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a b s t r a c t

Nowadays, demand response has become one of the essential components of recent deregulated power
systems as it can offer many distinguished features, such as availability, quickness, and applicability.
DRPs (Demand response programs), announced by the federal energy regulatory commission, are among
the most accepted and practical features of demand side management. DRPs not only can contribute in
mitigating the intermittent effects of renewable energy resources but also can be used either to lower
high energy prices, occurred in wholesale electricity markets, or when the security of power systems is at
risk. In this paper, the influence of emergency demand response programs in improving reliability in case
of failure of generation units is investigated. In the proposed reliability based optimization approach, the
generation failure is modeled based on its forced outage rate. The proposed method can help inde-
pendent system operators to schedule day-ahead generating units in a more reliable manner and can
facilitate the participation of consumers to increase the total social welfare in the case of an emergency.
Moreover, the mixed integer programming formulation allows implementing the proposed method by
using available tractable linear solvers. Eventually, the applicability of the proposed model is tested on
the IEEE 24-bus reliability test system and its effects on the value of lost load and the expected load not
served are discussed.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Definitions and aims

In recent deregulated power systems, utilizing any available
source of energy seems crucial. DR (Demand response), enabled
through communication infrastructures [1], is one of the main
methods that can be taken in order to decrease consumer electrical
energy consumption when contingencies, like unpredictable vari-
ations in demand or generation, or unit outages take place and can
prevent the balance of supply and demand. These programs can be
implemented either through coordinated [2] or non-coordinated
[3] schemes. Coordinated schemes refer to decentralized control
), m.i.alizadeh@modares.ac.ir
heidari@student.unsw.edu.au
strategies, while non-coordinated schemes are utilized by central
operators through some procedures such as DLC (Direct Load
Control) or RTP (Real-Time Pricing). Among the recently introduced
sources are DRRs (Demand Response Resources), can, indeed,
mitigate some problems existing in the conventional power sys-
tems and improve the overall system reliability, considerably [4e6].
To this aim, versatile DRPs (Demand Response Programs) have been
introduced by FERC (Federal Energy Regulatory Commission) to
classify the many different features of the DSM (Demand Side
Management) [7e9]. Previously announced classification by FERC
[7,8] have been recently modified by adding many new programs
along with merging some of the conventional ones [9]. EDRPs
(Emergency Demand Response Programs) are among the most
widely used programs mainly because the participation in these
kinds of programs is voluntary andmay bring economic benefits for
participants.

In order to examine the functionality of the DRPs, it is worth
mentioning the recent definition of DR, announced by FERC. Ac-
cording to the given definition, “any change in electric use by
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Nomenclature

A(.) Incentive value.
a(.), b(.), c(.) Fuel cost coefficients of a unit.
b Index of buses
CostInc(.) Total incentive cost.
CostGen(.) Fuel cost of a unit in an hour.
D0(.) Initial load demand in an hour.
DDR(.) Final calculated fixed and elastic demand in an hour.
Dmin Minimum amount of load reduction.
dlp(.) Slope of a segment in linearized demand function
dr(.) Demand response in segment n in an hour.
DD(.) Demand change per hour.
DPr(.) Price deviation per hour.
Elast(.) Price elasticity of demand.
ELNS(.) Expected load not served ($/h).
ELNSMAX Maximum amount of ELNS
F(.) Transmission line flow per hour.
FOR(.) Forced outage rate.
Fmax(.) Transmission flow limit.
i Index for conventional unit.
jlin, hlin Linear demand vs. price coefficients.
k Index for contingency.
LS(.) Load shedding of bus b during contingency k in an

hour.
LSmax(.) Maximum amount of load shedding.
Lb Number of transmission lines connected to bus b.
MU, MD Minimum up and down time of generators.
MUd, MDd Minimum up and down time of responsive demand
NB Number of buses.

Nseg Number of linearization segments of fuel cost
functions.

NGen Number of conventional thermal units.
NGen(b) Number of generating units connected to bus b.
p (.) Power generation of a unit.
Pmin(.), Pmax(.) Minimum/maximum generating capacity of a

unit.
Pr0(.) Initial electricity price per hour.
p(.) Probability of a generator contingency.
r(.) Binary DR status
RU(.), RD(.) Ramp up/down limit of a unit.
SC(.) Start up cost of unit i.
SU(.) Startup cost of a unit.
SR (.) Spinning reserve per hour.
slp(.) Slope of a segment of a unit in linear function
ds(.), dr(.) Voltage angles.
t Index for time.
t Spinning reserve market lead-time.
UT(.), TD(.) Number of hours a unit has been on/off at the

beginning of the scheduling period.
u(.) Binary indicator of a unit status.
VOLL(.) Value of lost load ($/MWh).
w(.) Indicator of generation unit outage; 0:outage occurred/

1:otherwise
X(.) Reactance of transmission line.
y(.) Startup indicator.
yd(.) Startup indicator of DR.
z(.) Shutdown indicator.
zd(.) Shutdown indicator of DR.
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demand-side resources from their normal consumption patterns in
response to changes in the price of electricity, or to incentive payments
designed to induce lower electricity use at times of high wholesale
market prices or when system reliability is jeopardized is called DR”.
This definition substitutes “end-use customers”, used in previous
survey, with “demand-side resources” in order to follow the defi-
nition used by NERC's (North American Electric Reliability Corpo-
ration) Demand Response Data Task Force the development of a
Demand Response Availability Data System to collect DRP infor-
mation [9]. End-use customers also can be classified into four cat-
egories: residential, commercial, industrial, and municipal
customers where residential [2]and industrial customers [10] seem
to be great candidates for DR implementation so far.

Although, three major categories of DRPs (i.e., time of use pro-
grams, voluntary programs, and mandatory programs) were pre-
viously announced by FERC, DRPs have been recently categorized
as: interruptible load, direct load control, critical peak pricing with
load control, load as capacity resources, spinning reserve, non-
spinning reserve, emergency demand response, regulation ser-
vice, demand bidding and buyback, time-of-use pricing, critical
peak pricing, real time pricing, peak time rebate, system peak
response transmission tariff, and other programs [4e6].

According towhat is requested by Ref. [11], about examining any
possible improvement in conducting DRPs, in this paper EDRPs in a
SCUC (Security Constrained Unit Commitment) problem are
explored.
 

1.2. Literature review

There is a possibility for some customers to control or schedule
their demand based on the electricity prices. This idea is formulated
in Ref. [12] and the concept of spot pricing of electricity is intro-
duced. Generation scheduling and determining the price of elec-
tricity in a pool market are discussed in Ref. [12]. Themodel of price
elasticity of electricity demand is also described in Ref. [13]. The
FERC staff annual surveys since 2006 [7e9] tracked the concept of
demand responsiveness. The DRPs were firstly categorized into two
main groups including, incentive and time based programs [7]. In
Ref. [5], this classification has been changed and detailed sub-
classifications of the incentive based DRPs have been introduced,
i.e., voluntary and mandatory based programs and market clearing
programs. The recent issue of the survey [9] declared fifteen
separate versatile programs without classifying them into the
above-mentioned two main groups.

In Ref. [14], an innovative method was proposed to find the
customers that can contribute in I/C (interruptible/curtailable)
programs while their maximum benefit is achieved. To do this, a
procedure was proposed to support the regulator of the system by
selecting and prioritizing DRPs by using a TOPSIS (Technique for
Order Preference by Similarity to Ideal Solution) method. The most
effective DPR were selected by using an AHP (Analytical Hierarchy
Process) method in Ref. [15]. To propose a comprehensivemodel for
DRPs, all possible demand vs. price functions have been combined
in Ref. [16] by using a Q-learning method based on a weighting. In
Ref. [17], authors tried to integrate DR programs in power systems
with high renewable penetration rate through optimization of
electricity price of electric storage space heating customers, in or-
der to maximize the profit of the retailer.

In Ref. [18], a pool-based demand response exchange model has
been proposed as an alternative for managing the variability of
renewable energy sources. In this area, many outstanding papers
have been published. In Ref. [3], a new demand response method
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extracted from the demand elasticity concept was presented. The
realization constraints (e.g., maximum daily curtailments, up/down
ramp rates and minimum up/down time) were applied to restrict
the amount of curtailed load. In Ref. [19], the SCUC was considered
as platform to implement DRPs. It was proposed that DRP may
accumulate discrete retail customer responses and submit bid-
quantity offers to the ISO (Independent System Operator). MILP
(Mixed Integer Linear Programming) for UC (unit commitment) has
been explored in Ref. [20] as one of the prominent works for line-
arized UC.

A real time demand response model considering price uncer-
tainty was proposed in Ref. [21]. To include the price uncertainty to
the problem, a robust optimization technique was adopted in Ref.
[21]. In Ref. [22], DRP is considered for the smart grids with high
penetration of renewable generation system. Authors recom-
mended that, a significant balance between renewable generation
and real time pricing instead of compulsory load curtailment in
case of low penetration of renewable generation, can grant flexi-
bility for the customers. Concernedwith mitigating the undesirable
impacts of renewable integration in power systems, the role of
demand response programs both in wholesale energy market
scales and micro-grid scales are also investigated in some recent
papers [23] and [24]. In Ref. [23], DR management has been studies
when a wind farm is connected to a smart grid. Total social welfare
is maximized while the probability of power deficit due to the
uncertainty in renewable production is limited by an upper bound.
Similarly, in Ref. [24], authors tried to overcome the high renewable
penetration rate impacts through micro-grids equipped with both
distributed generation and DRPs.

Bulk demand reduction, however, can be possible through
implementing incentive based DRPs. In Ref. [25], optimal incentive
payments to the curtailable load as the incentive based programhave
been allocated using UC while considering economic and environ-
mental issues, simultaneously. An MILP was proposed to solve a
DRUC (Demand Response Unit Commitment) problem. EDRPs
problem formulation is presented using a fixed elasticity factor.

1.3. Contributions

According to the previous section, many papers investigate DR
in short-term operation planning of the power system. However, a
predetermined fixed price elasticities of demand are majorly
considered which are independent of demand functions. This
independency it is not consistent with the main definition of price
elasticity which implies differentiating the demand vs. price func-
tion. In addition, an incentive based DR program is investigated in a
standard probabilistic SCUC problem to find optimal incentives the
ISO can pay to demand side participants while considering possible
contingencies in short-term operation of power system. The cur-
rent paper is implemented based on enhancedmodels presented in
Refs. [20,25] where not only an incentive based DR program is
investigated but also dynamic price elasticity of demand is
considered to add the flexibility of demand response programs in a
probabilistic day-ahead operational scheduling. Accordingly, the
current paper makes following three contributions:

- Unlike existing literature where a predetermined fixed price
elasticities of demand is used to describe the dependency of
demand and price, in this paper, a dynamic price elasticity is
proposed to be applied in an incentive based demand response
program. Dynamic price elasticity vs. a static form shows more
scheduling flexibility with both lower generation and incentive
charge costs.

- In the current paper, an incentive based demand response
program, EDRP, is applied in a common SCUC problem to
evaluate a tradeoff between additional incentive payments to
the demand side customers and the value of supplying loads in
case of generation units' failure;

- Stochastic programming to model uncertain nature of optimi-
zation parameters is a promising method, however, this comes
at the expense of high computational burden. In this paper, a
probabilistic counterpart of a stochastic SCUC is applied on
predetermined set of generation unit contingencies. This
method, prevent computational intractability while consider
uncertain nature of generation unit failures.

 

1.4. Paper organization

The rest of paper is arranged as follows: Section 2 is dedicated to
the problem formulation. In Section 3, the case studies and dis-
cussion about the simulation results are presented. Finally,
conclusion is presented in Section 4.

2. Problem formulation

2.1. Quantifying EDRP

EDRPs formulation is presented in Ref. [25]on the basis of a fixed
elasticity factor. In order to formulate the price elasticity of de-
mand, we can define the price sensitivity of demand related to
electricity price changes as:

ElastðtÞ ¼ Pr0ðtÞDDðtÞ
D0ðtÞDPrðtÞ

(1)

By manipulating (1), demand changes can be obtained as
follows:

DDðtÞ ¼ D0ðtÞDPrðtÞElastðtÞ
Pr0ðtÞ

(2)

As opposed to the fixed elasticity definition adopted in Ref. [25],
dynamic elasticity [16] is employed in the this paper. Dynamic
elasticity is appropriate feature to assess consumer response to
various kinds of DRPs according to the consumer's load pattern, the
offered prices, its demand model incentives and penalties corre-
sponding to the DR contract and dynamic price elasticities of de-
mand. Even though different functions of demand vs. price (i.e.,
linear, quadratic, exponential, and logarithmic) can be used, a linear
function is used here [14e16]:

DDRðtÞ ¼ jlin þ hlinPrðtÞ (3)

where, D(t) ¼ hlin Pr(t) represents the elastic part of a demand. It is
noted that linear demand vs. price function is chosen for two rea-
sons. Firstly, it has been shown that the best fitted mathematical
function to the historical demand and price data with the greatest
absolute values of price elasticity for high rates of electricity price is
linear function among others like potential, logarithmic, and
exponential functions. Second is that the proposed model is an
MILP so that utilizing any other forms of potential, logarithmic, and
exponential functions made our problem MINLP (Mixed Integer
Non-Linear Programming) which not only its optimal solution
could not be guaranteed, but also the non-linearity could increase
computational burden significantly.

Replacing eq. (3) into (1) and with some simple mathematical
calculations the linear dynamic elasticity can be calculated as:

ElastðtÞ ¼ hlin
Pr0ðtÞ

jlin þ hlinPr0ðtÞ
(4)

According to the results presented in Refs. [14e16], in order to 
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maximize the social welfare, here means minimum generation cost
while providing attractive demand reduction incentives, the elastic
demand should be defined, introducing an incentive value A(t), as
follows:

DDRðtÞ ¼ D0ðtÞ
�
1þ ElastðtÞ AðtÞ

Pr0ðtÞ
�

(5)

More detailed information related to the procedure used to find
the elastic part of the demand in order to maximize the social
welfare can be found in Refs. [14e16]. From a combination of (4)
and (5), the following expression can be deduced:

DDRðtÞ ¼ D0ðtÞ
�
1þ hlin

AðtÞ
jlin þ hlinPr0ðtÞ

�
(6)

The total incentive payment is as follows [25]:

CostIncðtÞ ¼ AðtÞ½D0ðtÞ � DDRðtÞ� (7)

By substituting (6) into (7) and simplifying, we have the
following formula of the total amount of incentive that must be
paid to the participant consumers:

CostIncðtÞ ¼ � D0ðtÞhlinA2ðtÞ
jlin þ hlinPr0ðtÞ

(8)

where, hlin is inherently a negative coefficient of linear demand
versus price elasticity function. According to the [29e31], the
linearized counterpart of (8) is:

CostIncðtÞ ¼ DminrðtÞ þ
XNseg

n¼1

dlpðnÞdrðn; tÞ (9)

where, the first term of the right side of (9) indicates the first block
of stepwise linear incentive provision cost function and the second
term represents the summation of upper blocks.

2.2. Objective function

In this part, the proposed model for an integrated SCUC and DR
program along with considering reliability measures are explained.
It is noted to say that the following assumptions are obeyed
through this model;

- In the current model, optimal energy production scheduling of
generation units are considered and other available products
such as minimum reserve capacity allocations are not included
since incorporating reserves has no additional insight to the
proposed model.

- It is assumed that shut down costs are ignorable in compare
with other sources of costs such as startup and normal operation
fuel consuming costs.

- In the following model, except spinning reserve, other opera-
tional reserve capacity allocation services such as non-spinning,
regulation and Automatic Generation Control (AGC) reserves are
ignored without altering the core idea of the model.

- It is supposed that demand is forecasted without significant
uncertainty, in the sense that stochastic SCUC is not included in
the scopes of this paper.

- Since wholesale generation scheduling is targeted in the current
paper, small individual demand response customers are not
allowed to take part in the present model. Instead, DR aggre-
gators or other market and non-market middle agents are
responsible for aggregating curtailable/shiftable loads,
clustering the customers to reduce their inconveniency and
participate in DR programs on behalf of their clients.

According to the formulation of SCUC, the objective function can
be defined as below:

min
XT
t¼1

(XNGen

i¼1

ðSUði; tÞ þ CostGenði; tÞÞ þ CostIncðtÞ þ VOLLðtÞ
XNB

b¼1

�
XNk

k¼1

LSðb; t; kÞ
)

(10)

where, CostGen(i,t) is the conventional fuel cost of thermal genera-
tion units. The fuel cost has been linearized, as presented in the
Appendix, to be applicable in an MIP (Mixed Integer Programming)
problem formulation as follows:

CostGenði; tÞ ¼ PminðiÞuði; tÞ þ
XNseg

n¼1

slpðn; iÞpðn; i; tÞ (11)

In (10), Costinc(t) indicates the amount of incentive payment to
the participated customers and the last terms of the objective
function represents the cost of involuntary load shedding.

 

2.3. Generation constraints

SCUC optimization problem comprises some constraints. In or-
der to have a unified linear model, DC power flow is used to model
the power balance equation as done in Ref. [19]:

XNGenðbÞ

i¼1

Pði; tÞ � DDRðb; tÞ ¼
XLb
t¼1

Fðl; tÞ cb;ct (12)

where, the left side of (12) states the net power injection to the bus
b at the time t including reduced demand through implementing
DRPs and the right side shows line flow in each bus at time t,
respectively. DDR(b,t) is formerly defined in (6) and F(l,t) is:

Fðl; tÞ ¼ 1
XðlÞ ðdsðlÞ � drðlÞÞ cl; t (13)

The transmission flow limits are defined as follow:

Fðl; tÞ � jFmaxðl; tÞj cl; t (14)

In addition, generating units startup cost constraint is:

SUði; tÞ � SCðiÞðuði; tÞ � uði; t � 1ÞÞ ci; t (15)

Real power generation constraints are:

Pði; tÞ � PmaxðiÞuði; tÞ ci; t (16)

Pði; tÞ � PminðiÞuði; tÞ ci; t (17)

Spinning reserve is defined over the entire system as follows:

XNGen

i¼1

Pmaxði; tÞ � SRðtÞ þ
XNB

b¼1

DDRðb; tÞ (18)

Once the unit is committed/shut down, it has to be “on/off” for a
minimum number of hours indicated in the following equations as
stated in Ref. [19]:
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XUTðiÞ
t¼1

ð1� uði; tÞÞ ¼ 0 ci2NGen (19)

yði; tÞ þ
Xmax½T ;tþMUðiÞ�1�

m¼tþ1

zði;mÞ � 1 ci2NGen
ct ¼ UTðiÞ þ 1;…; T

(20)

where, y(i,t) and z(i,t) are binary variables representing the startup
and shutdown status flags, respectively and UT(i) is:

UTðiÞ ¼ maxf0;min½T ;MUðiÞ � TUði;0Þuði;0Þ�g (21)

Accordingly, shutdown time constraints can be considered as
given below:

XDTðiÞ
t¼1

uði; tÞ ¼ 0 ci2NGen (22)

zði; tÞ þ
Xmax½T;tþMDðiÞ�1�

m¼tþ1

yði;mÞ � 1 ci2NGen
ct ¼ UTðiÞ þ 1;…; T

(23)

Consecutively, DT(i) is

DTðiÞ ¼ maxf0;min½T ;MDðiÞ � TDði;0Þð1� uði;0ÞÞ�g (24)

Logical relations between start up and shut down indicators
should be considered as follows [19]:

yði; t þ 1Þ � zði; t þ 1Þ ¼ uði; t þ 1Þ � uði; tÞ (25)

yði; tÞ þ zði; tÞ � 1 (26)
2.4. Demand response constraints

Realization constraints are considered in the following subsec-
tion. Realization here means to add constraints imposed to DRPs
when it is implemented in the “real world”. Just like a generation
unit, minimum up/down constraints can decrease the inconve-
nience of implementing DRPs for consumers as follows:

XUTðiÞ
t¼1

ð1� rðtÞÞ ¼ 0 ct ¼ UTd þ 1;…; T (27)

ydðtÞ þ
Xmax½T ;tþMUd�1�

m¼tþ1

zdðmÞ � 1 ct ¼ UTd þ 1;…; T (28)

where, yd(t) and zd(t) are binary variables indicating the startup and
shutdown states, respectively and UTd is:

UTd ¼ maxf0;min½T ;MUd � rð0Þ�g (29)

Accordingly, off time constraints can be written as follow:

XDTd
t¼1

rðtÞ ¼ 0 ct ¼ UTd þ 1;…; T (30)

zdðtÞ þ
Xmax½T ;tþMDd�1�

m¼tþ1

ydðmÞ � 1 ct ¼ UTd þ 1;…; T (31)

Consecutively, DTd is
DTd ¼ maxf0;min½T ;MDd � ð1� rð0ÞÞ�g (32)

The joint equation between on and off time indicators are

ydðt þ 1Þ � zdðt þ 1Þ ¼ rðt þ 1Þ � rðtÞ (33)

ydðtÞ þ zdðtÞ � 1 (34)

The capacity shortage may lead to involuntary load shedding in
order to maintain system security. Due to high loss of load costs,
load shedding should not exceed from a limit as follows:

0 � LSðb; t; kÞ � LSmaxðb; tÞ (35)

It has to be mentioned that the upper limit of the load shedding
should not exceed demand at that hour in its corresponding bus.

In order to obtain a failure probability in a contingency, we used
Forced Outage Rate (FOR) of generation units to calculate the p (k)
as presented in Ref. [26]. It is worth noting that we consider just
generation failure here. Thus in the proposed formulation “k” is
identical to “i” that is the number of generation units.

pðkÞ ¼ FORðkÞ
1� FORðkÞ

YNGen

i¼1

ð1� FORðkÞÞ (36)

As previously mentioned, single contingency in generation unit
failure is considered. Consequently, load shedding of bus b during
contingency k in an hour t is defined as follows:

LSðb; t; kÞ ¼ DDRðb; tÞ �
XNGenðbÞ

i¼1

Pði; tÞwði; kÞ þ
XNb

l¼1

1
XðlÞ ðdsðlÞ

� drðlÞÞ cb2NB; t2T ; k2Nk (37)

In contingency case, different from the regular situation when
the generation must satisfy the demand, demand may not be
satisfied because of lack of adequate generation. Thus, the differ-
ence between hourly generation and demand imposes a penalty
cost namely, load shedding parameter. Whenw(i,k) is equal to zero
P(i,t) remains zero due to a contingency occurred in unit “i” during
time “t”.

Expected Load Not Served (ELNS) that guarantees a reliable
generation scheduling is obtainable by multiplying the probability
of component failure to the load shedding value for each outage in
each bus in time “t” as below:

ELNSðtÞ ¼
XNB

b¼1

XNk

k¼1

pðkÞLSðb; t; kÞ (38)

ELNSðtÞ � ELNSMAX (39)

It is noted that in the proposed optimization problem, the
objective function, i.e., (10), of the MILP problem is minimized
subject to constraints, i.e., (12) to (39). Also, the decision variables
of the optimization problem can be listed as: P (i, t), DDR (b, t), LS (b,
t, k) and u (i, t).

 

3. Case studies and discussion

In the current section, the advantages of utilizing DRPs are
clearly illustrated by versatile case studies. To this aim, different
case studies are implemented, namely:

- Case #0: UC scheduling without considering DRP and reliability
measures.  
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- Case #1: UC scheduling considering DRP but no reliability
measures are included.

- Case #2: SCUC scheduling considering both EDRP and reliability
measures.

In all case studies, 24-bus IEEE-RTS [27] is considered as the base
test system. All generation units' data are given in Table 1. In the
proposed model, all six hydro units out of 32 other type units
operate at their maximum output and do not participate in the
optimization procedure. It is noted that this assumption has no
impact on the main purposes of the proposed framework. MIP is
modeled implementing CPLEX 11.2.0 solver powered by GAMS
optimization software. The CPU (central processing unit) time
required for solving all the presented cases with a personal com-
puter powered by core i3 processor and 3 GB of RAM is less than 5 s.
3.1. Case #0: normal operation without DR and reliability measures

In this study, the goal is to determine the optimal generation
scheduling in a general day-ahead UC problem. The optimal costs
and generation status obtained in the current case can be counted
as benchmarks for next case studies. Total cost in this case is
$826,750 where the value of lost load and DR costs are ignored. In
this case all of forecasted demand is supplied and the load factor is
calculated 82.9%. In this case, units 23e26 and 31e32 are always on
during the scheduling period, units 1e9, 14, and 16e19 are not
committed at all and peak unit is 20 with 32 MWpower generation
from hours 9 am to 4 pm.
3.2. Case #1: effect of the dynamic elasticity on normal operation

In the current case study, the effect of the dynamic elasticity is
investigated along with the social welfare provided by imple-
menting DRPs. EDRP has been then implemented considering the
elasticity coefficients jlin and hlin equal to 209.38 and �1.5,
respectively [16]. It is noted that these parameters are not fixed for
every systems and may change based on many factors such as, load
groups (i.e. residential, commercial, industrial, agricultural and so
on), load characteristics and market behaviors. In this paper, it is
supposed that these parameters are predetermined and a modified
version of [16] is applied here. Since these parameters have sig-
nificant effects on our results, different values in an upward and
downward range are examined and compared in upcoming cases.
Moreover, buses15 and 18 are allowed to participate in EDRP. This
selection is done based on Table 2 by selecting the most heavily
loaded buses. This approach is based on the ideas that demand
response implementation on all buses might not be practical due to
high investment costs of Advanced Metering Infrastructures (AMI).
It can be, however, demonstrated that significant reductions in
generation costs in a day-ahead horizon can be achieved if only
buses with high demand profile are selected as candidates for
Table 1
Specifications of generation units.

No. Type Pmax Pmin ai bi ci

1e5 Fossil-Oil 12 2 56 0.08 38.9
6e9 Combustion Turbine 20 16 633 0.44 48.4
10e13 Fossil-Coal 76 15 145 0.01 11
14e9 Hydro 50 0 0 0 0
20e22 Fossil-Oil 100 25 615 0.07 25.4
23e26 Fossil-Coal 155 54 220 0.01 9.3
27e29 Fossil-Oil 197 69 739 0.02 28.5
30 Fossil-Coal 350 140 440 0.01 8.6
31e32 Nuclear 400 100 621 0.0 13.5
implementing DRP. In this case, the total generation cost and total
incentive payment are equal to $826,045 and $6,564 respectively.
Fig. 1 shows the curtailment in the demand profile for bus 15. Note
that almost the same reduction is observed for bus 18. It is clear
from Fig. 1 that demand is started to be curtailed gradually from
valley hours in the morning to off peak and peak hours in the noon
and afternoon, respectively. This load curtailment behavior is
acceptable since there is no curtailment during valley hours and the
maximum curtailment is occurred during peak hours by up to
14 MW reductions in hour 11.

 

3.3. Case study #2: effect of demand response on reliability

As previously mentioned, the main purpose of this paper is to
investigate the effect of DR in the case of contingencies. To this aim,
single contingencies in generation units are investigated in the
presence of reliability indices. For the first step, SCUC is investi-
gated without considering EDRP. VOLL and ELNSMAX are set to 1500
$/MWh and 3 MWh, respectively and the must run generators are
supposed to be completely reliable. An operational cost of 888,429
$ has been obtained which is $61,298 more than the base case. This
rise in the conventional operating costs is due to reliability costs.

To implement an EDRP, 10% of the two most heavily loaded
buses (i.e., buses 15 and 18) are allowed to be flexible. The market-
clearing price, calculated in the base case, is presented in Table 3. It
is noted that nodal marginal prices are same as the value of dual
variables in power balancing equality constraint. The operational
cost and total incentive payments in this case are $880,484 and
$6,540, respectively. It is observable that flexible loads reduced the
cost up to $7945 in comparison with the no-EDRP counterpart.

Demands vs. price elasticity function coefficients are signifi-
cantly depend on historical data. In addition, variation in co-
efficients may have noticeable effects on the quality of the
optimization procedure and solutions as well. Hence, an expanded
range for hlin is studied to clarify the influence of the parameter
which is the main parameter in all kinds of elasticity functions (i.e.,
logarithmic, potential, exponential, and linear). All responsive de-
mands regarding versatile hlin for the contingency based unit
commitment are shown in Fig. 2. It is clear that in almost all vari-
ations, demand reduction in early hours in the morning is negli-
gible. This behavior was expected because of accommodating
electricity price in the elastic demand formulation. Meanwhile,
according to the formulation section, demand compensation in off
peak hours is not permitted. In addition, doubling hlin is resulted to
an almost double reduction in peak hours which shows the sig-
nificance of the fine setting of the parameter. On the other hand,
when hlin is 1.05, the slightest reduction during peak hours occurs.
Because of some inherent restriction in implementing EDRPs such
as price alert delay in communication systems and also the low
inertia attitude of some loads, sudden variations of demand can
occur. In order to prevent such unrealistic events in DRPs,
Table 2
Hourly peak load in percent of daily peak for buses.

No. Load % Of peak No. Load % Of peak

1 108 3.8 10 195 6.8
2 97 3.4 13 265 9.3
3 180 6.3 14 194 6.8
4 74 2.6 15 317 11.1
5 71 2.5 16 100 3.5
6 136 4.8 18 333 11.7
7 125 4.4 19 181 6.4
8 171 6.0 20 128 4.5
9 175 6.1
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Table 3
Market-clearing prices.

Bus-no. Price ($/MWh) Bus-no. Price ($/MWh)

1 14.34 13 36.32
2e8,24 13.50 12,14-15 38.42
8 35.20 16e18 36.32
9,23 35.34 19,22 36.30
11 37.30 10,20-21 35.86
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minimum up/down and load reduction ramp rates is considered.
Meanwhile, load reduction is occurred with the same pattern in all
of the cases, which is expectable for non-compensated DRPs. The
same patterns verify that implementing DRPs may not force cus-
tomers to change their conventional consumption pattern.
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Fig. 4. Generation costs for versatile ELNSMAX.  
3.4. ELNSMAX variation

In the following section, the impact of ELNSMAX deviation in
hourly scheduling is discussed. The ELNSMAX for both considered
contingency cases is 3 MWh and upward and downward variations
from this value are examined to explicitly demonstrate the impacts
of this parameter. According to what illustrated in Fig. 3, ELNS
remained almost zero during early hours of the day. Moreover, the
lowest value 2.5 MWh forced ELNS to remain in its maximum value
from11 am to 16 pm. In addition, when themaximumvalue is set to
2.7 MWh, the maximum ELNS reduced at hour 12. The upper levels
of the ELNSMAX from 3 MWh, however, showed no significant
increment during peak hours. In order to effectively interpret the
recent trends, they have to be considered with their corresponding
generation costs, shown Fig. 4. It is noted that in this figure the
curves for the cases 3 MWh and 3.2 MWh are almost the same.
Also, Fig. 4 indicates the generation cost and incentive payment
for different ELNSMax values. It can be seen that generation cost
shows a decreasing trend as the ELNSMax value increases. This trend
can be proven according to the fact that increasing upper limit on
inequality (39) not only enlarges optimal feasibility region but also
required generation capacity to reach reliability criterion can be
reduced. Incentive payment, however, has a different trend. It can be
seen that for small amounts of ELNSMax value, the incentive payment
is quiet much more than those of larger ELNSMax values. It can be
observed that implementing DRPs can be used as suitablemeasures
in case of high reliability requirements. Moreover, for larger
amounts of ELNSMax values, incentive payments decrease signifi-
cantly. This shows that the proposedDRPmaynot impose additional
costs on system operator during normal situations. It should be
noted that a slight increase in incentive payments for the ELNSMax

equal to 2.7 MWh can be justified in a way that DR framework
proposed in this paper follows a piecewise linear function.

Accordingly, moving to upper segments requires reaching to the
maximum point of the lower segment. This might cause some extra
costs in some cases, such as occurred in the case ELNSMax ¼ 2.7. The
hourly demand is also indicated in Fig. 5. As it can be observed from
Fig. 5, very tight reliability limits caused more demand reductions
majorly during peak hours. As an example, for ELNSMax equal to 2.7
(MWh) demand is reduced up to 31 MWduring hours 11, 12, 15 and
16.

3.5. VOLL effect

Another important factor which has significant role in allocating
load shedding is VOLL. VOLL can be defined as the average constant



160

200

240

280

320

1 4 7 10 13 16 19 22

D
em

an
d 

(M
W

)

Time horizon (h)

Base demand

ELNS_Max=2.5 MWh

ELNS_Max=2.7 MWh

ELNS_Max=3.0 MWh

ELNS_Max=3.2 MWh

Fig. 5. Effect of ELNS on demand reduction.

0

1

2

3

1 4 7 10 13 16 19 22

EL
N

S 
(M

W
h)

Time horizon (h)

VOLL=2500

VOLL=4500

VOLL=6500

VOLL=8500

VOLL=1500

Fig. 6. Effects of different VOLL on hourly ENLS.

J. Aghaei et al. / Energy 103 (2016) 688e696 695 
cost value that customers will lose due to the loss of one kWh of
energy for one hour [28]. In order to clarify the applicability of the
proposed method in mitigating load shedding, different values of
VOLL are examined in four enhancing steps, illustrated in Fig. 6.

For almost all cases, ELNS remains zero during early hours of the
day, as observed in reliability-based cases. It can be inferred from
Fig. 6 that more VOLL value caused much more demand reductions
during peak hours. This implies that suitable coordination of DRPs
and the value of loads may lead to an optimal utilization of system
resources. On the other words, high VOLL values during peak hours
impose extreme costs on system operator, who can use demand
response programs to mitigate such high costs through incentive
payments.
4. Conclusions

In this paper, the efficiency of integrating DRPs to the SCUC
problem to improve both social welfare and reliability indices has
been investigated. Improving in social welfare is expectable since
participating consumers in wholesale electric markets can not only
mitigate the market power in supply side but also may provide
benefits for demand side consumers by being paid in return for load
reduction. Reliability also may be improved by reducing very
expensive involuntary load shedding during on-peak periods.
Among fifteen different programs announced by FERC, the EDRP
has been selected here because of its prevalent application in to-
day's deregulated markets. In addition, demand vs. price parame-
ters have magnificent influence on load reduction decision making.
Prior to the current paper, fixed elasticity based on historical
behavior of demand vs. price was used to model elasticity of de-
mand, which may cause misunderstanding from price elasticity. In
this paper, considering dynamic elasticity factor realized the
concept of price responsiveness more than previous in-
terpretations. To demonstrate the applicability of such program,
versatile case studies have been considered. It is stated that the real
conflict is between demand reduction and expensive involuntary
load shedding. Moreover, it is declared that, even low EDRP pene-
tration in power systems may have magnificent influences mostly
on contingency management, which was on the focus in the paper.

Although our model does not include uncertainty and inter-
mittency of RES (renewable energy sources), an augmented version
of our proposed model can mitigate these impacts as well. For
further studies in this regard, RESs can be integrated both as non-
dispatchable generation units or negative loads as in many
similar papers. It is expected that particularly for peak hours that
might not necessarily be the peak hours for generating power from
RESs, EDRP, proposed in the current paper, can both prevent price
spikes for specific hours, and act as additional reserve capacities to
increase the overall reliability of the system for critical hours.
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