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Abstract — Software testing is a very expensive and time 
consuming process. Test methods which generate test data based 
on the program’s internal structure are intensively used. This 
paper presents a comparison between three important 
Evolutionary Algorithms used for automatic test data generation, 
a technique that forces the execution of a desired path of the 
program called target path. Two new approaches, based on 
Particle Swarm Optimization and Simulated Annealing 
algorithms, used in conjunction with the approximation level and 
branch distance metrics, are compared with Genetic Algorithms 
for generating test data. The results obtained based on the 
proposed approaches suggest that evolutionary testing strategies 
are very well suited to generate test data which cover a target 
path inside a software program.  

Keywords — software testing, evolutionary algorithms, path 
testing. 

I.  INTRODUCTION  
Software testing is the most significant analytic quality 

assurance measure for software products [1]. It is an 
expensive process which increases the total development 
cost of a software product. The automation process of test-
data generation is an important step in reducing the cost of 
software development and maintenance [2].  

A promising achievement in Software Testing is 
considered to be the use of Evolutionary Algorithms for 
structural testing. The structural testing method uses the 
internal structure of the software application in order to 
derive test cases. Application of Evolutionary Algorithms in 
Software Testing is often called in the literature Evolutionary 
Testing. The first work in applying Evolutionary Algorithms 
to generate data for structural testing was presented by 
McMinn in [3]. The aim of applying evolutionary testing to 
software testing is the generation of a quantity of test data, 
leading to the best possible coverage of the respective 
structural test criterion [1]. The main benefit of evolutionary 
testing is that it can be applied for software products which 
have a large input domain.  

For the Evolutionary testing to succeed, it needs to be 
given some guidance (heuristics), represented in the form of 
a cost function that links a program input to a measure of 
how “good” it is, where “good” means the appropriateness of 
the current individual to the problem solution [4]. 
Evolutionary testing has been used by Korel for generating 

test data, which should traverse a selected path inside the 
program [5]. Korel’s method uses data flow graph and a 
function minimization approach to generate test data which 
is based on the execution of the software product under test 
[6]. In the work of Watkins, Roper, Weichselbaum and 
Pargas et al. [1] the fitness of an individual is determined 
based on the coverage percentage, that is measured for the 
associated individual data, i.e. test data sets that cover more 
program branches than others are assigned higher fitness 
values. 

The research presented in this paper builds on automatic 
generation of test data for covering a selected path. In 
Section II a theoretical background related to software 
testing and evolutionary algorithms is presented. Section III 
discusses the application of three Evolutionary Algorithms 
(Genetic Algorithms, Simulated Annealing Algorithm and 
Particle Swarm Optimization Algorithm) for path testing. 
Section IV presents experimental results obtained by 
applying Evolutionary Algorithms for target path testing on a 
number of commonly known programs that are used as 
benchmarks for comparison purposes. Section V concludes 
the paper and presents directions for future research. 
 

II. THEORETICAL BACKGROUND 

A. Software Testing 
The definition of software testing was given by Miller: 

“The general aim of testing is to affirm the quality of 
software systems by systematically exercising the software 
in carefully controlled circumstances” [7]. Software testing 
procedure also represents a dynamic analysis of a software 
program, requiring execution of the program in order to 
produce results which are then compared with the expected 
outputs [8]. Software testing may be categorized in three 
major classes: black-box testing, white-box testing and grey-
box testing [9].  

Black-box testing is referred in the literature as functional 
testing, because it focuses on the program’s outputs 
generated in the response to certain input data and execution 
conditions.  With black-box testing technique, the software 
tester does not have access to the source code of the software 
product. Based on the product’s requirements, the tester 
knows what to expect the black box to yield. For this testing 
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procedure, testers just utilize functional requirements of the 
software product for designing the test cases. 

White-box testing methodology is referred in the 
literature as structural testing, because it takes into account 
the internal structure of the system. During white-box 
testing, the tester is aware of the internal structure of the 
software product and designs test cases by executing 
different methods with specific parameters. 

Grey-box testing is a software testing technique that uses 
a combination of black-box testing and white-box testing 
techniques. Grey-box testing is just partially based on the 
internal structure of the software product. During grey-box 
testing, the tester tests the software product from the outside, 
but he/she is better informed because he/she is partially 
aware of the internal structure of the software product. 

B. Evolutionary Algorithms 
Evolutionary Algorithms are stochastic iterative 

procedures for generating tentative solutions for a given 
problem. The algorithms manipulate a collection of 
individuals, each of which comprises one or more 
chromosomes [10]. 

C. Genetic Algorithms 
Genetic Algorithms (GAs) are a subclass of the 

Evolutionary Algorithms, because they are inspired from 
biological evolution processes. GAs were first introduced in 
1970s by Holland [11] and are currently used for solving 
optimization and search problems. A basic GA is composed 
of the steps shown in Fig. 1. 

 Start 

Generate initial 
population 

Evaluate 
population 

Select best 
individuals 

Perform crossover  

Perform mutation  

Termination 
criterion met? 

End Yes 

No 

 

Figure 1.  Genetic Algorithms 

During the GA process, the population is represented by 
chromosomes. The main idea for GAs is to guide a 
population of individuals from an initial collection of values 
to a point in the solutions space where the fitness function is 
optimized, i.e. has the biggest value. 

The main operators used by GAs are: selection, crossover 
and mutation. Through the selection process, the best 
individuals are chosen to form the next population of 
individuals. There are many methods of selection: roulette 
wheel selection, Boltzman selection, tournament selection, 

rank selection, steady state selection and some others [12]. 
Crossover and mutation are two operators that strongly 
influence the performance of the GA. Crossover selects 
genes from parent chromosomes and creates new offsprings. 
Mutation changes the new offspring by randomly selecting 
one gene and changing it from 1 to 0 or 0 to 1. The crossover 
and mutation procedures should be performed with some 
probability, which represents crossover and mutation rates. 

D. Simulated Annealing 
Simulated annealing (SA) is a probabilistic search 

method proposed by Kirkpatrick, Gelett and Vecchi [13] in 
1983 and by Cerny in 1985 [14] for finding the global 
minimum of a cost function that may possess several local 
minima values. Goldman and Mays in their publication [15] 
presents a water distribution system developed using 
Simulated Annealing approach. They stated that Simulated 
Annealing algorithm has the flexibility to consider different 
objective functions and constraints. 

The essence of the SA process is an analogy with the way 
molten metals cool and anneal. For slowly cooled process, 
the system is able to find the minimum energy state [16]. 
The main steps for the SA method are illustrated in Fig. 2. 

SA constitutes a method that is suitable for solving large 
scale optimization problems [16] (e.g. scheduling 
problems). 
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Start
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current temp 
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current solution?

Decrease temp by 
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Replace current 
solution with a new one
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No 

No 

No 

Yes 

Yes 

Yes 

 

Figure 2.  Simulated Annealing 

E. Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is an evolutionary 

computation technique developed by Kennedy and Eberhart 
in 1995 [17]. The PSO technique is similar to the genetic 
algorithm method, because it begins with a group of 
randomly generated individuals (called the initial population) 
and also utilizes a fitness value to evaluate each particle from 
the population. For each potential solution in PSO, a 
randomized velocity is assigned. During the PSO process, 
each particle tracks its coordinates (location and velocity), 
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which are associated with the best solution it has achieved so 
far.  

The particle swarm optimization concept consists of, at 
each step, changing the velocity (accelerating) each particle 
towards its best fitness (pbest) achieved so far and the overall 
best value obtained so far by any particle in the population 
(gbest). Acceleration is weighted by a random term w 
(weight inertia). Separate random numbers are generated for 
acceleration towards pbest and gbest locations [18]. 

The main steps of the particle swarm optimization 
method are illustrated in Fig. 3. The PSO algorithm is used 
in many areas including neural networks, 
telecommunications, control, data mining, power systems, 
signal processing, etc. 

 Start 

Generate initial 
population 

Termination   
criteria met? 

Evaluate 

Update velocity 

Update position 

Stop
No Yes 

 
Figure 3.  Particle Swarm Optimization 

F. Software Path Testing 
Path testing is a structural testing method that involves, 

using the source code of a program, to attempt finding every 
possible executable path in the program [19]. The path 
testing problem is considered to be an NP-complete problem 
[20]. 

For guiding search algorithms to generate test data which 
cover the target path, special heuristics are used to define the 
fitness function. The two main heuristics used for evaluating 
test data are the approximation level and the branch distance.  

The first heuristic, approximation level, calculates the 
distance in branching nodes between the actual test data and the 
optimal test data, which would cover the target path (Fig. 4). 
This metric specifies how far away the individual is from 
fulfilling the target path branching condition [21]. Fig. 4 
illustrates the target path which contains three decision nodes: 
A, B and C. If the individual diverges from the target path at 
the level of node A, the approximation level used for 
calculating the fitness function will be 2, because there are two 
critical branching nodes between the path taken by the 
individual during execution and the target path. If the 
individual diverges away at level of node B or level of node C, 
then the approximation level value will be 1, respectively 0. 

The second heuristic, branch distance, is performed in 
order to distinguish between different individuals who 
execute the same program path [21]. Branch distance is 

calculated for an individual by using branching conditions in 
the branching node in which the target node is missed. The 
branching conditions are evaluated based on a table – Table I 
shows an example of such a distance function [5]. 
 

 

A 

B 

C 

Level 2 

Level 1 

Level 0 

 
Figure 4.  Aproximation level 

Because the branch distance is less important than the 
approximation level, it is usually normalized in the range 
[0..1]. This guarantees that a better approximation level is 
always preferred regardless of the branch distance measure 
[22]. 

TABLE I.  KOREL’S DISTANCE FUNCTION 

No Branch 
Predicate 

Branch Function 

1 A = B ABS(A-B) 
2 A � B K 
3 A < B (A-B) + K 
4 A � B (A-B) 
5 A > B (B-A) + K 
6 A � B (B-A) 
7 X OR Y Min(Distance(X), Distance(Y)) 
8 X AND Y Distance(X) + Distance(Y) 

 
In our experiments, a normalized value of the branch 

condition is used (1):  
 

1+
=

dist

dist
dist branch

branchbranch  (1) 

III. AUTOMATIC TEST DATA GENERATION 
Our approach is based on using three evolutionary 

algorithms (GA, SA and PSO) for solving the path testing 
problem. The original feature of this approach is the usage of 
SA and PSO algorithms in conjunction with the 
approximation level and branch distance metrics – the 
association of GAs with these metrics was already reported 
in the literature [1]. The metric used in this method 
calculates the difference between the selected path to be 
traversed, and the actual path traversed by the input values.  

The three evolutionary algorithms described in the 
Section II try to find test data which cover particularly the 
chosen branch – it is important to compare these algorithms 
in order to determine which one is most appropriate for 
solving the path testing problem.  

For generating test data which traverses the target path 
for a given problem there are five steps to follow [23]: 
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1. Construction of a control flow graph – it helps testers 
to select the target path. 

2. Selection of the target path – the most important paths 
should be considered target paths. 

3. Fitness function construction – the fitness function 
should be used for evaluating the distance between the actual 
path, which is traversed by actual test data, and the target 
path. 

4. Program instrumentation – it consists of inserting 
probes at the beginning of every block of the source code to 
monitor the program’s execution. 

5. Test data generation and execution of instrumented 
program – initial test data are generated and then the 
evolutionary process chooses the best ones in order to 
achieve the target path. 

For all the used algorithms the previous five steps were 
performed. The current test data evaluation was realized 
using the sum between the approximation level and the 
normalized branch distance – this approach applied for 
Simulated Annealing and Particle Swarm Optimization 
algorithms constitutes an original contribution.  

For each search algorithm there are some important 
parameters which must be set up before launching the 
execution of the algorithm. 

For the Genetic Algorithm the most important parameters 
are: population size, number of generations, crossover 
method, crossover rate, mutation rate, and selection 
procedure. The population size represents the total number 
of individuals in each population. Each individual from the 
population is represented by an array of bits, which encode 
the input parameter values for the program under test. For 
example in case of the triangle classification function each 
individual is encoded as an array of 24 bits, each byte 
representing the value of a triangle edge. The number of 
generations represents the total number of iterations for 
which the algorithm is executed.  

For the Simulated Annealing algorithm there are three 
important parameters, which should be set up before starting 
the algorithm implementation: the initial temperature, the 
final temperature, which should have a very low value, and 
the alpha parameter which has the value equal with 0.999 
and is used to decrease at each step the current temperature 
value. For Simulated Annealing, the random configuration 
for the initial temperature is composed by an array of bits, 
which represents the values of the input parameters of the 
function under test. 

For the Particle Swarm Optimization algorithm the 
number of particles and the total number of iterations should 
be chosen. Each particle location is characterized by an array 
of bits which represents the test values for the input 
parameters. Velocity and position of the current particle are 
calculated based on the formulas (2), (3):  
 

))1((())()( 1 −⋅−⋅⋅+= txprandctwvtv ibestii  
))1((()2 −⋅−⋅⋅+ txgrandc ibest   (2) 

)()1()( tvtxtx iii +−=   (3) 

where we have the following parameters: inertia weight 
(w), cognitive weight (c1) and social weight (c2). The inertia 
weight represents the weighting contribution of the previous 
velocity for calculating the particle’s actual velocity. It is 
used to calculate the new velocity of the particle according to 
its previous velocity. The cognitive weight and social weight 
are learning factors. The combination of cognitive weight 
and social weight parameters determines the convergence 
property of the algorithm. 

 

IV. EXPERIMENTAL RESULTS 
The proposed methodology was applied on a subset of 

some of the most commonly used benchmark programs:  
• triangle classification program; 
• quadratic equation solver; 
• determination of ascendant order for a group of three 

numbers; 
• a program for finding three numbers which have the 

sum equal with 250; 
• a program that finds three numbers which have the 

product 0; 
• the minimum function; 
• the maximum function; 
• the middle value function; 
• the Fibonacci function; 
• a program for finding three numbers which have the 

arithmetic mean value equal to 150.  
Next, the step by step procedure for generating test data 

is illustrated just for the most significant example, which is 
the triangle classification function. This benchmark is widely 
used in the software testing literature (see [23]) and that is 
why the most important aspects of our approach will first be 
illustrated on this benchmark; for the other nine benchmarks, 
the procedure is similar and only the final results will be 
presented. 

The triangles classification program receives as inputs 
three integers which represent the triangle’s edges and 
checks if they can form a triangle.  Fig. 5 presents the pseudo 
code for this program, while Fig. 6 shows its control flow 
graph, designed using Visio tool . 

 
TriangleClasification (int x, int y, int z) 

begin           
if ((x + y > z) and (y + z > x) and (z + x > y))                         
 if ((x != y) and (y != z) and (z != x))  
            “Triangle is scalene” 
 else                                   
if ((x == y) and (y != z) or (y == z) and (z != x) or (z == 

x) and (x != y))  
            “Triangle is isosceles” 
 else     

“Triangle is equilateral” 
 else  

“Not a triangle” 
end 

Figure 5.  Triangle classification program 
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According to the probability theory, the path for the 
equilateral triangle is the most difficult one to cover and 
therefore this was chosen to be the target path. The source 
code instrumented for the triangle classification program is 
shown in Fig. 7. 

 
private void 

TriangleClassification(in
t x,int y,int z)

(x+y>z)&(y+z>x)&
(z+x>y)?

(x!=y)&(y!=z)&(z!=x)?

Yes

(x == y) & (y != z) | (y == z) & 
(z != x) | (z == x) & (x != y)

“Not a triangle”No

“Triangle scalene”

“Triangle isosceles”

“Triangle equilateral”

Yes

No

No

Yes

 
Figure 6.  Triangle classification flow chart (generated by Visio) 

TriangleClassification (int x, int y, int z) 
begin 
  approximation_level: = 2; 
  fitness:=0; 
  k: =1; 
if ((x + y > z) and (y + z > x) and (z + x > y)) 
        approximation_level: = 1; 
   if ((x != y) and (y != z) and (z != x)) 
        fitness + =  (3*k /3*k + 1) + approximation_level; 
   else 
         approximation_level = 0; 
   if ((x == y) and (y != z) | (y == z) and (z != x) | (z == x) and 

  (x != y)) 
          fitness +=( min(min(|x-y|+2*k,|y-z|+2*k),|z-x|+2*k)) / 

                (min(min(|x-y|+2*k,|y-z|+2*k),|z-x|+2*k) + 1)) + 
  approximation_level; 

   else 
           fitness += ((x + y + z + 3 * k) / ((x + y + z + 3 * k) + 1)) 

                   + approximation_level; 
end 

Figure 7.  Triangle classification instrumented pseudocode 

The test data generation was performed using all the 
three evolutionary algorithms discussed above. The 
experimental settings for these algorithms are presented in 
Table II: 

TABLE II.  EVOLUTIONARY ALGORITHMS SETTINGS 

Search Algorithm Triangle 
classification  

Quadratic 
equation 

Ascendant order 
array values, Sum, 
Prod, Min, Max, 

Middle, Fibonacci, 
Average

GA 

Pop. size 40 40  10 
Crossover 
rate (one 
point 
crossover) 

0.75 0.75 0.75

Mutation rate 0.1 0.1 0.1
Generations 100 1000 100

SA 
Initial temp 100 400 100
Epsilon 0.001 0.001 0.001
Alpha 0.999 0.999 0.999

PSO

No of 
particles 40 40 10

w  0.796  0.796  0.796 
c1  1.4962   1.4962   1.4962 

c2 1.4962   1.4962  1.4962 

Iterations 100 1000 100
 

Based on some recommended parameter values presented 
in [25] and [26] for GA, we used some values adapted to the 
search space of each function under test. For the population 
size parameter, we have chosen a medium value, because if it 
is too small the algorithm may prematurely converge and if it 
is too large then the computation time will increase. 
Typically the number of individuals in the population 
(population size) should be between 100 and 1000. For the 
crossover rate a value between 0.5 and 1.0 was chosen [27]. 
For the mutation rate the typical values should be very small 
(0.1%), because if the values are higher the algorithm will 
degrade into a random search [28].   

For SA, the initial temperature, cooling parameter and 
final temperature values were chosen to be close to the 
values published in [29]. 

The values for the parameters used in PSO were chosen 
based on [30]. The number of iterations is the same for each 
algorithm and was chosen based on some previous 
experiments of ours. There isn’t a typical value which should 
be used for setting the number of iterations. This value is 
tightly coupled with the problem to be solved. The number 
of particles parameter was chosen to be 10 except for the 
triangle classification problem and the quadratic equation 
solver, where the number of particles was set to 40. The 
number of iterations parameter was chosen to be 100, except 
for the quadratic equation solver, where it was set to 1000. 
These values are different because the experiments have 
shown that 10 particles are not able to solve the problem in 
only 100 iterations. 

The evolutionary algorithms parameters values should be 
chosen based on each developer/tester’s previous experience, 
because there aren’t universally accepted “best values” 
which should be used for solving each search problem.  

All the experiments were performed on a computer having 
the following configuration: Intel I3 processor, 2.2 GHz, 
Windows 7 Operating System. Fig. 8 illustrates a comparison 
between all the three evolutionary algorithms. It presents the 
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iteration number at which each evolutionary algorithm finds the 
solution for the target benchmark. Fig. 9 presents the time spent 
by each evolutionary algorithm for solving each benchmark. 
 

 
Figure 8.  Iteration at which Evolutionary Algorithms solved each function 

(10 executions were performed for each algorithm) 

 

Figure 9.  Time spent by each Evolutionary Algorithm to solve each 
function (average time for 10 separate experiments) 

Fig. 10 ÷ Fig. 19 present a comparison between the three 
evolutionary algorithms in generating test data which cover 
the target path for each benchmark. Each figure corresponds 
to a benchmark and for each benchmark (except for the 
quadratic equation function) each algorithm was executed 
for 100 generations. For the quadratic equation (Fig. 11) the 
SA algorithm was not able to solve the benchmark in 100 
generations; therefore the runs were performed for 1000 
generations. It was decided to increase the number of 
generations in order to be able to observe the convergence 
of SA in this case.  

Each algorithm was executed 10 times for each 
benchmark and the best execution was posted on the graphic. 
For guiding the search process of all the three evolutionary 
algorithms the same original metric presented in Section III, 
composed by summing up the normalized value of the 
branch distance and the approximation level, was used.  

 

Figure 10.  Convergence comparison for triangle problem based on 100 
runs 

 

Figure 11.  Convergence comparison for quadratic equation based on 1000 
runs 

 

Figure 12.  Convergence comparison for ascendant array values problem 
based on 100 runs 

 

Figure 13.  Convergence comparison for Sum function problem based on 
100 runs 

 

Figure 14.  Convergence comparison for Prod function problem based on 
100 runs 
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Figure 15.  Convergence comparison for Min function problem based on 
100 runs 

 

Figure 16.  Convergence comparison for Max function problem based on 
100 runs 

 

Figure 17.  Convergence comparison for Middle value function problem 
based on 100 runs 

 

Figure 18.  Convergence comparison for Fibonacci function problem based 
on 100 runs 

 

Figure 19.  Convergence comparison for Arihmetic Mean function problem 
based on 100 runs 

The results show that evolutionary algorithms are useful 
in finding test data for a target path using the branch distance 
and approximation level metrics. Table III shows a 
comparison between each algorithm’s convergences. It 
presents the number of iterations needed by each 
evolutionary algorithm to generate appropriate test data for 
covering the target path.  

For all the benchmarks, except Sum and Prod, the 
Simulated Annealing algorithm is able to generate test data 
which covers the target path quicker than the other two 
algorithms. For the Sum and Prod benchmarks (which have 
the same structure of their data flow graph), the fastest 
algorithm which generates test data is the Genetic Algorithm. 
So for the software problems which have the same very basic 
tree complexity as Sum and Prod benchmarks the Genetic 
Algorithm should be used for generating test data. 

TABLE III.  EVOLUTIONARY ALGORITHMS CONVERGENCE (MEASURED 
IN NUMBER OF ITERATIONS) 

 
Tc Qe Asc S P Min Max Mid Fib Avg

GA 36 16 3 13 20 40 42 29 48 26 

SA 12 15 3 20 38 2 2 2 43 20 

PSO 57 13 4 67 75 4 4 2 63 44 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, three evolutionary algorithms: Genetic 

Algorithm (GA), Simulated Annealing (SA) and Particle 
Swarm Optimization (PSO) were used for generating test 
data for software path testing. A significant number of 
different benchmarks conduct the study to a clear conclusion: 
evolutionary algorithms are very appropriate for generating 
test data for covering a target path.  

Experimental results show that the best evolutionary 
algorithm for path testing is the Simulated Annealing one 
(SA) with a starting temperature of 100.0º, because the 
quality of the test data produced by this algorithm is higher 
than the quality of the other data produced by the two others 
algorithms. The quality of the test data produced by SA is 
higher than the data produced by the other two algorithms, 
because it manages to generate test data which cover the 
target path quicker (SA converges faster than GA and PSO). 
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It is interesting to notice that for very simple functions 
like Sum and Prod, the GA yields the results faster, but in 
this case also SA comes on the second position. As the 
complexity of the software program under test increases, SA 
reveals to be the best solution. 

Evolutionary algorithms are also useful for reducing the 
time required for path testing. In our research, these 
algorithms were adapted for structural testing in order to 
reduce execution time and generate suitable test data for 
covering the target path. 

As a working methodology: in order to generate test data 
which cover the target path in software programs, the testers 
should first generate the programs’ flow graphs and then, 
based on the flow graphs structure, they can decide which 
evolutionary algorithm(s) should be used for generating test 
data. Our recommendation is to use Simulated Annealing 
(SA) with a starting temperature of 100.0º, because it is the 
fastest to converge. 

Future work will involve using evolutionary algorithms 
for path testing in larger projects and compare them with 
other evolutionary techniques to assure their efficiency in 
structural testing. A testing framework based on evolutionary 
algorithms could be designed and implemented, in order to 
make the test data generation process completely automated.  
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