
A Parallel Algorithm of Association Rules Based on
Cloud Computing

Wang Yong1, Zhang Zhe1, Wang Fang2

1Department of Computer Science and Engineering, 2School of Information and Communication

Guilin University of Electronic Technology
Guilin, China

ywang@guet.edu.cn, 289640431@qq.com

Abstract—In view of the traditional parallel FP-growth algorithm
(PFP)that suffers from two major limitations, namely, multiple
database scans requirement (i.e., high I/O cost) and high
inter-processor communications cost, therefore we design and
implement a parallel association rules mining method based on
cloud computing. The algorithm adopts the separation strategy to
simply visit a local database only once, thus, the inter-processor
communication I/O overhead is reduced. What’s more, the
MapReduce model is used to solve the problem of huge amounts
of data mining, as well as the calculated execution taking place in
the local data storage node, which can avoid large amounts of
data on the network transmission and reduce the communication
overhead. By using ordinary PC structures, Hadoop cluster
experimental results verify that the proposed algorithm based on
cloud computing offers higher efficiency and has a good speedup.

Keywords-FP-growth; Parallel Computing;Cloud Computing;
MapReduce; Association Rules

I. INTRODUCTION

Association rule mining is an important branch of data
mining as it analyzes the scale of transaction records in the
collection database and finds the interesting relationships
among the massive amounts of data. Among these, frequent
pattern (FP) mining has become a very important part[2-5].The
candidate generation-and-test methodology, called the Apriori
technique, was the first technique to compute frequent
patterns[1].However, this approach generates a large number of
candidate datasets and repetitively scans the database to verify
whether it is frequent or not. Han et al. [2] proposed a novel
data structure and method of mining frequent patterns, the
Frequent Pattern (FP) tree data structure which only stores
compressed necessary information for mining. Unlike the
Apriori technique, the FP-tree only scans a database twice.
Meanwhile, for mining the variable length of frequent itemsets,
it’s effective and scalable and it is a highly efficient algorithm
addressing the limitations of the Apriori technique.

However, in practice, the data mining algorithms often need
to deal with distributed and large databases. Therefore,
large-scale parallel and distributed FP mining algorithms have
aroused much research [2-4]. Through the study of FP-growth
algorithm, a large number of parallel and distributed
FP-growth(PFP-growth) mining algorithms have been
proposed, such as, FPForest[3]，PFP-tree[4]，LFP-tree[3]，
and MLPT[5]. The FP-tree-based algorithms are to divide the
database and then to distribute each part of the database to
nodes or processors for mining to distribute the computation

loading. During the mining process, the nodes will exchange
required transactions with each other. Although many
algorithms have been proposed, the execution efficiency of
frequent pattern mining is still a challenge for the researchers
due to the data explosion. Simultaneously, all the algorithms
which are proposed previously need scan the local transaction
database twice.

None of those PFP-growth algorithms have completely
solved the problem of computing performance limit, in spite of
optimization of communication costs and task scheduling
[2-6].Meanwhile, with the increase of application and speed of
the network, the type and quantity of frequent itemsets are
growing. However, because of the limitations of computing
resource in face of large sample data sets, the computational
complexity and the cost of communication will grow
exponentially, that greatly restricts the application of the
FP-growth algorithm. Therefore, in this paper, we propose the
CPFP data mining method which is novel but similar to
PFP-growth based on the MapReduce framework in the
Hadoop platform. It also can effectively solve the bottleneck
problems of traditional PFP-growth algorithm by means of
powerful parallel processing of cloud computing, and good
ability of load balancing. Through empirical evaluations on
various simulation conditions, the proposed algorithms can not
only ensure correctness of the data mining results, but also
inordinately improve the efficiency of data mining to speed up
the whole process.

The rest of the paper is organized as follows. Section Ⅱ
introduces the improvement of the traditional PFP-growth
algorithms, discusses the structure and procedures of CPFP.
Section Ⅲ , experimental results will be revealed. Finally,
Section Ⅳ concludes the paper.

 II. THE IMPROVEMENT OF PFP-GROWTH ALGORITHMS
BASED ON CLOUD COMPUTING

In this paper, in the open source of Hadoop platform,
MapReduce model was chosen to shunt data from the
database, and then to build the local FP-tree in the connection
nodes which effectively improve the efficiency of data mining
and reduce the communication overheads as well as offer good
speedup.

2013 8th International Conference on Communications and Networking in China (CHINACOM)

978-1-4799-1406-7 © 2013 IEEE415

A. Cloud Computing Platform Overall Framework Design
The design of Web-based cloud computing data mining

system is presented in Figure 1, nodes are divided into three
categories: the master node (Master), which is responsible for
the scheduling and coordination between the computing nodes;
the storage node for storing the data mining algorithms; And
ServiceNode, for the storage to store sub good block of XML
files and execution of tasks assigned by the Master, and finally
providing the result to the Master [7].

 Fig 1 Web-based cloud computing data mining system
In the cloud computing environments the data privacy is an

important issue. Since the clouds are distributed physically and
each cloud node provides its own computation ability, the
trusty of the nodes cannot be preserved [12].In order to
preserve the data privacy, a "Master-slave" model which
consists of some clouds may be designed. The Master cloud
includes a kernel node, abbreviated as KN-node, which can
only access the database. Other clouds are the ones that consist
of two parts, of which one is computing node, and the other is
similar to a router, named CONN-node, which every cloud has
the only one. Meanwhile, the CONN-node should maintain a
table to record the status of the nodes of its cloud, such as the
node's ID or its availability etc, so that can connect with other
clouds effectively. And it can also duplicate the data via
internet if a node needs data from KN-node, then the node can
download the data from CONN-node via intranet. By using this
transmission policy, the network latency can be minimized.

B. the Improvement of PFP-growth Algorithms Based on
Cloud Computing

1) Introduction of PFP-growth Algorithms
In [7], SK Tanbeer et al put forward a PFP-growth method

of frequent itemsets mining, which has been extended to mine
maximal frequent itemsets and frequent closed itemsets one by
one. The algorithm creates FP-tree with a header table based on
frequent items’ support count by scanning the data, then the
header data items is arranged in descending order. After getting
a new table, we make use of Branch sorting method [9],
abbreviated as BSM. Firstly, it peels the branches of the root
node. Secondly, those branches are stored in different
temporary array. Then according to the sequence of data items,
we rearrange the temporary array item in order to reconstruct
the FP-tree. At last, comparing the new header data items with

the minimum support (min_sup), the FP-tree is restructured by
deleting the itemsets of which the support count is less than
min_sup. And then the algorithm recursively build prefix tree
and conditions for finding frequent itemsets.

Fig 2 Proposed architecture for frequent pattern mining

2) The Improvement of PFP-growth Algorithms Based on
Cloud Computing

Figure 3 architecture of PFP-growth algorithm model

In this paper, we use the open source of Hadoop platform
which is designed for multi-tier architecture of PFP-growth
algorithm model, as shown in Figure 3.At first, the initial data
set is uploaded to HDFS (Hadoop Distributed File System) in
the pre-treatment which is divided into a plurality of subsets of
data, and then the block of data is transmitted to the
CONN-nodes. Meanwhile KN-node in its own cloud by the
MapReduce model, finds out the global support count of the
data item in parallel, and the global data items are in
descending order, denoted by GHT. Secondly, CONN-node
scans the database and establishes the local FP-tree. Then
KN-node broadcasts GHT to CONN-nodes. According to
BSM [7], the FP-tree based on GHT may be reconstructed. We
could mine local frequent itemsets through the establishment
of conditions for tree and output frequent itemsets to
KN-node. Finally we find out the global frequent itemsets.

416

Call the Algorithm to
the Original Data in the

Child Nodes

Return Result

Returns the Location Data

Cloud Data of the Sub­
node

Summary
Results

Back
to
the

Master
Node

Parallel
Count

GHT

Parallel to the :
local mining

frequent closed :
item sets

Parallel
screening of :

global frequent:
closed itemsets ·

3) The Improvement of PFP-growth Algorithms Based on
Cloud Computing

A cloud-based platform PFP-growth algorithm is designed
combining with the MapReduce programming model for cloud
computing platform. Such algorithm is described as follows:

• KN-node reads the data from database. It reads support
count of data items through the MapReduce model in
its own cloud. At the same time, in the process of vast
amounts of information processing, the Mapper
operation tends to generate a large number of writing
operations, but sometimes the reducer tends to update
in an untimely manner. Hadoop platform supports the
combiner. The combiner can be used to accumulate the
output of on the Mapper function of the same data
item, so that it can reduce the communication and I / O
overhead [10].Meanwhile, KN-node reads data to the
HDFS pre-processing in parallel, and divides the
dataset into a plurality of data blocks. Then these
blocks can be transmitted to CONN-nodes through the
network. The pseudo code is as follows:

Mapper (LongWritable offset,Text value =
transaction)

{ for (each item Ai in value)

EmitIntermediate (itemset,1);

}

Combiner（Text key, Iterable <IntWritable> values
）

{ int supi=0;

for each 1 in list:

supi+=1;

EmitIntermediate (Ai, supi);

//supi denoted as sum of the same itemset

}

Reducer (Text key,Iterable <IntWritable> values)

{ int sum = 0;

for (IntWritable value: values)

{ sum = sum + supi;

}

EmitIntermediate (key, sum);

 }

• According to the support count of each data item in the
previous step, we can easily get the header table of
global data itemset, and put them in descending order
of all the support count of itemset. Then we get a new
header table of data items, denoted by GHT;

• CONN-nodes receive a data block, and establish the
local FP-tree in parallel. Then by means of STEP 2,
CONN-nodes can receive GHT which is transmitted by

the network. And CONN-nodes make use of BSM [7]
that restructure all branches, one-by-one, from the root
of FP-tree. The Mapper function read the branches of
FP-tree to a temporary array. While restructuring a
branch, BSM sorts each path in the branch according to
GHT order by removing it from the tree, sorting it into
a temporary array, and again inserting it into the tree in
sorted order. The Reducer function receives all of
transactions and constructs a new CP-tree (Closed
pattern) which is the tree of the condition of key. Then,
FP-growth algorithm is applied that recursively mine
frequent closed itemsets in the tree. Those frequent
closed itemsets we get is the local frequent closed
itemsets. The pseudo-code is shown below.

Mapper (Long Writable offset,Text value =
transaction)

{ string a[]= Split(value) ;

 a[] order value by GHT;

for(i = a.length-1; i ＞＝ 0; i--)

EmitIntermediate (Text (a[i]),Text (
a[0]+a[1]+…+a[n])) ;

}

Reducer (Text key,Iterable<Text> values)

{ r = constructCP-tree (key, values);

FCItemsTree = CP-tree (r，min_sup);

//FC 为 frequentclosed

for(FCItems : FCItemsTree)

{

EmitIntermediate (Text (key) ， Text
(FCItems +FCItems’ support));

}

}

• CONN-nodes send the excavated local frequent
itemsets to KN-node, and Mapper will sort the order of
itemset in values by their length from long to short, and
then output. Reducer then added the itemsets received
to the FP-tree. Note that the length of the current
itemsets must be no more than the length of the
beginner itemsets, therefore, Reducer would only add
those closed itemsets to FP-Tree of discarded others. t
Then only the last frequent itemsets of Reducer can be
output. At this time, the frequent itemsets become the
global frequent itemsets [11]. The pseudo-code is
shown below.

Mapper (LongWritable offset, Text value =FCItems
+ FCItems’ support)

{ itemset = value. FCItems;

Sort the Order of itemset in values by their
length from long to short;

417

for (item: itemset)

EmitIntermediate (item, value);

}

Reducer (Text key,Iterable < Text> values)

{ FP-Tree = null;

for (itemset :values)

{ if (itemset is closed in FP-Tree)

insert itemset into FP-Tree;

}

for (itemset : FP-Tree)

{

if (key is the last item of this itemset)

EmitIntermediate (Text (key) ，
Text (itemset));

}

}

III. EXPERIMENTAL RESULTS
In order to evaluate the performance of the algorithm, we

use the three larger data sets, such as mushroom, connect,
pumsb, in the field of mining frequent itemsets common test
data sets. And for the same data set, we choose different
min_sup in the experiment. Experiments mainly consist of
three cloud system: the first cloud includes 1 kernel node and
the other two clouds totally have 5 computing nodes. As
KN-node doesn’t take part in computing, a total of 5 nodes can
be used for mining association rules. Hadoop cluster
configuration is shown in Table 1.

Table 1 Hadoop cluster configuration

 CPU RAM Disk

KN-node Pentium Dual Core 1GB 320G

Computing node Pentium Quad Core 1GB 160G
As is seen from Figure 4, for the same data sets, the

execution time of different min_sup are not the same, but the
tendency of execution time is consistent. With the increase of
datanodes, the overhead of communication is also growing, but
for single datanode, the data processing efficiency of
multi-nodes is still a great advantage. In Figure 4(a), since the
data set is small, the execution time is increasing when the
number of data nodes add, but in (b) and (c), for the connect
data set, when min_sup is 40000 the result of execution time is
optimal, so as to the pumsb data set when min_sup is 140000.
Because as the number of the min_sup increases, the number of
frequent closed itemsets gradually reduces, the amount of data
which step 3 and step 4 need to be processed are reduced.
Meanwhile,the proportion of time overhead used for parallel co
mputing also decreases.

At the same time, we can also see from the figure, the
optimal execution time of (c) is better than (b), (b) is better than

(a). Because when the data set is small (size of data set:
mushroom <connect <pumsb), the time used for computing in
each node is less. With the increase of data note number, the
proportion of time overhead used for parallel computing also
decreases. However, for the large data set, the computing time
of each node is inherently long. For this reason, the proportion
of time overhead used for parallel computing is relatively lower.
We can draw the conclusion that the execution time of this
algorithm in the large scale data sets is better than that in the
small scale data sets, which also shows that this parallel
algorithm has more advantages in dealing with large scale data
sets.

Figure. 4. Execution time in different experiments

Supported by the National Natural Science Foundation of China under
Grant No.61163058

418

155

260

250

220

. sup=28000 --a-m1n_
00 . sup=300 --o- m1n_

0 . sup=3200 -6- mln_

D~
D ____ D_ o ___ D

3 2
(b)con teet

in sup=1 00000
- o- m - =120000
-o- mm_sup 0

. sup=14000 - c.- m1n_

D----D ___ D ____

D--0 ~~

IV. CONCLUSIONS
In this paper, a parallel association rules mining method

based on cloud computing is designed and implemented. The
experiments show that the method is much more effective than
conventional parallel data mining algorithms. At the same
time, a framework for cloud computing platform system is
proposed, which can make effective use of cloud nodes in a
cloud environment to protect data privacy. Meanwhile,
MapReduce model and established local FP-tree are used to
the local frequent item sets. Though CPFP has good
communication and I/O overhead, there is also something
undesirable, especially for smaller data sets or nodes.

REFERENCES
[1] Agrawal, Rakesh, and Ramakrishnan Srikant. "Fast algorithms for

mining association rules." Proc. 20th Int. Conf. Very Large Data Bases,
VLDB. Vol. 1215. 1994.

[2] Han, Jiawei, Jian Pei, and Yiwen Yin. "Mining frequent patterns without
candidate generation." ACM SIGMOD Record. Vol. 29. No. 2. ACM,
2000.

[3] Javed, Asif, and Ashfaq Khokhar. "Frequent pattern mining on message
passing multiprocessor systems." Distributed and Parallel
Databases 16.3 (2004): 321-334.

[4] Yu, Kun-Ming, Jiayi Zhou, and Wei Chen Hsiao. "Load balancing
approach parallel algorithm for frequent pattern mining." Parallel
Computing Technologies. Springer Berlin Heidelberg, 2007. 623-631.

[5] Zaïane, Osmar R., Mohammad El-Hajj, and Paul Lu. "Fast parallel
association rule mining without candidacy generation." Data Mining,
2001. ICDM 2001, Proceedings IEEE International Conference on.
IEEE, 2001.

[6] Chen, Dehao, et al. "Tree partition based parallel frequent pattern
mining on shared memory systems." Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th International. IEEE,
2006.

[7] Yu, Kun-Ming, and Jiayi Zhou. "Parallel TID-based frequent pattern
mining algorithm on a PC Cluster and grid computing system." Expert
Systems with Applications 37.3 (2010): 2486-2494.

[8] Miao Cheng. "Web Data M ining Based on Cloud-computing."
COMPUTER SCIENCE38.B10 (2011): 146-149.

[9] Tanbeer, Syed Khairuzzaman, et al. "Efficient single-pass frequent
pattern mining using a prefix-tree." Information Sciences 179.5 (2009):
559-583.

[10] Li, Lingjuan, and Min Zhang. "The strategy of mining association rule
based on cloud computing." Business Computing and Global
Informatization (BCGIN), 2011 International Conference on. IEEE,
2011.

[11] Guang-Peng Chen. et al. "Closed Frequent Itemset Mining Based on
MapReduce." Pattern Recognition and Artificial Intelligence 25.2
(2012): 220-224.

[12] Lin, Kawuu W, and Yu-Chin Luo. "A fast parallel algorithm for
discovering frequent patterns." Granular Computing, 2009, GRC'09.
IEEE International Conference on.IEEE, 2009

419

