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a b s t r a c t

Publish/subscribe systems offer a loosely coupled communication paradigm in distributed information

systems. However, supporting expression of semantic events, expression of logical and temporal

patterns of composite events, and how to manage and route composite events and subscriptions still

need further research. In this paper, we present the design and implementation of JTang composite and

semantic publish/subscribe system over structured P2P networks, and highlight its novel features,

including semantic broker network, composite event and subscription language and distributed

composite subscription management. The experiments based on the Peersim simulator over the Pastry

overlays show that the ontology routing table helps decrease the average number of hops and the use of

composite subscriptions significantly reduces the load on the network.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Publish/subscribe systems (Eugster et al., 2003) offer a loosely
coupled communication paradigm in distributed information
systems. A traditional publish/subscribe system is composed of
publishers, subscribers and brokers. Publishers generate informa-
tion in the form of event and sent it to a network of connected
brokers instead of subscribers directly. In order to receive events,
subscribers need to register their interests with brokers in the
form of subscription. Brokers are responsible for managing sub-
scriptions and delivering the events to the interested subscribers
through the network.

Content-based publish/subscribe systems, which allow subscri-
bers to specify the kind of message content they want to receive,
have gained much attention for their powerful expressiveness in
the distributed computing environment. A large variety of emer-
ging applications including RSS feed filtering, stock-market mon-
itoring engines, system and network management and monitoring
benefit from content-based publish/subscribe systems.

However, content-based publish/subscribe systems are not aware
of the semantics of information. For example, suppose a subscriber is
interested in information about ‘‘computer’’, usually will not receive
an event about ‘‘notebook’’. Ontology languages such as OWL or
RDFS enable building correlations based on inherited meanings
of orthogonal concepts as well as on relationships between them.
ll rights reserved.
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Using ontological concepts and relations to express events and
subscriptions can improve the expression of publish/subscribe
system, and increase selectivity and finer grained control for the
event matching process. Moreover, semantic reasoning can discover
additional events that cannot be found by traditional matching
algorithms.

On the other side, more sophisticated publish/subscribe appli-
cations such as business process execution, business activity
monitoring and workflow management need composite subscrip-
tions to combine events from distributed sources. Composite
events can be composed or derived from other events called its
members. Composite subscriptions allow clients to subscribe
patterns of events (composite events). It gives additional dimen-
sion of data management, and improves scalability and perfor-
mance of distributed systems.

However, the issues of how to support semantic events and
logical and temporal correlations of composite events both and
how to route and manage composite events and subscriptions are
still largely unexplored.

To address the above issues, we present the design and the
implementation of JTang Composite and Semantic Publish/sub-
scribe system (JTangCSPS) over structured P2P networks. Com-
pared with the existing work, the main contributions of our work
are as follows:
1.
 We propose a Semantic broker network architecture, which is
built by mapping ontology class weighted tree to weighted
broker network. The ontology routing table maintains OCWT
and helps deduce the hops, and the backup strategy improves
the reliability of system.
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2.
 We present a composite event and subscription language to
support logical and temporal correlations among distributed
events and subscriptions. An additional ontology is created to
store composite event and subscription in OWL language.
3.
 A distributed composite subscription management is used to
decompose composite subscriptions and collect and aggregate
primitive events from the different brokers to satisfy the
subscriptions.
4.
 A semantic matching algorithm and a semantic routing algo-
rithm are presented to support the semantic matching and
routing.
2. Related work

Recently, some publish/subscribe systems, such as DREAM
(Buchmann et al., 2004), OPS (Wang, 2005), S-TOPSS (Petrovic
et al., 2003), G-ToPSS (Petrovic et al., 2005), allow events to be
matched to subscriptions based not only on their contents, but
also on their semantics. Events and subscriptions express the
semantics of their information based on an ontological represen-
tation of that information. DREAM (Buchmann et al., 2004) is a
reactive event-based middleware platform, which develops
concept-based notification to extend content-based filtering to
heterogeneous environments. OPS (Wang, 2005) is an ontology-
based publish/subscribe system and its event model and sub-
scription model are based on RDF. It offers a subscription
language, which is a subset of the DAML language (McGuinness
et al., 2002) and supports hierarchical and equivalent class as well
as hierarchical property relations. S-ToPSS (Petrovic et al., 2003)
uses an ontology that includes synonyms, taxonomy and trans-
formation functions to deal with syntactically disparate events
and subscriptions. G-ToPSS (Petrovic et al., 2005) is an RDF-based
publish/subscribe system developed for selective information
dissemination. It utilizes the ontology to interpret semantic
information about the data and a fast graph-based matching
algorithm to filter semantic events. However, these publish/
subscribe systems restrict subscriptions to primitive events. To
the best of our knowledge, JTangCSPS is the first system, which
provides a composite event and subscription language for broadly
supporting the semantic events and subscriptions and logical and
temporal composite operators.

A promising solution for the design and deployment of large-
scale publish/subscribe system is the exploitation of the peer-to-
peer (P2P) paradigm. P2P networks can be categorized into two
main types: unstructured and structured. Structured P2P
networks offer characteristics such as efficient routing,
key-search, self-organization, fault tolerance and good load bal-
ancing by a Distributed Hash Table (DHT). Pietzuch and Bacon
(2002), Baldoni et al. (2005), Ahull et al. (2008) and Pujol-Ahullo
et al. (2009) are content-based publish/subscribe over the DHT
overlay and employ a rendezvous model to facilitate meetings
between events and subscriptions. Rendezvous brokers are
responsible for storing subscriptions, matching events and noti-
fication process. However, the ‘‘hash-like’’ interaction is not
sufficient for a content-based publish/subscribe system that
requires support for more complex and expressive queries.
Besides, Chirita et al. (2004) built a publish/subscribe system on
the Edutella (Nejdl et al., 2003) P2P infrastructure, which use
super-peer based topologies and organized peers in hyper-cubes.
However, queries have to be flooded to every broker node in the
network, making the system difficult to scale. Crespo and Garcia-
Molina (2003) proposed the concept of Semantic Overlay Net-
works (SONs). SONs (Crespo and Garcia-Molina, 2003; Löser et al.,
2003; Schmitz, 2004; Raftopoulou and Petrakis, 2008) are an
instance of unstructured networks in which peers are grouped by
thematical, semantic or social relationships of documents they
store. Each peer stores additional information about content
classification and route queries to the appropriate SONs, increas-
ing the chances that matching objects will be found quickly and
reducing the search load. However, the maintenance cost in SONs
becomes more expensive when the number of SONs increases.
Different from these systems, JTangCSPS proposes a semantic
broker network over structured P2P network to achieve large-
scale computing and load balance.

Composite events have been an important issue not only in
traditional networks such as system monitoring but also in dis-
tributed event systems. Some publish/subscribe systems support
composite events and subscriptions. Courtenage (2002) describes a
new declarative language for specifying composite events based on
the typed l-calculus. Composite events are represented in this
language by curried functional expressions. Following research
(Courtenage and Williams, 2006) implements a composite event
notification system over a chord-based peer-to-peer network using
JXTA to handle the network management and network routing. CEA
(Pietzuch et al., 2003; Pietzuch et al., 2004) proposes a Core
Composite Event Language to express concurrent event patterns.
The CEA language is compiled into automata for distributed event
detection supporting regular expression-type patterns. CEA employs
polices to ensure that mobile event detectors are located at favor-
able locations, such as close to event sources. REBECA (Ulbrich et al.,
2004) describes composite events using composite event filter
expressions, which can be mapped to expressions of the Core
Composite Event Language (Pietzuch et al., 2003). ECCO (Yoneki
and Bacon, 2005) created event broker architecture for a distributed
adaptive mobile environment. Event correlation is part of event
brokers, and grids of brokers are deployed over mixed network
environments. The ECCO prototype is implemented with a MANET
protocol as a content-based publish/subscribe system. Cayuga
(Demers et al., 2006; Demers et al., 2007) is a stateful publish/
subscribe system based on nondeterministic finite state automata
(NFA), and supports features such as parameterization and aggrega-
tion. Gang et al. (2005) proposes the composite matching algorithm
based on hierarchy colored Order Binary Decision Diagram (OBDD)
graphs to handle temporal constraint variable of the composite
subscription. PADRES (Li and Jacobsen, 2005) supports paralleliza-
tion, alternation, sequence and repetition compositions, and is based
on a rule-based broker that implements composite event detection
and proposes a distributed algorithm for composite subscription
routing. However, REBECA (Ulbrich et al., 2004) allows subscribing
temporal events only and (Courtenage, 2002) lacks support for
temporal correlation. Some other systems gave no distributed
solutions (Demers et al., 2006; Demers et al., 2007; Gang et al.,
2005), and Yoneki and Bacon (2005) did not consider efficiency. In
this paper, we present a composite event and subscription language
and distributed composite subscription management over semantic
broker network to achieve large-scale computing and efficient
routing.
3. Semantic broker network architecture

Distributed publish/subscribe systems strive to achieve scalabil-
ity and avoid a single point of failure using an overlay network of
brokers. However, the hash function of structured P2P network is
not sufficient for a content-based publish/subscribe system. In this
section, we present the detail of the semantic broker network
architecture. JTangCSPS is an extension of our early work (Qian
et al., 2011). Web Ontology Language (OWL) is used to build
semantic broker network. We define weights of ontology classes
to estimate the information of events and subscriptions, and create



Fig. 1. OCWT and OCId.
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an ontology class weighted tree (OCWT) based on the inheritance
and similarity of ontology classes. Next, OCWT is mapped to a
one-dimensional space and each ontology class of OCWT is assigned
a unique numeric ontology class identifier (OCId). We also define
the weights of brokers to present the capability of the brokers.
Then, the OCWT is mapped to the weighted broker network.
Brokers with higher weights are mapped with ontology classes
with higher weights, and one or more ontology classes that are
connected in OCWT might be mapped to the same broker. Sub-
scriptions related to the same ontology class are defined as a virtual
subscription, events and subscriptions are routed to different
brokers, who manage the responding virtual subscriptions. By this
approach, system achieved semantic-based division of the struc-
tured P2P network, large-scale distributed computing capabilities
and load balance.

3.1. Ontology class weighted tree

To quantitatively estimate the information of events and
subscriptions, we define the weight of OWL ontology class Cx by

WCx ¼
XK

k ¼ 1

WCyk
þ
XL

l ¼ 1

WDPl
þ
XM

m ¼ 1

WOPm
WCm

ð1Þ

WDP and WOP are the weights of datatype property and object
property of class Cx, WCm is the weight of the class of the range of
the WOP, L and M are the numbers of WDP and WOP, K is the
number of the parents of class Cx. To simplify, the weight of
property is set to 1. In the case of single inheritance, the formula
becomes

WCx ¼WCyþ
XL

l ¼ 1

WDPl
þ
XM

m ¼ 1

WOPm
WCm

ð2Þ

We create an ontology class weighted tree (OCWT) based on the
inheritance and similarity of ontology classes. The OCWT is
mapped to a one-dimensional space and each ontology class of
the OCWT has a unique numeric ontology class identifier (OCId)
by the OCId algorithm. When OCWT is mapped to the 2bl one-
dimensional space, we assume the inequalities (2b

�14¼n and
bho l�1) are satisfied where h is the height of the OCWT and n is
the max number of children of the OCWT.
OCId Algorithm
Input: OCWT
Output: COCWT

root:OCId¼ 10:::0l�2

for cni AOCWT
if cni.CS.size 40

ws¼
Pcni :CS:size

j ¼ 1

cni:CS:getðjÞ:weight

cni.CS.sort ()
for(j¼1ycni.CS.size)

cni.CS.get(j).OCId¼cni.OCId

cni:CS:getðjÞ:OCId:x¼
1 j¼ 1

xf þminð½ð2b
�1Þ�wf =ws�,2b

�ðcni:CS:size�iÞÞ j41

(

The OCId algorithm starts from the root of the OCWT, the OCId
of root is a numeric value represented as a single ‘1’ followed by
l–2 ‘0’s. For each class node cni of OCWT, if the size of the children
set CS of cni is positive, the sum of the weights of all children is
assigned to ws. Children nodes are sorted by similarity SCx,Cy

defined by formula 3, where the numerator is the weight of
properties that both classes have and the denominator is the
average weight of Cx and Cy. The child that is most similar to the
parent is put in the first place of sorted children set CS, and the
sibling that is most similar to the first child is put in the next
place and so on. The OCId of the child node is assigned with that
of parent first, then set the first 0 (x bit) to a value between 1 and
2b
�1 according to its weight. The x bit of the first child is set to 1,

and the x bits of the other children are set by the equation in OCId
algorithm where xf is the x bit value of the former child and wf is
the weight of the former child. The equation guarantees that
every ontology class has a unique OCId.

SCx,Cy ¼

PL0
l ¼ 1

WDPl
þ
PM0

m ¼ 1

WOPm
WCm

ðWCxþWCyÞ=2
ð3Þ

Fig. 1 is an example of the ontology of food. The number above the
node is the weight of ontology class, the number in the rectangle
is the sum of the children’s weights, and the number behind the
node is the value of OCId in the case of b¼3, l¼4.

3.2. Weighted broker network

For distributed publish/subscribe systems, the most important
resources are the bandwidth of the network and computing
ability of the brokers. Besides, brokers usually serve continuously.
We define the weight of the brokers by

Wt
N ¼ a1Bþa2Cþa3tonline ð4Þ

Wt
N is the weight of the broker at t time, B is the bandwidth of the

broker, C is the computing ability, tonline is the online time and a1,

a2 and a3 are constants.
After defining the weight of the broker, we map OCWT to the

weighted broker network. To achieve load balance, we let the
bigger weight of broker responsible for the bigger weight of
ontology classes. Subscriptions related to the same ontology class
are defined as a virtual subscription, and each broker manages
one or more virtual subscriptions.

When the number of nodes of OCWT is larger than the number
of nodes of the broker network, some brokers will be responsible
for one or more ontology classes. We combine the class nodes of
OCWT to create a new tree named composite ontology class
weighted tree (COCWT). Correspondingly, a composite ontology
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class contains one or more ontology classes that are connected
(parent, left and right sibling and children).
OCWT Combination Algorithm
Input: OCWT
Output: COCWT
combine(OCWT)
if nom

for cni AOCWT
if all children of cni are leaves

LBS.add(cni)
for lbi A LBS

pair¼createPair(lbi)
PS.add(pair)

for (i¼1ym-n)
pair¼PS.get(0)
ccn.weight¼pair.weight
ccn.NS.add(pair.a)
ccn.NS.add(pair.b)
pair.a.parent.CS.remove(pair.a)
if pair.b.parent¼¼pair.a

pair.a.CS.remove(pair.b)
else

pair.a.parent.CS.remove(pair.b)
pair.a.parent.CS.add(ccn)
if pair.b.parent¼¼pair.a

LBS.add(pair.a.parent)
PS.remove(pair.a)
PS.add(createPair(pair.a.parent))

createPair(lb)
if lb.CS.size¼¼1

pair.a¼ lb
pair.b¼ lb.CS.get(0)
pair.weight¼pair.a.weightþpair.b.weight

else
pair.weight¼MAX_INTEGER
for(i¼1ylb.CS.size-1)

sum¼ lb.CS.get(i-1).weightþ lb.CS.get(i).weight
if pair.weight4sum

pair.weight¼sum
pair.a¼ lb.CS.get(i-1)
pair.b¼ lb.CS.get(i)
n is the number of broker nodes and m is the number of
ontology class tree nodes. If m is larger than n, those nodes whose
children leave are put into set LBS. Then, for each node of LBS, a
pair is created and put into pair set PS sorted by the weight of
pair. Each pair has two nodes, which are parent node and the only
child, or two connected children nodes with the smallest sum of
weights. Each time, the broker gets the first pair from PS to create
a composite class node ccn, and pair.a and pair.b are put into
nodes set NS of ccn, then ccn is put into the children set CS of
parent of pair.a, and pair.a and pair.b are removed from the
OCWT. If pair.a is the parent of pair.b, parent of pair.a is put into
set LBS and a new pair is created and put into PS while the old
pair is removed from PS. The loop will continue until the number
of nodes of the COCWT is equal to n.

Due to lack of the complete information of the broker network
at the beginning, the OCWT cannot be mapped to the broker
network directly. First, a broker node is selected as root node
randomly, then root node sends request messages to the nodes in
the routing table to collect the weights of the broker nodes, and
the OCWT is combined into the COCWT until the number of
composite ontology class is equal to the number of the nodes in
the routing table. Finally root node arranges the weights of the
composite ontology class and broker nodes and assigns one
composite ontology class to one node in order. If a broker node
is mapped with a composite ontology class, it gets the responding
subtree from the OCWT and tries to split it and maps them to
nodes in its routing table.
Mapping Algorithm
Input: OCWT
Output:
map(OCWT)
for nodei Arouting table

WS.add( request(nodei))
WS.sort
combine(OCWT)
for nodei A WS

nodei.map(OCWT.ccni)
3.3. Ontology routing table and backup strategy

The semantic broker network has three types of brokers: main
node, backup node and routing node. The main node manages one
or more virtual subscriptions, and the backup node backs up the
virtual subscriptions of one main node, while a routing node only
helps to route messages. Each broker has a node identifier (NId)
by combining the OCId and the broker identifier (BId). The NId is
used to indicate a broker’s position in a circular NId space, and BId
is generated by hashing its IP address to k-bit space; so the length
of NId is blþk. For a main node, OCId is the smallest one of the
virtual subscriptions. For a backup node, OCId is same as the main
node it backs up. For a routing node, OCId is same as the node that
the broker joins the network and first connects to.

Besides the routing table of the understructure P2P network,
each main node has an ontology routing table (ORT), including
NodeSet, ParentSet, ChildrenSet, GrandChildrenSet, LeftNeighbor,
RightNeighbor, BackupNode and BebackupNode. NodeSet
contains the OCIds of the ontology classes, which the broker
maintains; ParentSet contains the OCIds of parents and grand-
parents of those in the NodeSet; ChildrenSet contains the OCIds of
all children of those in the NodeSet; GrandChildrenSet contains
the OCIds of first child of those in the ChildrenSet; LeftNeighbor
and RightNeighbor are the OCIds of the left and right siblings;
BackupNode is the OCId of the node, which serves as a backup
node of this node and BebackupNode is the OCId of the node,
which is backed up by this node. ORT helps route messages and
reconstruct the COCWT.

To improve the reliability of system, a backup strategy is used.
During selection of the backup node, we consider two situations:
(1) if n rm, then each broker is a main node. How to select the
backup node is decided by the following conditions: (a) parent
node is backed up by the first child; (b) leaf node is backed up by
the left or right neighbor node or the parent node. It ensures that
the node and backup node are always adjacent. (2) If n 4m, a
main node try to find a not main node from the routing table as a
backup node. If it cannot find one, it will follow the method above.

Fig. 2 is an example of mapping the COCWT of Fig. 1 to Pastry
(Rowstron and Druschel, 2001) network, which has eight nodes.
N1000 is the root of the COCWT, and N1111, N1114 and N1141 are the
composite nodes. Arrows with dotted line connect parents to
their children.

Routing algorithm
Input: Message M

Output: next hop
getNextHop(M)
if (L-l/2rM.destrLl/2)

return min(9M.dest -Li9)
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NodeSet
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Fig. 2. Semantic Pastry broker network.
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else
l¼shl(M.dest,OCId)
if M.destoOCId

k¼max (shl(M.dest,ORT.ParentSeti))
if(k4 l)

return ORT.ParentSeti

else
Set¼ORT.ChildrenSet[ORT.GrandchildrenSet
k¼max(shl(M.dest, Seti)
if(k4 l)

return Seti

else if(Rl
Dl is not null)

return Rl
Dl

else
NH¼L[R[M[ORT
if shl(M.dest, NHi)Z l and (9M.dest, NHi9o(M.dest, OCId))

return NHi

In the semantic Pastry broker network, each main node
maintains a neighborhood set, a leaf set, a routing table and
ontology routing table. The routing process is executed whenever
a message (event or subscription or notification) arrives at a
broker. Given a message, the destination is determined by the
ontology class it belongs to, the broker first checks to see if the
destination is in the NodeSet of ontology routing table. If so, the
broker handles the message correspondingly. Then, the broker
checks if the destination falls within the range of OCIds covered
by its leaf set. If so, the message is forwarded directly to the
destination broker, namely the broker in the leaf set whose OCId
is closest to the destination. If the destination is not covered by
the leaf set, different form Pastry, the broker checks ontology
routing table. The destination of message is compared with the
OCId of the broker. If the destination is smaller than the OCId, a
candidate is picked from the ParentSet of ORT who shares the
maximum common prefix with the destination of message, else a
candidate is picked from the ChildrenSet or GrandChildrenSet of
ORT in the same way. If the next hop is still not found, broker
picks a candidate broker from the routing table by the default
way, and the message is forwarded to the broker that shares a
longer common prefix with the destination. The function shl(A,B)
returns the length of the prefix shared among A and B in digits,
which is mentioned in Rowstron and Druschel (2001). ParentSet,
ChildrenSet and GrandChildrenSet of ORT serve as shortcuts to
reach the destination; so hops of semantic Pastry will be less than
or at least equal to the hops the Pastry (log2

bN).
4. JTangCSPS composite event and subscription language

In a distributed system, each event has a timestamp associated
with the occurrence time. There are two types of expressions of
timestamps: point-based timestamps and interval-based time-
stamps. Point-based timestamps usually consist of a single value,
indicating the occurrence time. However, in a distributed system,
node clocks may have unknown jitter within a known synchro-
nization distance. As a result, if two nodes detect events E1 and E2,
it may be impossible to decide which occurred first. On the other
side, interval-based timestamps consist of a start time and an end
time, which can make this ambiguity explicit and remain con-
sistent with the physical time order of events. Interval-based
timestamps are used in this paper.

In this section, we present a composite event and subscription
language, and show the presentation of composite event and
subscription model. Then we illuminate the management of
distributed composite subscriptions including subscribing pro-
cess, unsubscribing process and matching and notifying process.
4.1. Composite event and subscription language

To describe formally primitive and composite events (subscrip-
tions), we adopt a symbolic representation that resembles and
extends the CEA language (Pietzuch et al., 2003) and is conformant
with the logical and temporal expression of Lamport (1978) and
Allen and Ferguson (1994).

Events and subscriptions in JTangCSPS are related to domain
knowledge and defined by OWL ontology language. A primitive
event Ep is defined by the following formula:

Ep ¼ ðc,Str ,t,tlÞ ð5Þ

Str ¼ fðs1,p1,o1Þ,:::ðsn,pn,onÞg ð6Þ

t¼ ðts,teÞ ð7Þ

Ep is an individual of a class cAC (the classes of ontology) and is
associated with a set of triples Str and an interval timestamp tAT

and a lifetime tl. Str is composed with triples, which have a subject
s, a property (predicate) p and an object o. ts is the interval start
time, and te is the interval end time. tl is the lifetime of the event
and has a finite value.

Composite events are defined by composing primitive events
or composite events with logical and temporal operators. A
composite event can be created by publishers or combined by
brokers to satisfy a composite subscription. A composite event Ec
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is defined by the following formula:

Ec ¼ ðopðE1,:::,EnÞ,tÞ ð8Þ

ts ¼minðts
1,:::,ts

nÞ ð9Þ

te ¼maxðte
1,:::,te

nÞ ð10Þ

Ei can be a primitive event or a composite event. The interval start
time ts of Ec will be the earliest start time of the constituent
events, and interval end time te of Ec will be the latest end time of
the constituent events. The operators supported by JTangCSPS
will be introduced later.

A primitive subscription S is defined by the following formula:

S¼ ðc,Str ,F,t,tlÞ ð11Þ

F ¼ fðs1,p1,mop1,o1Þ,:::,ðsn,pn,mopn,onÞg ð12Þ

Different from the primitive event, primitive subscription S has
an additional set of filters F. Filter is different from triple for it has
a mathematical operator mop as ¼ , o , 4 , r or Z .

A composite subscription S is defined by the following
formula:

Sc ¼ ðopðS1,:::,SnÞÞ ð13Þ

A composite subscription Sc is similar to the composite event but
without an interval timestamp.

Next, we will present operators supported by JTangCSPS in
examples of composite subscriptions. For the sake of convenience,
S is defined as a subscription, E as an event, N as a notification and
Ei as the event matched with Si. The operators will be present in a
more easy understandable way rather than defined above:
�
 Temporal restriction ST: Event E occurs within interval T.

�
 Conjunction. S1 and S2: Events E1 and E2 occur in any order and

without time restriction. (S1 and S2)T: E1 and E2 occur in any
order but one occurs within the T interval time of the other.

�
 Disjunction. S19S2: Event E1 or E2 occur without time restric-

tion. (S19S2)T: E1 or E2 occurs, if one occurs within the T interval
Fig. 3. Temporal sequence of events.
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Primitive
Subscription
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sI
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o

Thing

hasconpo

Timestamp
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start

en
d
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Fig. 4. Subscription o
time of the other, a composite event (E1 and E2) will be
created.

�
 Concurrency. S199S2: Events E1 and E2 occur in parallel.

�
 Negation (�S1)T: No event E1 occurs within the T interval and

a notification message will be created. (S1�S2)T: E1 occurs and
no E2 occurs within the T interval. The negation operator of
subscription is always followed by a T restriction, otherwise
there will be no notification.

�
 Iteration S1

n: A number of n event E1 occurrences (S1
n)T: A

number of n event E1 occurrences with each in the T interval of
the former E1. (S1

n)T: Any number of event E1 occurrences with
each in the T interval of the former E1.

�
 Sequence. It includes 7 temporal restrictions: S1 before S2, S1

meets S2, S1 overlaps S2, S1 finishes S2, S1 includes S2, S1 starts
S2, S1 is equal to S2. S1¼S2 is same as S199S2. The corresponding
sequence relation of E1 and E2 (Nejdl et al., 2003) is shown in
Fig. 3.

4.2. Presentation of composite event and subscription model

In JTangCSPS, events and subscriptions are represented as RDF
graphs. Since OWL does not support logical and temporal opera-
tors and quantified variables natively, a special ontology is
created to present the concepts and relations of event and
subscription. Fig. 4 is a part of the ontology about subscriptions.
Both event and subscription have an additional property to
express the interval-based timestamp, and the other ontology
classes about events are similar.

The structure of an RDF graph is a collection of triples, and
each triple consists of a subject, a property and an object. Every
triple is denoted as a node–arc–node link in the RDF graph. A
node may be a URI reference, a literal or blank, while an arc is
always a URI reference and points toward the object. Fig. 5 is an
example of RDF primitive event graph. The value of rdf:type

property means that it is a primitive event individual and it has
a hasTimestamp property. The value of hasInfo property can be any
individual and rdf:type property identifies the ontology class,
which the event belongs to, and the other properties are pre-
sented as pi; URI reference and text are presented as URIref_i and
Literal_i(iZ1).

Fig. 6 illustrates a primitive subscription S built on the event
graph E. The literal of p1 started with the operator ‘‘4 ’’ to support
traditional mathematical operation. Fig. 7 illustrates that a
composite subscription has two primitive subscriptions with a
temporal operator ‘‘before’’.

4.3. Distributed composite subscriptions management

In a large-scale distributed publish/subscribe system, events
and subscriptions are sent to different brokers. A composite event
tion
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is created by broker when a sequence of events is matched with a
composite subscription. The main difficulties of the routing
algorithm are where and how to decompose a composite
subscription and route the individual parts of the subscription.
In this paper, we propose a distributed composite subscriptions
management. The distributed solution consists in decomposing
the composite subscription and registering the parts of the
subscription to different brokers during the routing process, and
collecting the primitive events from the different brokers and
aggregating them through the reverse path of subscription rout-
ing. A notification message is sent to the subscriber only after all
the parts are collected. The collections of events should be as
close to the publishers as possible to ensure that the events are
not unnecessarily disseminated throughout the broker network.

To store primitive and composite subscriptions, every broker
has a primitive subscription map (PSM) and a composite sub-
scription map (CSM). Each subscription has a unique subscription
identifier (SId), which is used as the key of the two maps. During
the subscribing process, when the broker receives a primitive
subscription, it will be routed to the destination broker who
manages the responding ontology class of the subscription, and
then be put into the PSM. On the other hand, when a broker
receives a composite subscription, a composite subscription tree
(CST) is built by regular express. Leaf nodes of CST are primitive
subscriptions and the internal nodes are operators. According to
the OCId algorithm, each primitive subscription has its destina-
tion. If all primitive subscriptions have the same next hop, the
broker forwards the composite subscription as a whole to the
next hop; otherwise it is put into the CSM and the broker creates
a new composite subscription Si for each subtree of CST and
subscribes it again. The subscribing process is finished till all
primitive subscriptions arrived at their destinations and put into
the PSMs of brokers.
Subscribing algorithm
Input: subscription S; composite subscription tree CST

Output: null
subscribe(S)
if S is a primitive subscription

if(S.dest¼¼OCId)
PSM.put(S.SId, S)

else
forward S to the next hop

else
for PSi A S

if(PSi.dest¼¼OCId)
PSM.put(PSi.SId, PSi)

else HOPS.add(PSi.nexthop)
if HOPS.size¼¼1

forward S to the next hop
else

CSM.put(S.SId,S)
for subtreei A CST

Si¼ CST.subtreei

Si.src¼OCId
Si.parentSId¼S.Sid
subscribe(Si)
Following the example in Fig. 8, broker N1 received a compo-
site subscription S¼((S1 before S2)&(�S3)T), and the tree structure
of S is shown in Fig. 8(a). Broker N1 first calculates the destina-
tions (N1122, N1121 and N111) of all primitive subscriptions accord-
ing to the OCId algorithm. Since the next hops of all primitive
subscriptions are the same (N11), the composite subscription is
forwarded as a whole. Because the next hops are different, broker
N11 first puts S into the CSM, then forwards (�S3)T to broker N111,
and creates a new composite subscription (S1 before S2) and
forwards it to broker N112. Then broker N112 puts (S1 before S2)
into the CSM, and forwards S1 and S2 to N1121 and N1122,
respectively.
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Fig. 8. Composite subscription tree and subscribing process.
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If a subscriber wants to unsubscribe, it can send an unsub-
scription message. To ensure that the unsubscribing process is
successful, an ACK message is sent if a broker successfully
removes a subscription.
un(S
1 before S

2 )

S2

N1

N11

N111

N1121

N1122

un((-S3)T)

un(S 2)

un(S1 )

ack 5
ack 3

ack 2
ack4

(-S3)T

un((S1 before S2)&(-S3)T)
Unsubscribing algorithm
Input: subscription S; composite subscription tree CST
Output: null
unsubscribe(US)
if (US.dest!¼OCId)

forward US to the next hop
else

if US is a primitive unsubscription message
PSM.remove(US.SId)
ACK.dest¼US.src
ACK.SId¼US.SId
ack(ACK)

else
S¼CSM.get(US.SId)
for PSi A S

if(PSi.dest¼¼OCId)
PSM.remove(PSi.SId)
ACK.dest¼PSi.src

ACK.SId¼PSi.SId
ACK.parentSId¼PSi.parentSId
ack(ACK)

for subtreei A CST
Si¼ CST.subtreei

USi.src¼OCId
USi.parentSId¼S.SId
USi.SId¼ Si.SId
unsubscribe(USi)

ack(ACK)
if(ACK.dest!¼OCId)

forward ACK to the next hop
else

if ACK.parentSId ¼¼null
sent ACK to the client

else
S¼ CSM.get(ACK.parentSId)
S.countþþ;
if(S.size¼¼S.count)

CSM.remove(S.SId)
if(S.parentSId¼¼null)

sent a new ACK to the subscriber
else

ACK2.dest¼S.src

ACK2.SId¼S.SId
ACK2.parentSId¼S.parentSId
ack(ACK2)
S1
N112

ack1

Fig. 9. Unsubscribing process.
During the unsubscribing process, a broker receives an unsub-
scription message US. If the destination of US is not equal to OCId
of the broker, the broker forwards it to the next hop. Otherwise, if
US is a primitive unsubscription message, the broker removes the
corresponding subscription from PSM and sends an ACK message
back to the subscriber. If US is a composite unsubscription
message, the broker gets the composite subscription S from
CSM by SId, then for each primitive subscription PSi of S, if the
destination is equal to OCId, the broker removes PSi from PSM and
sends an ACK message back to the source broker where US is
generated. Next, for each subtree of CST, the broker creates a new
composite unsubscription USi and does the unsubscribing process
again. When a broker receives an ACK message, if the destination
of ACK is not equal to OCId, the broker forwards it to the next hop.
Otherwise, the ACK message arrives at its destination, if parentSId
of ACK is null, the broker just sends the ACK to the subscriber. Else
the broker gets the composite subscription S from CSM by the
parentSId of ACK, and adds the value of count. If the S.count is
equal to the number of subtrees S.size, then the ACK messages
from all subtrees of S are received, S is removed from CSM. If
parentSId of S is null, an ACK message is send to the subscriber.
Else, a new ACK message is created and forwarded.

Fig. 9 shows an example of the unsubscribing process. When
broker N1 receives a composite unsubscription message US, N1

forwards US as a whole to broker N11. Broker N11 gets S from the
CSM, and creates new unsubscription messages for subtrees and
forwards them to broker N112 and N111. N112 does almost the
same thing as N11. Then N1121 and N1122 receive the unsubscrip-
tion messages and remove primitive subscriptions from PSMs
correspondingly, and send ACK messages to N11. Finally, N1

receives an ACK message and sends it to the subscriber.

4.4. Matching and notifying process

Because composite subscriptions are decomposed into primi-
tive subscriptions during the routing process, so the matching
process only needs to match primitive events with primitive
subscriptions only.
Matching and notifying algorithm
Input: event E
Output: null
match(E)
for PSi A PSM

if match(E, PSi)
N.E¼E

N.dest¼PSi.src
N.SId¼PSi.SId
N.parentSId¼ PSi.parentSId
notify(N)

match(E,PS)
if E.c¼¼PS.c

for piAPS.Str

if E.Str has pi

if pi is a datatype property
if PS.Str.pi.o¼¼E.Str.pi.o

bi¼true
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Fig. 10. Notification routing process.
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else if pi is an object property
if match(E.Str.pi.o,PS.Str.pi.o)

bi¼true
else

for pkA(E.Str ^semantic(pj))
if pk is a datatype property

if PS.Str.pi.o¼¼E.Str.pk.o
bi¼true
break

else if pk is an object property
if match(E.Str.pi.o,PS.Str.pk.o)

bi¼true
break

if bi¼¼false
return false

for piAPS.F
if E.Str has pi

if ! mop(PS.F.pi.o, E.Str.pi.o)
for pkA(E.Str ^semantic(pj))

if mop(PS.F.pi.o, E.Str.pk.o)
bi¼true
break

if bi¼¼false
return false

return true
notify(N)
if (N.dest!¼OCId)

forward N to the next hop
else

if N.parentSId¼¼null
S¼PSM.get(N.SId)

send N to the subscriber
else

EM¼SEM.get(N.parentSId)
EQ¼EM.get(N.SId)
EQ.add(N.E)
S¼CSM.get(N.parentSId)
CE¼ createCE(S)
if(CE!¼null)

N.E¼CE

N.dest¼S.src
N.SId¼S.SId
N.parentSId¼S.parentSId
notify(N)
JTangCSPS supports semantic matching including inheritance
and rule-based reasoning. Only the following three conditions are
satisfied, we will say an event is semantically matched with the
subscription: (1) the ontology class of the subscription is the same
as that of the event; (2) for each triple of the subscription, there is
at least one triple of the event whose subject and object nodes are
semantically matched and linked by a semantically matched
property arc and (3) for each filter of the subscription, there is
at least one triple of the event whose subject node is matched, the
value of object node satisfies the constraint of filter, and linked by
a semantically matched property arc. The reason why JTangCSPS
does not support the inheritance of class directly is, in that case, a
subscription will be sent to the brokers that manage the children
class of the subscription’s class in the ontology class tree. This
incurs significant network traffic overhead. The semantic(p)
function of the matching process returns a set of properties,
which are children of property p or can be reasoned by rules. The
mop function returns the result of the mathematical operation as
a boolean value. A notify message N has an event E, a destination
dest, a SId and a parentSId. When an event matches a subscrip-
tion, a notify message is created and routed to its destination.
To match the composite subscriptions, each broker has a
subscription event map SEM and event map EM. The key of
SEM is SId of composite subscription and the value is EM. The key
of EM is SId of the child subscription and the value is an event
queue EQ, which stores the events matched with the child
subscription. When a broker receives a notify message N, if the
destination of N is not equal to OCId, it forwards N to the next
hop. Else, if the parentSId of N is null, which means N is sent to a
subscriber who subscribes a primitive subscription, the broker
gets the subscription S from PSM and sends N to the client
directly. Else, if the parentSId of N is not null, the broker gets
EM from SEM by parentSId of N, then gets EQ from EM by SId of N,
and then adds N.E to EQ. One of the benefits of distributed
composite subscriptions management is, for each composite
subscription, the broker only has to handle one logical or
temporal operator. If the broker detects the events satisfied with
the operators of composite subscription S by createCS function, it
removes the events from EQs and creates a composite event CE,
then puts it into a notification message N and routes N to the
destination of parent subscription or the subscriber.

Fig. 10 shows an example of the notification routing process.
Broker N112 receives notification messages from N1122 and N1121

and puts the events in EQs. When N112 detects events E1 and E2

satisfied with E1 before E2, it creates and forwards the composite
event (E1 before E2) to N11 and removes them from EQs. At last, N1

forwards the notification message with ((E1 before E2) and
(�E3)T) to the subscriber.
5. Experiments

To measure the performance of the proposed system and to
verify the concepts presented in this paper, we have developed a
prototype of the system and have simulated the prototype with
various parameter settings. We use PeerSim (Ulbrich et al., 2004),
http://peersim.sourceforge.net/ simulator for performing experi-
ments over Pastry overlays. All measurements took place on a
standard PC installation with Linux libraries and a hardware
configuration comprising 8 Intel Xeon CPU 2.00 GHz, 4 GB RAM.
To simplify, the simulations are made over a static network that
does not suffer from node join and neither node failures.

To simulate the semantic broker network, for each different
network size, we build a full ontology class weighted tree and its
height is h and the number of children is c. The weight of child
class is the weight of the parent class plus a new weight. The new
weight is generated according to Zipf (a¼1) distribution. The
weight of Broker is generated by Zipf (a¼1) distribution too. The
number of OCWT is about 3–4 times of the network size. The size
of different broker network and the corresponding OCWT are
shown in Table 1.
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Table 1
Broker network and OCWT.

Number of broker Nodes of OCWT OCWT structure

1000 3616 c¼15, h¼4

3000 9331 c¼6, h¼6

5000 19,608 c¼7, h¼6

10,000 37,449 c¼8, h¼6

30,000 137,257 c¼7, h¼7

50,000 137,257 c¼7, h¼7

100,000 299,593 c¼8, h¼7
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5.1. Hops

Each broker random publishes primitive events and routes
them to the destination node. We compare the average number of
hops of events over Pastry overlay and the semantic Pastry
overlay with ontology routing table. The result is made by varying
the size of the broker network from N¼500 to 10,000. The red line
is the theoretical value of Pastry (log2

bN, b¼4). Fig. 11 shows that
the performance of Pastry is comparable with the theoretical
expectations. The performance of semantic Pastry is better than
that of Pastry. The ontology routing table adds some shortcuts in
the broker network and decreases the average number of hops
and so reduces the load of the network.

5.2. Routing delay

We route a composite subscription and split to the destina-
tions of the primitive subscriptions. The routing delay of a
composite subscription includes the network delay and the time
to build the composite subscription tree and to split the compo-
site subscription at each node. We define it as TRD ¼ TNDþTC and

TND ¼
PJ

j ¼ 1

gðjÞ where g(j) is the function of network delay and J is

the maximum hops of the all primitive subscriptions. We define
f(i) as the function of time of building the composite subscription
tree and splitting the composite subscription at a node where the
number of primitive subscriptions of the composite subscrip-

tion(NoPS) is i. So the maximum time will be TCmax ¼
PI

i ¼ 2

f ðiÞ

when each node of tree has only a child node. The minimum time
will be TCmin¼ f(T) when each primitive subscription has different
next hops.

We compare a series of scenarios. To simplify, only operator
conjunction ‘‘&’’ is used in composite subscription, and every
primitive subscription only contains one type constraint. In the
first scenario, each broker randomly creates 20 primitive sub-
scriptions and registers to the broker network. In the other
scenarios, instead of primitive subscriptions, each broker ran-
domly creates 20/i composite subscriptions, each consisting of i

primitive subscriptions where i¼2, 5, 10, 20. Fig. 12(a) shows that
the routing delay increases with the size of the network.
Fig. 12(b) shows that the routing delay increases linearly with
the number of hops of the composite subscription.
Fig. 12(c) shows that the routing delay increases fast before NoPS
reaches 5 and then increases slowly. Though the routing delay
might be different for different performances of broker, different
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complexities of the composite subscription and different traffic of
network, the results give us a qualitative analysis.

5.3. Composite subscription distribution

A composite subscription will be split into primitive or
composite subscriptions while routing to the destinations. In
different size of network, each broker randomly creates 100
composite subscriptions registered to them, each subscription
consists of 5 primitive subscriptions. We count the number of
composite subscriptions, which contain 2–4 primitive subscrip-
tions and are generated during the routing process at each broker.
Fig. 13 shows that, during the routing process, a composite
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Fig. 14. Network traffic overhead of composite subscription.
subscription of 5 primitive subscriptions has a possibility of 50%
to create a new composite subscription of 2 primitive subscrip-
tions. It helps reduce an overall message traffic by collecting
events as close as to the source nodes. However, due to Pastry’s
feature of hop, the possibility to generate a composite subscrip-
tion with 3 or 4 primitive subscriptions is very small.

5.4. Network traffic overhead

Detecting and composing composite events in the broker
network reduce the message traffic received by clients. We use
the same series of subscription scenarios of routing delay. After
that, each broker publishes 50 events.

We count the number of notification messages passed at each
broker in the different scenarios, which is shown in Fig. 14. The
result shows that the number of notification messages reduces
while the number of the primitive subscriptions of the composite
subscription increases. The number of notification messages of
smaller size of broker network reduced faster than that of bigger
size of network. For example, when NoPS is 20 in network of 500
nodes, the number of notification messages reduces from 470 to
375 with a reduction of 20%.
6. Conclusion

In the paper, we present JTangCSPS, a composite and semantic
publish/subscribe system over structured P2P network. We intro-
duce ontology into the structured P2P network to provide
semantic support, and define the weights of ontology classes
and brokers and virtual subscription to map OCWT or COCWT to
the broker network, achieve large-scale distributed computing
and load balance. The ontology routing table maintains OCWT or
COCWT and reduces the hops of messages over structured P2P
network. Besides, the node backup strategy enhances the relia-
bility of service. The paper also presents a composite event and
subscription language to support the temporal and logical
patterns of the distributed events. Distributed composite
subscriptions management decomposes composite subscriptions
and collects the primitive events from different brokers and
aggregates them. It ensures that the events are not unnecessarily
disseminated throughout the broker network. The experiments
based on the Peersim simulator over the Pastry overlays show
that the ontology routing table helps reduce the average number
of hops, and the distributed composite subscriptions management
significantly reduces the load on the network.
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