G.Kapfhammer, H. Leung, “Empirically
Identifying the Best Genetic Algorithm for Covering Array
Generation”, ESEC Conference, September 2011.

[29] J. Lam, "An Efficient Simulated Annealing Schedule" ,Report 8818,
Department of Computer Science, September 1988.

[30] I.C. Trelea, "The particle swarm optimization algorithm: convergence
analysis and parameter selection", Information Processing Letters,
vol. 85,pp. 317-325, 2003, doi: 10.1016/S0020-0190(02)00447-7

8

