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Abstract—In view of the traditional parallel FP-growth algorithm 
(PFP)that suffers from two major limitations, namely, multiple 
database scans requirement (i.e., high I/O cost) and high 
inter-processor communications cost, therefore we design and 
implement a parallel association rules mining method based on 
cloud computing. The algorithm adopts the separation strategy to 
simply visit a local database only once, thus, the inter-processor 
communication I/O overhead is reduced. What’s more, the 
MapReduce model is used to solve the problem of huge amounts 
of data mining, as well as the calculated execution taking place in 
the local data storage node, which can avoid large amounts of 
data on the network transmission and reduce the communication 
overhead. By using ordinary PC structures, Hadoop cluster 
experimental results verify that the proposed algorithm based on 
cloud computing offers higher efficiency and has a good speedup. 
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I.    INTRODUCTION  

Association rule mining is an important branch of data 
mining as it analyzes the scale of transaction records in the 
collection database and finds the interesting relationships 
among the massive amounts of data. Among these, frequent 
pattern (FP) mining has become a very important part[2-5].The 
candidate generation-and-test methodology, called the Apriori 
technique, was the first technique to compute frequent 
patterns[1].However, this approach generates a large number of 
candidate datasets and repetitively scans the database to verify 
whether it is frequent or not. Han et al. [2] proposed a novel 
data structure and method of mining frequent patterns, the 
Frequent Pattern (FP) tree data structure which only stores 
compressed necessary information for mining. Unlike the 
Apriori technique, the FP-tree only scans a database twice. 
Meanwhile, for mining the variable length of frequent itemsets, 
it’s effective and scalable and it is a highly efficient algorithm 
addressing the limitations of the Apriori technique. 

However, in practice, the data mining algorithms often need 
to deal with distributed and large databases. Therefore, 
large-scale parallel and distributed FP mining algorithms have 
aroused much research [2-4]. Through the study of FP-growth 
algorithm, a large number of parallel and distributed 
FP-growth(PFP-growth) mining algorithms have been 
proposed, such as, FPForest[3]，PFP-tree[4]，LFP-tree[3]，
and MLPT[5]. The FP-tree-based algorithms are to divide the 
database and then to distribute each part of the database to 
nodes or processors for mining to distribute the computation 

loading. During the mining process, the nodes will exchange 
required transactions with each other. Although many 
algorithms have been proposed, the execution efficiency of 
frequent pattern mining is still a challenge for the researchers 
due to the data explosion. Simultaneously, all the algorithms 
which are proposed previously need scan the local transaction 
database twice. 

None of those PFP-growth algorithms have completely 
solved the problem of computing performance limit, in spite of 
optimization of communication costs and task scheduling 
[2-6].Meanwhile, with the increase of application and speed of 
the network, the type and quantity of frequent itemsets are 
growing. However, because of the limitations of computing 
resource in face of large sample data sets, the computational 
complexity and the cost of communication will grow 
exponentially, that greatly restricts the application of the 
FP-growth algorithm. Therefore, in this paper, we propose the 
CPFP data mining method which is novel but similar to 
PFP-growth based on the MapReduce framework in the 
Hadoop platform. It also can effectively solve the bottleneck 
problems of traditional PFP-growth algorithm by means of 
powerful parallel processing of cloud computing, and good 
ability of load balancing. Through empirical evaluations on 
various simulation conditions, the proposed algorithms can not 
only ensure correctness of the data mining results, but also 
inordinately improve the efficiency of data mining to speed up 
the whole process. 

The rest of the paper is organized as follows. Section Ⅱ 
introduces the improvement of the traditional PFP-growth 
algorithms, discusses the structure and procedures of CPFP. 
Section Ⅲ , experimental results will be revealed. Finally, 
Section Ⅳ concludes the paper. 

 II.   THE IMPROVEMENT OF PFP-GROWTH ALGORITHMS 
BASED ON CLOUD COMPUTING 

In this paper, in the open source of Hadoop platform, 
MapReduce model was chosen to shunt data from the 
database, and then to build the local FP-tree in the connection 
nodes which effectively improve the efficiency of data mining 
and reduce the communication overheads as well as offer good 
speedup. 
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A. Cloud Computing Platform Overall Framework Design 
The design of Web-based cloud computing data mining 

system is presented in Figure 1, nodes are divided into three 
categories: the master node (Master), which is responsible for 
the scheduling and coordination between the computing nodes; 
the storage node for storing the data mining algorithms; And 
ServiceNode, for the storage to store sub good block of XML 
files and execution of tasks assigned by the Master, and finally 
providing the result to the Master [7]. 

 Fig 1 Web-based cloud computing data mining system 
In the cloud computing environments the data privacy is an 

important issue. Since the clouds are distributed physically and 
each cloud node provides its own computation ability, the 
trusty of the nodes cannot be preserved [12].In order to 
preserve the data privacy, a "Master-slave" model which 
consists of some clouds may be designed. The Master cloud 
includes a kernel node, abbreviated as KN-node, which can 
only access the database. Other clouds are the ones that consist 
of two parts, of which one is computing node, and the other is 
similar to a router, named CONN-node, which every cloud has 
the only one. Meanwhile, the CONN-node should maintain a 
table to record the status of the nodes of its cloud, such as the 
node's ID or its availability etc, so that can connect with other 
clouds effectively. And it can also duplicate the data via 
internet if a node needs data from KN-node, then the node can 
download the data from CONN-node via intranet. By using this 
transmission policy, the network latency can be minimized. 

B. the Improvement of PFP-growth Algorithms Based on 
Cloud Computing 

1) Introduction of PFP-growth Algorithms 
In [7], SK Tanbeer et al put forward a PFP-growth method 

of frequent itemsets mining, which has been extended to mine 
maximal frequent itemsets and frequent closed itemsets one by 
one. The algorithm creates FP-tree with a header table based on 
frequent items’ support count by scanning the data, then the 
header data items is arranged in descending order. After getting 
a new table, we make use of Branch sorting method [9], 
abbreviated as BSM. Firstly, it peels the branches of the root 
node. Secondly, those branches are stored in different 
temporary array. Then according to the sequence of data items, 
we rearrange the temporary array item in order to reconstruct 
the FP-tree. At last, comparing the new header data items with 

the minimum support (min_sup), the FP-tree is restructured by 
deleting the itemsets of which the support count is less than 
min_sup. And then the algorithm recursively build prefix tree 
and conditions for finding frequent itemsets. 

 
Fig 2  Proposed architecture for frequent pattern mining 

2) The Improvement of PFP-growth Algorithms Based on 
Cloud Computing 

 
Figure 3  architecture of PFP-growth algorithm model 

In this paper, we use the open source of Hadoop platform 
which is designed for multi-tier architecture of PFP-growth 
algorithm model, as shown in Figure 3.At first, the initial data 
set is uploaded to HDFS (Hadoop Distributed File System) in 
the pre-treatment which is divided into a plurality of subsets of 
data, and then the block of data is transmitted to the 
CONN-nodes. Meanwhile KN-node in its own cloud by the 
MapReduce model, finds out the global support count of the 
data item in parallel, and the global data items are in 
descending order, denoted by GHT. Secondly, CONN-node 
scans the database and establishes the local FP-tree. Then 
KN-node broadcasts GHT to CONN-nodes. According to 
BSM [7], the FP-tree based on GHT may be reconstructed. We 
could mine local frequent itemsets through the establishment 
of conditions for tree and output frequent itemsets to 
KN-node. Finally we find out the global frequent itemsets. 
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3) The Improvement of PFP-growth Algorithms Based on 
Cloud Computing 

A cloud-based platform PFP-growth algorithm is designed 
combining with the MapReduce programming model for cloud 
computing platform. Such algorithm is described as follows: 

• KN-node reads the data from database. It reads support 
count of data items through the MapReduce model in 
its own cloud. At the same time, in the process of vast 
amounts of information processing, the Mapper 
operation tends to generate a large number of writing 
operations, but sometimes the reducer tends to update 
in an untimely manner. Hadoop platform supports the 
combiner. The combiner can be used to accumulate the 
output of on the Mapper function of the same data 
item, so that it can reduce the communication and I / O 
overhead [10].Meanwhile, KN-node reads data to the 
HDFS pre-processing in parallel, and divides the 
dataset into a plurality of data blocks. Then these 
blocks can be transmitted to CONN-nodes through the 
network. The pseudo code is as follows: 

Mapper (LongWritable offset,Text value = 
transaction) 

{   for ( each item Ai in value) 

EmitIntermediate (itemset,1); 

} 

Combiner（Text key, Iterable <IntWritable> values
） 

{    int supi=0; 

for each 1 in list: 

supi+=1; 

EmitIntermediate (Ai, supi);       

//supi denoted as sum of the same itemset 

} 

Reducer (Text key,Iterable <IntWritable>  values) 

{    int sum = 0; 

for ( IntWritable value: values) 

{    sum = sum + supi; 

} 

EmitIntermediate (key, sum); 

       } 

• According to the support count of each data item in the 
previous step, we can easily get the header table of 
global data itemset, and put them in descending order 
of all the support count of itemset. Then we get a new 
header table of data items, denoted by GHT; 

• CONN-nodes receive a data block, and establish the 
local FP-tree in parallel. Then by means of STEP 2, 
CONN-nodes can receive GHT which is transmitted by 

the network. And CONN-nodes make use of BSM [7] 
that restructure all branches, one-by-one, from the root 
of FP-tree. The Mapper function read the branches of 
FP-tree to a temporary array. While restructuring a 
branch, BSM sorts each path in the branch according to 
GHT order by removing it from the tree, sorting it into 
a temporary array, and again inserting it into the tree in 
sorted order. The Reducer function receives all of 
transactions and constructs a new CP-tree (Closed 
pattern) which is the tree of the condition of key. Then, 
FP-growth algorithm is applied that recursively mine 
frequent closed itemsets in the tree. Those frequent 
closed itemsets we get is the local frequent closed 
itemsets. The pseudo-code is shown below. 

Mapper (Long Writable offset,Text value = 
transaction) 

{     string a[]= Split( value) ; 

      a[] order value by GHT; 

for( i = a.length-1; i ＞＝ 0; i--) 

EmitIntermediate ( Text ( a[i]),Text ( 
a[0]+a[1]+…+a[n]) ) ; 

} 

Reducer (Text key,Iterable<Text> values) 

{     r = constructCP-tree (key, values); 

FCItemsTree = CP-tree (r，min_sup); 

//FC 为 frequentclosed 

for( FCItems : FCItemsTree) 

{ 

EmitIntermediate (Text (key) ， Text 
(FCItems +FCItems’ support)); 

} 

} 

• CONN-nodes send the excavated local frequent 
itemsets to KN-node, and Mapper will sort the order of 
itemset in values by their length from long to short, and 
then output. Reducer then added the itemsets received 
to the FP-tree. Note that the length of the current 
itemsets must be no more than the length of the 
beginner itemsets, therefore, Reducer would only add 
those closed itemsets to FP-Tree of discarded others. t 
Then only the last frequent itemsets of Reducer can be 
output. At this time, the frequent itemsets become the 
global frequent itemsets [11]. The pseudo-code is 
shown below. 

Mapper (LongWritable offset, Text value =FCItems 
+ FCItems’ support) 

{    itemset = value. FCItems; 

Sort the Order of itemset in values by their 
length from long to short; 
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for ( item: itemset) 

EmitIntermediate (item, value); 

} 

Reducer (Text key,Iterable < Text> values) 

{    FP-Tree = null; 

for ( itemset :values) 

{    if ( itemset is closed in FP-Tree) 

insert itemset into FP-Tree; 

} 

for ( itemset : FP-Tree) 

{ 

if ( key is the last item of this itemset) 

EmitIntermediate (Text (key) ，
Text (itemset)); 

} 

} 

III.      EXPERIMENTAL RESULTS 
In order to evaluate the performance of the algorithm, we 

use the three larger data sets, such as mushroom, connect, 
pumsb, in the field of mining frequent itemsets common test 
data sets. And for the same data set, we choose different 
min_sup in the experiment. Experiments mainly consist of 
three cloud system: the first cloud includes 1 kernel node and 
the other two clouds totally have 5 computing nodes. As 
KN-node doesn’t take part in computing, a total of 5 nodes can 
be used for mining association rules. Hadoop cluster 
configuration is shown in Table 1. 

Table 1  Hadoop cluster configuration 

 CPU RAM Disk 

KN-node Pentium Dual Core 1GB 320G 

Computing node Pentium Quad Core 1GB 160G 
As is seen from Figure 4, for the same data sets, the 

execution time of different min_sup are not the same, but the 
tendency of execution time is consistent. With the increase of 
datanodes, the overhead of communication is also growing, but 
for single datanode, the data processing efficiency of 
multi-nodes is still a great advantage. In Figure 4(a), since the 
data set is small, the execution time is increasing when the 
number of data nodes add, but in (b) and (c), for the connect 
data set, when min_sup is 40000 the result of execution time is 
optimal, so as to the pumsb data set when min_sup is 140000. 
Because as the number of the min_sup increases, the number of 
frequent closed itemsets gradually reduces, the amount of data 
which step 3 and step 4 need to be processed are reduced. 
Meanwhile,the proportion of time overhead used for parallel co
mputing also decreases.  

At the same time, we can also see from the figure, the 
optimal execution time of (c) is better than (b), (b) is better than 

(a). Because when the data set is small (size of data set: 
mushroom <connect <pumsb), the time used for computing in 
each node is less. With the increase of data note number, the 
proportion of time overhead used for parallel computing also 
decreases. However, for the large data set, the computing time 
of each node is inherently long. For this reason, the proportion 
of time overhead used for parallel computing is relatively lower. 
We can draw the conclusion that the execution time of this 
algorithm in the large scale data sets is better than that in the 
small scale data sets, which also shows that this parallel 
algorithm has more advantages in dealing with large scale data 
sets. 

 
Figure. 4. Execution time in different experiments 
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IV.    CONCLUSIONS 
In this paper, a parallel association rules mining method 

based on cloud computing is designed and implemented. The 
experiments show that the method is much more effective than 
conventional parallel data mining algorithms. At the same 
time, a framework for cloud computing platform system is 
proposed, which can make effective use of cloud nodes in a 
cloud environment to protect data privacy. Meanwhile, 
MapReduce model and established local FP-tree are used to 
the local frequent item sets. Though CPFP has good 
communication and I/O overhead, there is also something 
undesirable, especially for smaller data sets or nodes. 
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