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A novel adaptive routing algorithm – Efficient Dynamic Adaptive Routing (EDAR) is proposed to provide a
fault-tolerant capability for Networks-on-Chip (NoC) via an efficient routing path selection mechanism. It
is based on a weighted path selection strategy, which exploits the status of real-time NoC traffic made
available via monitor modules. The key performance goal is to maintain throughput under congested
and faulty conditions via effective routing path decisions. In the proposed EDAR, port weights are calcu-
lated in real-time according to the channel status – Idle/Busy/Congested/Faulty, and the port with the
lowest weighting is ranked as the near-optimal route to forward packets. This mechanism enables the
router to bypass congested ports and tolerate faulty ports. To assess the latency and throughput of the
proposed routing algorithm, several traffic patterns for both fault-free and faulty NoCs were evaluated.
Results show that EDAR can achieve higher throughput compared to other state of the art routing algo-
rithms under various traffic patterns and levels of injected faults. In addition, the hardware area overhead
for EDAR is demonstrated to have a reasonably low cost which maintains scalability for large NoC
implementations.
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1. Introduction

The complexity of modern Systems-on-Chip has seen the intro-
duction of new interconnection strategies such as NoC which allow
scalable on-chip communication between large numbers of pro-
cessing components. Communication latency and fault tolerance
are challenges [1,2] for modern NoCs due to complex and
large-scale application mapping structures for on-chip multipro-
cessors. In particular NoC reliability due to the increase in physical
defects in advanced manufacturing processes is a critical challenge
as often faults occur post manufacturing.

The NoC communication latency is mainly determined by the
routing algorithms. Adaptive routing algorithms need to address
contention with busy/congestion traffic detectors however, to
address the challenge of reliability and provide fault tolerance, cur-
rent algorithms must consider not only traffic loads but also per-
manent and/or dynamic faults in the NoC. Typically permanent
faults exist for the life-time of the system and cannot be recovered;
and external electrical fluctuations and radiation can cause tran-
sient faults, whilst unstable hardware can cause intermittent
faults, such as stuck-at, bridging, crosstalk, single event upset
and single event transient faults. According to ITRS, during opera-
tional lifetime, 1% of chips experience a fault per day, and in the
near future, the manufacturing defect rate will reach the level of
approximately 1000 defects/m2 [3,4]. Testing results have demon-
strated that even small numbers of faults in the NoC, e.g. �30 logic
gate faults, can cause between 5 and 50 faulty channels, which
highly impairs the NoC network [5]. When a channel is faulty,
the adaptive routing algorithms should choose a fault-free path
to forward the packets and avoid corrupting packet data.
Therefore, to ensure modern NoCs are able to accommodate faults
and maintain operation post-manufacturing requires the develop-
ment of autonomous systems that can make decisions according to
the real-time traffic conditions. One step towards this is the devel-
opment of an optimal path selection strategy which can operate
under the presence of faults.
1.1. Contribution of this work

In this paper, the EDAR algorithm is presented which aims to
minimise the degradation of NoC throughput, via dynamic routing,
in the presence of faults. The approach is novel as it employs an
area-efficient weight-based port selection mechanism to identify
reliable and low-congested routing paths. The EDAR routing algo-
rithm defines different weight values for the various traffic condi-
tions (i.e. Busy/Congested/Faulty) where the busy and faulty
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conditions are defined as the smallest and greatest weight value,
respectively. Each NoC router port is weighted with the lowest
weighting ranked as the near-optimal port to forward packets. By
calculating the weights for the ports, routing decisions can be
made to avoid faulty or congested channels between router ports.
Therefore the EDAR can bypass faults in the NoC system and has
the capability to make optimal routing decisions according to com-
plex traffic conditions. Good system performance is obtained as
routing decisions balance the overall traffic load by identifying
the best ports under given traffic and fault conditions to maximise
overall NoC throughput.

The main contributions of this paper include:

� EDAR: A novel fault-tolerant and congestion-aware routing
algorithm centred on a weight-based port selection mechanism.
� Results and detailed performance analysis of latency, through-

put and fault-tolerant capability of EDAR. Validation of these
results against benchmarks.
� Validation of an area-efficient hardware implementation of the

EDAR routing algorithm.

The remainder of the paper is organised as follows. Section 2
provides a summary of the previous work with a focus on the
dynamic routing algorithm. Section 3 discusses the proposed novel
EDAR algorithm and gives the process of weight calculation and
routing decision making in detail. Sections 4 and 5 present results
and a performance analysis on different traffic patterns and
fault-tolerant ability for a range of experiments. Section 6 dis-
cusses the hardware implementation for EDAR using ASIC technol-
ogy and presents an area overhead comparison with previous
work. Section 7 provides a conclusion and highlights future work.

2. Background and previous work

Dynamic routing algorithms make decisions adaptively accord-
ing to the traffic status. In this section, a review of current
approaches is presented which include congestion-aware and
fault-tolerant dynamic routing algorithms.

2.1. Congestion-aware dynamic routings

Previous congestion-aware dynamic routings were investigated
by various methods which are presented as follows. (a) Combined
routing algorithms. A dynamic routing scheme, namely DyAD, can
switch between the deterministic and adaptive routing algorithms
based on the system congestion conditions, i.e. combined the
advantages of these two routing algorithms [6]. Similarly, a DyXY
adaptive routing algorithm made the routing decisions based on
congestion conditions, and achieved a better performance than
XY and Odd–Even routing [7]. Another selection strategy –
PathAware selects the appropriate output port after getting the
candidates from West-First or Odd–Even routing [8]. (b) Using ded-
icated network or signals to collect traffic status. A
Neighbour-on-Path (NoP) routing algorithm used dedicated wires
to sense the traffic status of neighbouring nodes [9]. It had a perfor-
mance improvement on average delay and throughput, especially
under the heavy traffic workloads. A traffic-aware NoC router used
dedicated signal wires to indicate the status of channel traffic, and
was adaptive to traffic congestion [10]. Enhanced dynamic XY
routing algorithm [11] added two dedicated wires per channel,
which indicates the congestion status of the channels in the same
row or column as the current router. These congestion wires
enabled the router to avoid a congested neighbouring path. A
path-aware routing scheme employed a congestion aware
sub-network to propagate the global traffic information and aid
making routing decisions [12]. The main drawback is that it
requires additional area overhead as it uses another sub-network
to broadcast the traffic information. (c) Piggyback routing. A
weighted priority deflection policy was proposed in [13] using
the piggyback mechanism. Each packet has a weight which is cal-
culated based on the age, distance and initial priority of the packet.
This priority-based deflection policy achieved a good performance
for most cases. It was only evaluated using a SystemC simulator
and did not present hardware performance for scalability which
is a key challenge to the success of any NoC strategy. Including pig-
gyback routing, several indirect adaptive routing algorithm were
proposed in the approach of [14]. They provided a good perfor-
mance under steady-state and transient loads on the dragonfly
topology. (d) Table based routing. The centralized adaptive routing
mechanism was introduced in [15,16] where a routing table is
employed at each node. It utilised a feedback module to monitor
global traffic status and a control module to make routing deci-
sions. It has the opportunity to be out of data if the traffic status
changes during the source to destination propagation time of pack-
ets. A regional congestion awareness routing algorithm, namely
RCA, makes routing decisions based on not only the local traffic
information but also the regional congestion information [17].
The drawback is that the dedicated wire overhead is significant.
In order to reduce the overhead, a global congestion awareness
(GCA) routing algorithm [18] embedded the traffic status informa-
tion in packet headers. After received the traffic status information,
each node updates a congestion map including the link status of all
the nodes in the system; it then finds the shortest path to forward
the packet. The aforementioned congestion-aware dynamic rout-
ing algorithms can (1) avoid congested paths in the network; (2)
have the ability to balance the traffic load and (3) achieve a higher
throughput than typical deterministic routing especially for heavy
traffic workloads. However, these algorithms do not function under
fault conditions. It is very important for NoC routing algorithms to
support fault tolerance and be able to make effective routing
decisions in maintaining system performance.

2.2. Fault-tolerant dynamic routings

A reconfigurable routing algorithm in the approach of [19] has
the ability to bypass the faulty router after the router is detected
as faulty and deactivated. However, it is only tolerant of faulty rou-
ters (node) and cannot support faulty channels. A
small-granularity fault-tolerant routing algorithm was proposed
to support node and link faults [20]. It provided a fault-tolerant
policy although the number of faulty links per router was limited
to one. Dynamic routing schemes of ARIADNE [5] and uDIREC
[21] employed routing tables to aid making decisions, where adja-
cent routers inform all other routers about any faulty links/routers
and update routing tables with the identified failures. The Gradient
fault-tolerant routing scheme [22] modelled the NoC across differ-
ent zones. Routing directions are then established according to the
zone where the destination node is located. A fault-tolerant adap-
tive routing algorithm [23] can forward the packets to the destina-
tion via the intermediate nodes to bypass the faulty links. The
relative positions of source, destination and intermediate nodes
are constrained. It cannot deal with complex fault patterns and
did not present the hardware implementation results.

A fault-tolerant routing algorithm in the approach of [24]
employed a localised re-routing to bypass the fault links and
regions. Two fault-tolerant routing algorithms, FTDR, FTDR-H used
routing tables to store the distance for every directions between
the current and destination nodes [25]. The routing table are
updated when the link status changes (e.g. from fault-free to
faulty). Then the current node can choose a fault-free path to
forward the packets. As the routing table of FTDR is not
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Fig. 1. 2D-mesh NoC system. (a) Relative directions between source node and
destination node; (b) different preferred port definition.
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area-efficient, the FTDR-H was developed which used a hierarchi-
cal structure to reduce the size of the routing table. The entire
NoC system was divided into several regions and a separated rout-
ing table was used in each region. It has the key constraints that a
faulty link has to be shutdown bi-directionally and two different
regions must be connected. A Look-Ahead-Fault-Tolerant (LAFT)
routing algorithm was proposed for the 3D NoC system [26].
LAFT receives the fault status from the immediate neighbouring
nodes and selects the routing path based on this information. If
there are several candidates, the path with minimum distance
and large diversity is chosen. For most of these fault-tolerant
approaches, the main drawback is that they do not provide an effi-
cient congestion control mechanism to make optimal routing deci-
sions for complex traffic conditions in order to maintain system
performance under heavy traffic loads.

2.3. Summary

Current approaches of dynamic routing algorithms are sum-
marised in Table 1. They have the aforementioned weaknesses of
(a) unable to make routing decisions under complex traffic condi-
tions and (b) the system throughput performance is degraded if
faults occur. Therefore, they do not meet the required characteris-
tics to provide an efficient routing strategy for modern NoC. For a
NoC to be robust and that can achieve better performance and tol-
erate faults, two key functions need to be investigated: (a) the abil-
ity to avoid congested paths and balance the traffic workloads, and
(b) the ability to tolerate faults and to proceed to provide system
functionality in the event of a physical impairment. This paper
investigated such a routing strategy as efficient adaptive routing
and fault-tolerance requirements are of paramount importance
with the ever increasing density of large scale electronic systems.

3. EDAR routing algorithm

In our previous work [10,27–29], the authors developed a NoC
router design, namely EMBRACE, which demonstrated a
traffic-aware, online fault testing capability, with Monitor
Module (MM) components that indicate channel traffic states to
neighbouring NoC nodes. However, this paper presents an exten-
sion to this work where a novel fault-tolerant routing algorithm
(EDAR) is used to identify reliable and low-congested routing paths
in order to minimise the degradation of NoC throughput in the
presence of faults. This section outlines the EMBRACE router archi-
tecture and presents the EDAR routing algorithm in detail.

3.1. EMBRACE routing architecture

In this paper, a 2D-mesh topology is used to illustrate the prin-
ciple of the EDAR algorithm as it is the most common topology
used in many applications [8,11,19,22]. Fig. 1 presents a typical
2D-mesh NoC system, where each node is connected to other
nodes through four directions (N/E/S/W) and processing elements
are connected to the router via a local port. Every node is
Table 1
Previous works summary.

The approach Congestion
aware

Fault
detection

Fault-tolerant
routing

[9,6,10,7,8,12–18]
p � �

[26,22,5,19,20,23,24] � � p

[11]
p � p

[21] � p p

[43]
p p p
positioned using a pair of coordinates. The notation ðxs; ysÞ is used
to denote the coordinates of the source node which issues packets;
ðxc; ycÞ denotes the coordinates of the current router where the
packet is located; ðxd; ydÞ denotes the coordinates of the destination
node, the final target node.

In Fig. 1(a), assume node (3,3) is the current node (i.e.
ðxc; ycÞ ¼ ð3;3Þ), the destination node can be in the 8 directions
denoted by direction D1–D8, i.e. from east–to south–east.
However, if the coordinates of the destination node is equal to
the current node (i.e. ðxd; ydÞ ¼ ð3;3Þ), it indicates that the packet
has arrived at the destination and should be forwarded to the local
port. When the destination node is located in D1–D8, it can classed
as two types – (1) diagonal position (i.e. D2, D4, D6, D8) and (2)
direct position (i.e. D1, D3, D5, D7). In each type, one example is
given to illustrate the preferred ports definition. The preferred
ports are defined as the ports which the current node should
preferably choose to forward the packets to the destination. The
top part of Fig. 1(b) presents the destination in the diagonal position
where the current node is (1,1) and the destination node is (3,3).
The four ports N/E/S/W at node (1,1) are classed as three levels.
The east is defined as Preferred Port 1 (PP1) port, the south is
defined as Preferred Port 2 (PP2) and the west/north ports are both
defined as Preferred Port 3 (PP3). The levels are set in this ranking
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due to the number of hops required to transmit packets to the des-
tination, i.e. it is smaller from the E and S directions than from W
and N. The east port is defined as a higher level ranking than the
south port as the EDAR algorithm firstly chooses the direction on
the x-axis and then y-axis under the same traffic conditions. The
bottom right of Fig. 1(b) illustrates the levels when the destination
node is in the direction position. Note, in this example N and S are
assigned the same level (PP2) as both have the same number of
hops (i.e. 5 hops) to the destination node.

To understand how the nodes are being connected, the
EMBRACE router architecture is introduced. Fig. 2(a) presents the
EMBRACE router structure and the logical connections between
the components. The Adaptive Routing Scheme (ARS) module is
the core component for the router as it receives the traffic status
information (i.e. Busy/Congested/Faulty) from all the four neigh-
bouring nodes and makes routing decisions adaptively according
to the channel situation. The Adaptive Arbitration Policy (AAP)
module controls the output port selection and provides access
arbitration for multi-requests for the same output channel. The
packets go to a crossbar and are forwarded to the selected output
port finally. The Monitor Module (MM) provides traffic status
information for the channels [27], where each channel has one
MM (Fig. 2(b)). The number of free slots (Fs) in the buffer of the
receiver (RX) side is used to gauge the status of channel traffic.
For example, if Fs ¼ 0, the buffer is full and the channel is said to
be ‘Congested’. If Fs 6 Threshold v , the channel is said to be
‘Busy’, where Threshold_v denotes a threshold value (normally half
the size of the buffer). However, for the ‘Faulty’ status, the MM in
the transmitter (TX) side sends test vectors to the MM in the recei-
ver (RX) side, and it compares values received from the outcome of
the test vector with pre-defined values. If they do not match, the
present channel under test is classed as faulty and a fault flag is
raised to inform the TX router of a fault in the channel intercon-
nect. The fault detection mechanism in our previous work of [27]
is used in this paper where temporary and permanent faults can
be detected promptly and the real-time detection results are fed
to the EDAR routing algorithm to aid making the routing decisions.
Therefore, the three traffic status signals from each direction are
defined as Busy/Congested/ Faulty. Each group of 3 status signals
are connected to the router’s ARS to aid in making more effective
routing decisions.
3.2. EDAR routing algorithm

The objective of the EDAR routing algorithm is to route the
packets along the minimum congested path while bypassing iden-
tified faulty interconnections. For any given 2D-mesh NoC, when
ðxd; ydÞ ¼ ðxc; ycÞ, this signals that a packet has arrived at its desti-
nation node and can be forwarded to the node’s processing ele-
ment through the local port. If ðxd; ydÞ–ðxc; ycÞ, then the current
node forwards the packets to its neighbouring node through
N/E/S/W directions. EDAR uses a weight calculating mechanism
to calculate the weights for each direction. The weight values to
be calculated include (1) the direction priority weight wp, (2) the
channel Busy status weight wb, (3) the channel Congested status
weight wc and (4) the channel Faulty status weight wf . The direc-
tion priority weight wp is determined by the relative direction
between the current and destination nodes and the preferred port
level. The pseudo code in Fig. 3 illustrates how the wp is calculated
for each direction. In this approach, if the port is a PP1 port, the wp

of this port is equal to 1; if it is a PP2 port, wp ¼ 2 and if it is a PP3
port, wp ¼ 3. Therefore, a lower direction priority weight value cor-
responds to a preferred port.

The weights (wb=wc=wf ) of the channel Busy/Congested/Faulty
statuses are determined by the ‘‘B/C/F’’ input signals from the
MM module, as shown in Fig. 2(b). If the status, s, of a channel is
busy, then sb ¼ 1; if the channel is congested, status sc ¼ 1 and if
the channel is faulty, status sf ¼ 1. Using this status information,
the values of wb=wc=wf can be calculated using (1). It can be seen
that wf > wc > wb when sf ¼ sc ¼ sb ¼ 1. The weight wf is given
precedence as the channel status of Faulty has the most significant
performance impact on a channel. Similarly, Congested has more
impact than Busy.

wb ¼
0; sb ¼ 0
2; sb ¼ 1

�

wc ¼
0; sc ¼ 0
3; sc ¼ 1

�

wf ¼
0; sf ¼ 0

10; sf ¼ 1

�

8>>>>>>>><
>>>>>>>>:

ð1Þ

The values of wp=wb=wc=wf are calculated based on the following
four rules: (1) if the PP1 is fault-free, not congested and not busy,
it will be chosen as preferred output port; (2) if the PP1 is faulty
or congested, PP2 is chosen as the preferred port. The same rule
applies for the PP2 and PP3 cases; (3) if the PP1 is busy and the
PP2 is fault-free and idle, the PP2 is chosen as the preferred port.
The same rule applies for the PP2 and PP3 cases; (4) the weight
value should be as small as possible to allow compact hardware
implementations of the EDAR.

After the weight values of wp, wb, wc and wf are generated, the
total weight, W, for each port i (i 2 fN; E; S;Wg), is calculated by (2).
The output port with the minimal weight value is selected as the
final output port.

W½i� ¼ wp½i� þwb½i� þwc½i� þwf ð2Þ

In summary, the EDAR routing algorithm is described by the
pseudo code shown in Fig. 4. The inputs are coordinates of destina-
tion (xd, yd) and current nodes (xc , yc), the traffic status of B/C/F on
all directions; the output is the selected channel to forward the
packets. First, the weight values of wp, wb, wc , wf and W are calcu-
lated (line 11–24); then the W[i] with minimum value is selected
and the corresponding i is the selected output channel number
(line 26–32). The EDAR routing module is implemented in hard-
ware using a combinational logic circuit. If the inputs change, the
output is generated immediately.

To illustrate the application of the rules for path selection, con-
sider region 1 (2D 3 � 3 array) shown in Fig. 1(b). For the discon-
nected direction of edge node, the busy, congested and faulty
lines are set to be high. EDAR forbids packets to be forwarded to
these directions, such as north of node (⁄,0), east of (7,⁄), south
of (⁄,7) and west of (0,⁄). Fig. 5 provides an expanded view of
region 1 to demonstrate how the EDAR routing algorithm operates.
Assume that node (5,1) is the source node, (6,3) is destination
node; then the nodes of (6,1), (6,2), (5,2) and (5,3) are the current
nodes which packets pass through. When all the links are fault-free
and not congested, the communication path is shown as Path #1.
However, if the channel between the router (5,1) and (6,1), i.e.
Link #1, becomes faulty, the EDAR in router (5,1) will
re-calculate the port weights as shown by (3). As a result, the
EDAR will choose the South direction as the new preferred output
port as it has the minimum weight out of all four (N, E, S and W)
ports. The port with minimum weight indicates this port has a bet-
ter traffic conditions than others. Here, the south port is fault-free
and idle, which is better than the east port to forward the packets.

W½N� ¼ wp½N� þwb½N� þwc½N� þwf ½N� ¼ 3þ 0þ 0þ 0 ¼ 3
W½E� ¼ wp½E� þwb½E� þwc½E� þwf ½E� ¼ 1þ 0þ 0þ 10 ¼ 11
W½S� ¼ wp½S� þwb½S� þwc½S� þwf ½S� ¼ 2þ 0þ 0þ 0 ¼ 2
W½W� ¼ wp½W� þwb½W� þwc½W � þwf ½W� ¼ 3þ 0þ 0þ 0 ¼ 3

8>>><
>>>:

ð3Þ 
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Therefore, ‘‘Path #2’’ is the communication path if the Link #1 is
faulty. Similarly, assume that the channel between the router
(5,2) and (6,2), i.e. Link #2, is congested, in this example router
(5,2) will re-calculate the port weights and the result will be
W½N=E=S=W� ¼ f3;6;2;3g. In this instance the EDAR in router
(5,2) will choose the South direction as the output port; therefore,
‘‘Path #3’’ is chosen to transmit packets. These examples illustrate
that for a faulty interconnection, EDAR bypasses the faulty compo-
nents to avoid packets being corrupted. Then for a congested or
busy interconnection, EDAR selects another preferred idle port as

 



Fig. 3. Pseudo code of direction priority weight calculation.
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the output port. This avoids the packets waiting in the congested
channel which will increase the packets delay and avoids the traffic
status of busy channel becoming worse as continuously sending
packets to a busy channel will make it become more congested. It
can be seen that EDAR routing algorithm has the capability of being
tolerant to the faults in the NoC interconnection and also adaptive
to the traffic status which can reduce the average delay and balance
the traffic load to achieve a better system performance.
Fig. 4. Pseudo code of EDAR algorithm.
 

3.3. Deadlock and livelock avoidance

Several assumptions are defined in this paper for deadlock and
livelock avoidance and include: (a). a node cannot send a packet to
itself; (b). a packet is absorbed when it reached its destination and
(c). the source and destination nodes are in a connected region. The
router architecture used in this paper is similar to a 5-stage NoC
router in the approach of [30], where the technique of virtual chan-
nels (VCs) is employed to avoid deadlock. The virtual channel allo-
cation is in stage 3 of our architecture where the packets are
temporarily stored in VCs while the output channel is busy and
cannot forward packets immediately. The strategies to handle the
deadlock problems include deadlock prevention, avoidance and
recovery. The VC implementation is one solution of deadlock
avoidance. The VC is generally implemented as a stack using a
first-in-first-output (FIFO) component. Fig. 6 illustrates an example
of VCs. Two VCs (blue and red) between the east port of router #1
and the west port of router #2 multiplexed the same physical
channel (black). The packets share the physical channel based on
a flit-by-flit manner. Assume that packet P1 arrives at router #1
early and occupies the channel between the routers #1 and #2. If
the packet P2 also requests access of the same channel, then the
physical channel is multiplexed between the packets P1 and P2
on a flit-by-flit basis. Using the VCs, packet P2 would not be
blocked while packet P1 is in transmission.

A 4 � 4 NoC system in Fig. 7 is used to illustrate how the VCs
can be employed to avoid deadlock in this paper. The NoC in
Fig. 7(a) does not have any faults and four packets (P1–P4) are for-
warded to the destination nodes #3, #4, #1 and #2, respectively.
Based on the preferred direction definition, the packets are for-
warded through the x-axis first and then y-axis, e.g. the path of
packet P1 is #1–#2–#3. The paths of all the packets were marked
as different colours in Fig. 7(a). It can be seen that for the fault-free
NoC systems, the EDAR is deadlock-free as the channel dependence
graph is acyclic. However, if the NoC system has faulty channels,
the EDAR choose an alternative direction to forward the packets;
e.g. when the west channel of node #3 is faulty in Fig. 7(b), the
packet P3 cannot be forwarded to the west direction so the north
direction (i.e. DS2 in Fig. 7(b)) is used instead. As packet P4 is occu-
pying the north channel of node #3, the physical channel will be
multiplexed between the packets P4 and P3 on a flit-by-flit basis.
The west channel of node #2 has a similar status, i.e. the packet
P2 and P3 also share the same physical channel. Therefore, all
the packets can arrive at the destination nodes eventually without
deadlock occurring. In addition, an adaptive arbitration policy in
our previous work [10] is used for the arbitration of VCs requesting
the same physical channel. The arbitration combines the fairness

 



Fig. 5. Example application of the EDAR routing algorithm.
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policy of a round-robin arbiter and a first-come first-served prior-
ity scheme to improve system throughput. At the same time, the
free space in the VCs [31] and buffers [32] are also used to aid mak-
ing routing decisions, where the fewer allocated VCs implies the
multiplexing in the given link is less and therefore, a lower buffer
count indicates less backpressure of the input port at the down-
stream node. Hence, if the preferred VC only has limited space or
the input port of the preferred downstream node does not have
enough space, the EDAR approach will choose an alternative direc-
tion to relieve the backpressure, e.g. if the north channel of node
#3 is congested, the packet can be forward to south direction
(i.e. DS3 in Fig. 7(b)) without waiting at the north channel.

The EDAR approach also imposes the restriction that data pack-
ets coming from any given direction cannot return on the same
direction. The livelock avoidance includes three scenarios – (a).
For a fault-free NoC system, EDAR is livelock-free as the packets
will eventually reach the destination node although it will experi-
ence a longer path delay; (b). For convex faulty regions, the EDAR
routes packets along the edge, then turn direction at the region
corner and finally arrive at the destination node; (c). For a NoC sys-
tem with concave faulty regions or other serious scenarios, a
re-routing constraint mechanism [33] can be employed. It con-
strains the number of re-routing performed and discards packets
if re-routing exceeds a threshold number. Discarding packets can
relax the communication links, prevent traffic congestion, and
maintain system traffic load balance. It avoids livelock, however,
VC

VC

#1

P1

P2

Fig. 6. An example of VC
in the meantime it induces an issue of Quality of Service, as a
packet can be dropped. An Automated Repeat reQuest (ARQ) mech-
anism can be employed to re-transmit the packet but with a differ-
ent port, since the packet sent through the previous port is lost.
Alternatively, a node de-activation mechanism [34] can be used
to avoid livelock for the concave faulty regions, which converts
the concave fault region to be convex. For EDAR, a minimal path
is always chosen when the path is fault-free and not congested.
If congestion occurs or the desired direction is faulty, the EDAR
selects alternative directions to forward the packets without wait-
ing on the desired direction becoming available. This leads to a
non-minimal path length, however, it guarantees that packets
can be successfully delivered.

4. Methodology and experimental results

This section outlines the methodology used in performing
experiments and presents results on the performance of the
EDAR under non-faulty conditions.

4.1. Performance analysis metrics and experimental platform

The standard evaluation metrics from the approach of [9] are
employed in this paper. For example, packet injection rate (PIR)
refers to the rate at which packets are injected into the NoC net-
work. For any given single node router in the NoC, the normalised
number of sent packets per clock cycle is equal to PIR and has the
range 0 < PIR 6 1. If PIR = 0.2, this means the node sent 0.2 packets
per clock cycle or 2 packets every 10 clock cycles. The performance
metrics of throughput, T, and average delay, D, are used and
defined in (4) and (5) [9].

T ¼ Rflits

Nnodes � Nclk
ð4Þ

In (4), Rflits is the total number of received flits, Nnodes is the total
number of nodes and Nclk is the number of clocks cycles from the
first generated flit to the last received flit. Therefore, the throughput
is measured as a fraction of the maximum load that the network is
capable of physically handling over a given path. Delay is defined as
the number of clock cycles that elapses between the occurrence of a
header flit injection into the network at the source node and the
occurrence of a tail flit reception at the destination node. Eq. (5)
defines the average delay, D, which is the average value for the total
number of messages where K is the total number of messages
reaching their destination nodes and Di is the delay for the node i.

D ¼ 1
K

XK

i¼1

Di ð5Þ
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Fig. 7. A 4 � 4 NoC system: (a) fault-free system and (b) one link is faulty.
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The evaluation environment is presented in Table 2. The Noxim
simulator [35] was extended to evaluate the EDAR routing algo-
rithm’s performance. The NoC application mapping strategies of
NoCTweak [36] and NoCmap [37] were used to generate the real
and non-synthetic traffic patterns. The evaluation platform of the
EDAR NoC algorithm in this paper was based on a 2D-mesh system.
To guarantee the accuracy of results, the simulation at each PIR
point has been repeated several times (five times in this approach).
The warm up and execution times are 1000 and 20,000 clock
cycles, respectively. The EDAR routing algorithm is evaluated
under various traffic patterns including (1) uniform, (2) transpose,
(3) shuffle and (4) a real NoC application traffic load Multi-Media
System (MMS), which are common traffic patterns used in evaluat-
ing routing performance [11,9,22,38]. A generic MMS includes an
H.263 video encoder, H.263 video decoder, mp3 audio encoder,
and an mp3 audio decoder [37]. The MMS application is parti-
tioned into 40 distinct tasks and then these tasks were assigned
and scheduled in the NoC system. MMS is a typical traffic load of
real NoC applications and has been used in many approaches as
a testbench framework [9,39,40]. The performance evaluation
and comparison follows two steps. The first step uses the extended
Noxim simulator to evaluate the EDAR congestion-aware capabil-
ity. Noxim integrates the routing algorithms of DyAD [6], Odd–
even [41], XY, Negative-first. The standard simulator allows a

 



Table 2
Evaluation environment.

Simulator Extended Noxim simulator
Topology 2D mesh
Routing XY, DyAD, Odd–even, Negative-first,FoN,

Cost, FTDR, FTDR-H, LAFT, HLAFT, EDAR
Traffic load Uniform, transpose, shuffle, MMS
Simulation warm up [cycles] 1000
Execution time [cycles] 20,000
Simulation repeat time 5
Fault rates 0%, 5%, 10%, 15%, 20%
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performance comparison between the proposed EDAR and inte-
grated routing algorithms under the same traffic conditions. This
evaluation method, i.e. using the standard platform to evaluate
the proposed algorithm and compare with integrated routing algo-
rithms, has been widely used in other studies, e.g. [9,11,26,42].
However, the integrated routing algorithms are not
fault-tolerant. Therefore, a second step was undertaken, i.e. several
state-of-the-art approaches including FoN, Cost, FTDR, FTDR-H
[43], LAFT, HLAFT [26] were chosen as benchmarks. As the router
architectures of EDAR and these approaches are different, the
results generated by the first step are normalised (e.g. throughput
degradation value) in order to give a comparison. The experimental
results across various PIR were obtained for each algorithm using
different traffic patterns.
4.2. Experimental results

This section presents the results from experiments on the per-
formance of the EDAR algorithm compared against the listed
benchmark routing algorithms under varied traffic loads. The
results of the average delay, D, and throughput, T, under uniform
traffic conditions for EDAR and all benchmark algorithms are
shown in Fig. 8. This type of traffic is used for simulation in many
approaches. It can be seen that EDAR and XY routing algorithms
achieves a lower average delay and a higher throughput compared
to other algorithms. The result from the XY routing algorithm is
consistent with the results of other approaches [9,41,44] and is
due to the fact that XY embodies global long-term information
about the uniform traffic pattern [44]. By routing packets first
along the X-axis and then Y-axis, it spreads the uniform traffic as
evenly as possible across the channels in the long term. The adap-
tive routing algorithms on the other hand, select channels for
transmission based on local short-term information. This type of
decision making benefits only the packets in the immediate future,
which can, in the longer term interfere with other network
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Fig. 8. Performance under
traffic/packets. The result is increased contention and decreased
performance at higher PIR rates. However, EDAR still yields a low
average delay and a high throughput in this traffic pattern, in par-
ticular it outperforms the adaptive benchmark DyAD.

Fig. 9 presents the results under transpose traffic load. At the
point of PIR = 0.017, the average delay for DyAD, XY and
Negative-first increase sharply and at the same point, their
throughputs begin to decrease. Odd–Even is the only algorithm
which achieves a marginally higher performance under this traffic
pattern. The main reason is that the turn model of Odd–Even can
spread the transpose traffic as evenly as possible across the chan-
nels, which is consistent with the result in the approach of [41].
However, the EDAR also has a very similar performance to Odd–
Even under this traffic pattern as it spreads the traffic to the less
congested channels adaptively and achieves a good traffic balance.

Fig. 10 presents the average delay and throughput for the traffic
shuffle. For DyAD, Westfirst and XY routing, their average delays
begin to increase at PIR values of 0.017 and 0.025, respectively.
At the same PIR values their throughputs begins to decrease as
well. However, EDAR and Odd–even maintain a low average delay
and high throughput with Odd–even only providing a marginal
gain.

However, it should be noted that the real performance benefit
of EDAR is achieved under more difficult circumstances when both
increased traffic loads and faulty conditions are present. The next
section present results on EDAR under such conditions.

5. Performance results under fault conditions

A set of experiments were carried out to evaluate the perfor-
mance of EDAR under traffic patterns while faulty channel links
were present. The effects of faults on the NoC interconnection
are different and depend on the fault type. In this approach, the
stuck-at fault [45] is considered as it is the most prevalent fault
model for NoCs and was used in previous approaches [46–49]. A
fault rate is used to present the percentage of faulty links in a
NoC system. A NoC system with different fault rates is employed
as the test bench framework in evaluating EDAR performance.
Similar to the approaches of [43,38], ten fault patterns are chosen
for each fault rate and the average value is used as the result.

5.1. EDAR performance under fault conditions

Stuck-at faults mostly occur at the logic level, which can be
divided into stuck-open and stuck-on faults resulting in
non-conductive and conductive logic states respectively. In this
approach, if the packets pass through a channel having stuck-at
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Fig. 9. Performance under transpose traffic load.
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Fig. 10. Performance under shuffle traffic load.
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faults, the RX router cannot recognise the packets as the channel
has been stuck. Under this assumption, the 8 � 8 NoC is simulated
with 5%, 10%, 15% and 20% of faulty links. Based on these simula-
tions the EDAR throughput performance can be evaluated and
compared.

Fig. 11 presents the throughput of the NoC system for the four
benchmark routing algorithms and EDAR, under the four different
traffic patterns. The PIR rate below the saturation point is chosen
for the routing algorithms of uniform, transpose and shuffle. The
benefit of using this PIR rate as the baseline value is that the
throughputs of all the routing algorithms are the same for the
fault-free NoC system (i.e. not in saturation); this allows a fair eval-
uation of system performance under various faulty link percent-
ages. When the system has faulty links, the throughput
performance of the four benchmark algorithms are degraded as
the faulty links do not transmit packets any longer. The throughput
value of all the routing algorithms for different fault rates and var-
ious traffic patterns are presented in detailed in Fig. 11. The
throughput degradations (shown by percentage) for all these sce-
narios are outlined in Table 3. It can be seen that for the system
with 5–20% faulty links, all the routing algorithms have different
levels of performance degradation. Across all four traffic patterns,
DyAD experienced between 26.19–58.07% degradation for 5–20%
fault rates; Odd–Even 25.72–61.48% degradation; Negative-first
and XY had degradation of 31.01–68.19% and 31.71–68.3%, respec-
tively. However, EDAR had the lowest degradation with between
0.07% and 20.3%. When the fault rate is 5% and 10%, the throughput
degradation of EDAR is very low, 0.04% and 4.3%, respectively.
When the fault rate increases, the throughput of EDAR has a small
degradation, i.e. 13.6% for a fault rate of 15%, and 20.3% degrada-
tion for a 20% fault rate. These decreases in throughput perfor-
mances are significantly lower than the benchmarks, for
example, in comparison EDAR achieves between 26% and 48%
improvement on throughput. Therefore, the results in Fig. 11 and
Table 3 illustrate that the EDAR routing algorithm maintains sys-
tem performance under a low fault rate and only has a marginal
performance degradation when the system has a significant fault
rate.

In addition to the key metric of throughput, the communication
latency is also used as a metric to evaluate the routing algorithm
performance. Fig. 12 presents the average delay and the number
of received flits at different fault rates under various traffic pat-
terns. When the fault rate increases, the average delay of the
EDAR increases, i.e. it takes a longer time for a packet to arrive at
the destination node. However, for the benchmark routing algo-
rithms, the average delays remains either relatively unchanged
(for traffic patterns of uniform and shuffle) or decreased marginally
(for the rest traffic patterns). This is due to the fact that the average
delay only takes account of the flits that actually arrive at the des-
tination node successfully. For the benchmark routing algorithms,
when the fault rate increases, they cannot choose fault-free paths
to forward the flits, therefore many flits are lost and the numbers
of received flits decreases significantly. These lost flits are not
counted in the average delay calculation; therefore the average
delays are lower at a high fault rate. However for EDAR, the aver-
age latencies increase but the numbers of received flits remains
at effectively the same level (at fault rates of 5–10%) or have a mar-
ginal decrease (at fault rate of 15–20%), i.e. EDAR requires a longer
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Fig. 11. Throughput at different fault rates under various traffic patterns: (a) uniform, (b) transpose, (c) shuffle and (d) MMS.

Table 3
The throughput degradation under various traffic patterns.

Routing
algorithm

Fault
rate (%)

Throughput degradation (%)

Uniform Transpose Shuffle MMS Average

DyAD 5 23.51 28.55 19.41 33.28 26.19
10 44.37 45.53 39.31 34.43 40.91
15 49.18 57.43 48.96 39.72 48.82
20 64.23 65.09 56.39 46.57 58.07

Odd–Even 5 23.48 23.11 18.76 37.53 25.72
10 42.81 43.69 38.62 39.16 41.07
15 53.73 54.46 50.42 46.43 51.26
20 66.40 66.19 58.95 54.38 61.48

Negative-
first

5 23.42 20.11 13.71 66.81 31.01
10 42.91 51.57 37.38 67.55 49.85
15 53.36 51.77 44.01 72.45 55.40
20 66.61 67.73 54.75 83.66 68.19

XY 5 24.37 20.97 16.90 64.60 31.71
10 45.51 51.29 39.89 66.99 50.92
15 57.34 51.36 51.36 67.87 56.98
20 68.16 67.42 60.17 77.47 68.30

EDAR 5
p

0.30
p p

0.07
10 4.07 8.78 4.36 0.00 4.30
15 8.12 11.13 7.82 27.32 13.60
20 14.31 25.11 13.51 28.27 20.30

‘
p

’ the throughput is not degraded under the respective fault rate (%).
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time to forward the packets to the destination nodes, but they do
arrive.
5.2. Performance comparison with fault-tolerant routing algorithms

An additional six state of the art fault-tolerant routing algo-
rithms, namely FoN, Cost, FTDR, FTDR-H, LAFT and HLAFT [43],
are also chosen as benchmarks in evaluating the EDAR perfor-
mance. The throughput degradation is chosen as a benchmark met-
ric for all of the routing algorithms to allow a fair comparison of
system performance. No single testbench platform is standard
however the throughput degradation can accurately reflect the
fault-tolerant capability of the routing algorithms. Traffic loads of
uniform, transpose and shuffle, and fault rates of 5%, 10% and
20% were chosen as the testbench baseline, as was done in [43].
In addition performance results in [26] were also presented under
these baseline conditions. Table 4 presents the throughput degra-
dation results. It can be seen that FoN, Cost, FTDR and FTDR-H have
40–70% throughput degradation under fault rates between 10%
and 20%. However, EDAR has a significantly lower throughput
degradation of 25% at fault rates between 10–20% compared to
FoN, Cost, FTDR and FTDR-H. From the table it can also be seen that
the fault tolerance of HLAFT is better than LAFT [26], where HLAFT
has 0.9–54% throughput degradation under fault rate 5–20%.
However, EDAR has a lower throughput degradation of between
0.3% and 25%; i.e. outperforming HLAFT. Therefore, the results
show that the EDAR routing algorithm outperforms these bench-
marks. This demonstrates EDAR’s ability in tolerating faults in
the NoC system and how it can minimise degradation of perfor-
mance when faults occur. Note that the comparison is a likely to
likely comparison as the router architectures are different.

6. Hardware performance

This section presents the methodology for implementing the
EDAR algorithm in hardware and also presents an evaluation on
area overheads. The additional circuit area required for the EDAR
is highlighted and the performance benchmarked against other
state of the art approaches. In order to evaluate the hardware
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Fig. 12. Average delay (bars) and the number of received flits (lines) under various traffic patterns: (a) uniform, (b) transpose, (c) shuffle and (d) MMS.

Table 4
The throughput degradation comparison between FoN, Cost, FTDR, FTDR-H, LAFT, HLAFT and EDAR routing algorithms.

Traffic load Throughput degradation (%)

Uniform Transpose Shuffle

Fault rate (%) 5 10 20 5 10 20 5 10 20

FoN [43] N/A 55.88 64.71 N/A 45.83 59.72 N/A 51.22 65.85
Cost [43] N/A 61.11 72.22 N/A 54.76 71.43 N/A 58.14 69.77
FTDR [43] N/A 52.94 61.76 N/A 44.44 52.78 N/A 48.78 63.41
FTDR-H [43] N/A 48.39 58.06 N/A 28.57 46.43 N/A 46.15 61.54
LAFT [26] 11.24 42.7 98.88 7.21 27.3 99.1 N/A N/A N/A
HLAFT [26] 8.99 33.71 43.82 0.9 13.51 54.05 N/A N/A N/A
EDAR

p
4.07 14.31 0.3 8.78 25.11

p
4.36 13.51

‘
p

’ the throughput is not degraded under the respective fault rate (%).
‘N/A’ the results are not presented in the respected authors’ paper.
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performance of the EDAR, the EMBRACE NoC router has been
extended to include the EDAR in each NoC direction and has been
implemented using VHDL. The VHDL model of the EDAR is param-
eterised in terms of the widths of the channel and the packet
header information, and can be easily instantiated to fit different
requirements for other specific applications other than the
EMBRACE router used in this evaluation. The modified EMBRACE
NoC router is based on our previous work by the authors
[10,27,28] and it is characterised by its area overhead. The hard-
ware implementation parameters for the router include the follow-
ing: (1) 36 bit data packets; (2) 100 MHz system frequency and (3)
one MM per channel to test for faults. The area overhead of the
proposed EDAR has been obtained using the Synopsys Design
Compiler tool based on SAED 90 nm CMOS technology.
Fig. 13(a) shows the schematic of a single EMBRACE router
implementing the adaptive routing scheme using the EDAR algo-
rithm. The top level scheme of the router consists of an input buffer
(i.e. FIFO), Monitor Module (MM), EDAR and Adaptive Arbitration
Policy (AAP) components. The EDAR module is used when a routing
decision has to be made, that is, when a header flit reaches the
input buffer. The packet header, together with the traffic informa-
tion signals coming from the neighbours, is used to make a routing
decision. The output of the EDAR, that is, the optimal selected N, E,
S or W direction, is then used by the AAP in order to set up the con-
nection between the input traffic flows to the proper output direc-
tions. When a router attempts to send or forward a packet, EDAR
checks the traffic status of all the channels and decides which port
is the best way to forward the packet. This routing decision is made

 



Fig. 13. Adaptive routing scheme structure: (a) one node of the NoC system; (b) the adaptive routing scheme structure and (c) the weight computing unit structure.
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by choosing the lowest weight of all the ports and follows 3 steps:
(1) defines the port priority definition, (2) computes the port
weight and (3) compares all the weights to choose the port with
the lowest weight. An overview of EDAR hardware structure is
depicted in Fig. 13(b). Each EDAR module consists of three compo-
nents: preferred port definition module, weight computing unit
and weight comparator. The preferred port definition module
defines the port priority weight wp according to the relative posi-
tion of the current and destination nodes. The preferred port
weight value for the N/E/S/W direction is a default weight deter-
mined by the current ðxc; ycÞ and destination ðxd; ydÞ coordinates.
The output value from a preferred port definition module is
combined with the traffic status information (B/C/F), and for-
warded to the weight computing unit to calculate the port
weights; calculation based on (2). All port weights are input to
weight comparator and the port with the lowest weight is the
selected output port for transmission of the packet. Therefore, this
port selection can provide the optimal output port selection result
based on the destination node position and the current traffic sta-
tus (i.e. under faulty or traffic-load conditions). Fig. 13(c) illustrates
the structure of the weight computing unit for one direction; it is
identical for all four directions. The inputs are preferred port level
and traffic status signals (i.e. B/C/F). Four weight generators gener-
ate corresponding wp=wf =wb=wc weights based on the input

 



Table 5
Router hardware overhead and power consumption summary.

The approach Congestion aware Fault detection Fault-tolerant Device technology Router (mm2) Power Consumption (mW)

[10]
p � � 90 nm CMOS 0.056 1.716

[27]
p p � SAED 90 nm 0.182 2.175

EDAR
p p p

SAED 90 nm 0.241 2.291
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signals. All the weights are accumulated to provide the port weight
sum. The weight generators are implemented efficiently using
multiplexers; therefore low area overhead is achieved.

The implementation approach followed the standard ASIC cell
design flow, synthesis and verification based on a SAED 90 nm
CMOS technology. The implementation was evaluated for efficiency
with respect to hardware area and power consumption of the rou-
ter. The authors use their previous EMBRACE NoC router [10,27]
to incorporate EDAR, which has the four-port connectivity. Table 5
provides a comparison of the EDAR algorithm against previous work
and illustrates the router capabilities, hardware area and power
consumption. The approach in [10] provides congestion-aware
adaptive routing however it does not provide a fault-tolerant capa-
bility, therefore the area overhead and power consumption is rela-
tive low (0.056 mm2 and 1.716 mW). Based on [10], another
router was developed which was equipped with an online fault
detection mechanism [27]. Its routing algorithm is not
fault-tolerant and its area overhead and power consumption are
0.182 mm2 and 2.175 mW, respectively. The proposed EDAR router
has the capabilities of congestion-aware, fault detection and
fault-tolerant. The area overhead and power consumption is
0.241 mm2 and 2.291 mW. From Table 5, it can be seen that EDAR
has the largest area overhead and power consumption. Compared
to the approach of [27], the increment is not significant (i.e. �5%).
In addition, the EDAR routing requires extra control signals (i.e.
B/C/F lines) to aid in gathering traffic and fault information. In this
approach, each NoC channel is 36 bits wide; given this width the
extra wire overhead is 3/36 = 8.33%. Generally the extra wire cost
of �10% can be accepted, such as in the approach of [9]. Therefore,
the additional wires are not a hardware constraining factor.

7. Conclusion

In this paper an EDAR routing algorithm is proposed to improve
the NoC throughput performance for complex traffic conditions. The
aim of EDAR is to exploit the situations of indecisions that can occur
in the adaptive routing algorithm. This approach employs the traffic
status information from a monitor module to aid in making routing
decisions. A weighted path selection strategy was proposed for the
NoC to identify a minimal latency output port direction. The perfor-
mance evaluation results showed that in the majority of test traffic
patterns, EDAR achieves an improvement in average delay and
throughput; in particular, it does so under the traffic conditions
where faulty links exist. The hardware overhead is also shown to
be very low enabling system scalability to be maintained.

Future work will explore issues such as how to re-allocate the
underlying resources to reconfigure the system after identifying
temporary faults, and how to provide system functionality in a
reduced capacity if the underlying resources are no longer avail-
able from physical, permanent faults. In summary, future work will
explore how to make an optimal repair decision and aims to build
on the presented fault detection and EDAR routing strategy.
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