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Unstructured peer-to-peer (P2P) networks have become a very popular architecture for content

distribution in large-scale and dynamic environments. The search efficiency problem in unstructured

P2P networks has not been adequately addressed so far, especially concerning search for rare objects. In

this paper, we propose a proactive replication strategy to improve search efficiency for rare objects. It

uses an object-probing technique for peers to decide whether or not to establish replications for their

objects when they join the network. This strategy can effectively increase the popularity of rare objects

in order to enhance search efficiency. We also present a rare object search algorithm to reduce the

overhead caused by the replication strategy. When a peer forwards a search request, the forward

probability is calculated according to its neighbors’ degrees and the number of neighbors’ objects.

Therefore, the search request is forwarded to the peers more likely containing target objects.

Simulations show that our proactive replication strategy greatly improves search efficiency for rare

objects with moderate communication overhead. The rare object search algorithm not only improves

search efficiency for rare objects, but also achieves load balance in search.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The peer-to-peer (P2P) networks can be broadly categorized
into two types: structured P2P networks and unstructured P2P
networks. Structured P2P networks (Ratnasamy et al., 2001;
Stoica et al., 2001; Gupta et al., 2003; Zhao et al., 2002) imple-
ment a Distributed Hash Table (DHT) and provide one basic
operation: given a key, they map the key to a peer. By carefully
guiding the queries in the network, these systems are able to
drastically decrease search traffic and increase search efficiency. It
is commonly believed that structured P2P networks are more
expensive to maintain than unstructured P2P networks and the
constraints imposed by the structure make them hard to improve
scalability. Unstructured P2P networks (Heinla et al., 2001;
Sarshar and Roychowdhury, 2007; Zhang and Hu, 2007; Clarke
et al., 2000) account for millions of users dynamically connected
in an ad hoc fashion, and queries, which are done through a path,
are selected randomly according to a uniform distribution. How-
ever, unstructured P2P networks may have high search traffic and
poor search efficiency since those networks are prone to failures,
errors and malicious peer behaviors that are frequent in a large
scale unsupervised P2P environment (Kong et al., 2006). Struc-
tured P2P networks are these ones that strictly control the
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underlying network structure, content publication strategy and
query routing. Unstructured P2P networks, on the other hand, are
those that impose minimal constraints on the network topology
or content distribution. The search mechanism in unstructured
P2P networks can be simply described as ‘‘to give a try’’, therefore,
they are suited to retrieve highly replicated data, but have
limitations for rare information retrieval.

A typical unstructured P2P network is Gnutella (Frankel and
Pepper, 2000), which implements searches through a flooding
technique with a certain scope. This type of network has exces-
sive traffic forms that account for more than 50% of network
traffic (Ripeanu, 2001). Moreover, unstructured P2P networks
have poor search efficiency, especially for rare objects. Such a
problem has been addressed by various algorithms, such as
flooding, expanding ring (Lv et al., 2002) and random walks
(Gkantsidis et al., 2004). Most of these algorithms are in fact very
effective for locating popular objects. However, when it comes to
finding rare objects in unstructured P2P networks, the similar
operations using these algorithms become less effective and less
efficient (Qiao and Bustamante, 2006). As shown in Loo et al.
(2004), as much as 18% of all queries return no response even
when results are available in the widely used Gnutella network.

This paper introduces a mechanism to address the above-
mentioned problems occurred in unstructured P2P networks. Our
main idea results from taking a proactive replication strategy to
increase rare object popularity over unstructured P2P networks
and using our search scheme to improve search efficiency for
those rare objects. In this article, the object popularity is defined
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as the proportion of the object number in the network to the
network size. In unstructured P2P networks, the objects with high
replication can be successfully found within a small number of
hops in search. As for the rare objects, to locate them, we must
extend the search scope, even to the entire network. This will
bring greater communication overhead and search delay. If an
item is very rare, it is hard for any query mechanisms to find it
with limited number of steps. Therefore, we must increase the
rare objects popularity instead of extending the search scope.
However, we do not know which object is rare in a distributed
P2P network because the peers only keep the local information. In
this paper, we propose a proactive probing technique to address
this issue. Peers search the objects they own in the network at a
certain frequency. If there are no hits, they replicate the objects at
other nodes found by some strategies. In this article, we use the
terms of ‘‘node’’ and ‘‘peer’’ interchangeably. We call this strategy
proactive replication. The objective of this strategy is to increase
the number of rare objects and the probability of successful
searches. We found that it obviously improves search efficiency
for rare objects through simulated experiments.

To decrease communication overhead caused by the replica-
tion strategy, we need a search algorithm to successfully locate an
object with minimal object popularity. We will introduce some
characteristics of unstructured P2P networks which can be used
in search strategies before discussing our search strategy for rare
objects. Unstructured P2P networks such as Gnutella are power-
law distribution networks. That is, the majority of the network
nodes have low degree, while a few other nodes have high degree.
Moreover, some nodes have a lot of resources, and some nodes
have fewer objects. Therefore, searching the nodes with high
degree and many objects is more likely to hit the target. In the
search, we can take advantage of these features to forward
queries to those peers more likely containing target objects in
order to achieve the goal-oriented routing, which is similar to that
of the structured P2P network. We call this strategy a rare object
search. Experiments show that it not only reduces the commu-
nication overhead of the search algorithm, but also minimizes the
cost of the replication strategy.

The rest of this paper is organized as follows. Section 2
compares our strategy to related works. In Section 3, we present
a proactive replication strategy. In Section 4, we discuss a rare
object search algorithm. We describe the experimental settings in
further detail in Section 5. Section 6 demonstrates our algorithms
through simulated experiments. Finally, in Section 7, we sum-
marize our contributions.

 
 

 

2. Related work

To find an object, a node queries its neighbors in unstructured
P2P networks. The most typical query method is flooding, where
the query is propagated to all neighbors within a certain radius.
Flooding introduces duplicate messages and duplicate queries,
which create pure overhead. Since flooding has inherent limita-
tions, some improved methods have been proposed, such as
expanding ring (Lv et al., 2002). Although this approach has less
message duplications than overall flooding, it produces many
extra traffic messages, especially for querying rare objects. Filali
and Huet (2010) propose a dynamic time-to-live (TTL) scheme.
Instead of decreasing the query TTL by 1 at each hop, it is
decreased by a value v where 0ovo1. Their aim is not only to
redirect queries towards the right direction but also to stimulate
them in order to reliably discover rare resources. Xu et al. (2010)
design a data structure called traceable gain matrix (TGM) that
records every query’s gain at each peer along the query hit
path, and allows for optimizing query routing decision effectively.
The query cache strategy (Yin et al., 2005) can also reduce the
communication overhead, and shortens the length of the queries.
With this strategy, nodes cache the results of successful queries so
that the same subsequent queries can quickly hit the target
through the caches. This mechanism not only improves search
efficiency, but also reduces communication overhead. Search
efficiency of these improvements is significantly increased for
those hot resources or more replicated resources, but the effi-
ciency remains low for rare objects.

Studies (Gkantsidis et al., 2004; Chawathe et al., 2003) have
shown random walk to be significantly more efficient than
flooding, which forwards a query message to some randomly
chosen neighbors at each step until the object is found. When
using the standard random walk (with one walker), it signifi-
cantly cuts down the message overhead, by an order of magnitude
compared to expanding ring across the network topologies.
However, the scheme has low search efficiency (i.e., high delay).
To decrease the delay, Gkantsidis et al. (2005) increases the
number of ‘‘walkers’’. That is, instead of just sending out one
query message, a requesting node sends k query messages, and
each query message takes its own random walk. The simulations
confirm that k walkers after S steps reach roughly the same
number of nodes as one walker does after kS steps. In this paper,
we will only take random walk as a search method in the analysis
of object popularity and disregard the dimension of random walk.

Published measurements of unstructured P2P networks such
as Gnutella show that they have power-law degree distributions
(Adamic et al., 2001). This distribution reflects the existence of a
few nodes with very high degree and many with low degree.
Adamic (Adamic et al., 2003) proposed a high degree seeking
strategy, in which a search request is forwarded to the high
degree node because they have more neighbors. However, this
method easily leads to information gathering (almost all queries
are processed in high degree nodes), and harms the query
distribution. Based on power-law characteristic and some other
features we observed, we improve the high degree seeking
strategy through probability forward. Our scheme tries to balance
the load of each node in queries with similar search efficiency.

Replication will increase search efficiency of popular objects
through storing the object at the requester or all nodes along the
searching path when a search is successful. Presently, the existing
replication strategies are mainly passive, which cannot help rare
objects. Plover (Shen and Zhu, 2009) is a proactive file replication
scheme with low-overhead. By making file replicas among phy-
sically close nodes based on nodes’ available capacities, Plover not
only achieves high efficiency in file replication but also supports
low-cost and timely consistency maintenance. In iDARE (Liao
et al., 2010), peer can proactively replicate data chunks to stable
cache servers for future sharing, when it has high possibility to
leave the overlay. This strategy can solve the problem of that
media data cached on peer disk turns offline and unavailable with
frequent peer departure. Cohen (Cohen and Shenker, 2002)
studied a replication strategy to improve search efficiency in
unstructured P2P networks in which target objects establish
replication with the square root of the number of visits. This
strategy can greatly improve the search efficiency for hot
resources, but for rare objects search efficiency has not been
improved much.

When searching for rare objects, the researchers put forth the
strategy of object replication. When a peer joins a P2P network, it
actively installs its objects’ references at a set with Oðg

ffiffiffi
n
p
Þ of

randomly selected peers (Ferreira et al., 2005). This strategy can
improve the searching efficiency for rare objects, but it can intro-
duce a high communication cost. Moreover, it is hard to estimate the
network size n, especially for dynamical P2P networks. Krishna et al.
(Puttaswamy et al., 2008) uses Supernode-Constrained Random
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Walk (SCRW) to search rare objects with two-hop index replication,
and proposes three two-hop index replication strategies: full repli-
cation, square-root replication and constant replication. In SCRW,
nodes always forward the query to one of randomly selected
supernode neighbors. Although this strategy can improve the search
efficiency for rare objects, it needs P2P network with supernode and
will incur heavy overhead.

Shen (2008) puts forward an adaptive replication strategy.
Compared to existing algorithms, this strategy requires the
replication popularity to be relatively low. To achieve better
search efficiency, the replication location is not random, but on
the so-called network routing node. It can improve the search hit
rate, and reduce the search latency as well. It also refers to the
maintenance problem of replication, as it does not maintain
replication according to heartbeat, but rather its access rate. With
this idea as our base, we can use the access rate of objects to
distinguish the value of an object. We can build less replication or
no replication at all for those low values of rare objects to reduce
the overhead caused by our strategies. As for object value, E-ARL
(Mondal et al., 2010) defines the price of a data item as that recent
access frequency of object d relates to its popularity. However, it
is difficult for peers to obtain object popularity in a distributed
environment.

In this paper, we propose a proactive replication strategy
which can replicate rare objects at the peers of a P2P network,
and also propose a rare object search algorithm. By doing this, we
not only enhance search efficiency for rare objects, but also
reduce unnecessary communication overhead for replication. In
the next section, we will introduce our strategies in detail.

 
 

 

3. Proactive replication strategy

To improve search efficiency for rare objects, we must repli-
cate these rare objects so that they can be successfully searched
with limited number of hops. In this section, we will discuss
object popularity, object value, proactive probe and a proactive
replication (PR) strategy for replicating rare objects. At the end of
this section, we will also discuss applicability of PR.

3.1. Object popularity

Object popularity is the proportion of the number of peers
which own an object to the network size. Object popularity is
very important since it directly determines the efficiency of
search in unstructured P2P networks.

Let N represent the number of peers in an unstructured P2P
network, and an object R in this network has r copies, that is there
are r peers owning object R, then R’s object popularity P in Eq. (1)
is refined to

P¼
r

N
ð1Þ

In an unstructured P2P network, the job of search algorithms is an
exploratory attempt. Therefore, the popularity of target objects
directly affects search efficiency. If an object R is searched only at
a peer in P2P network, then the search hit probability is P. Using
standard random walk (one way random walk) as the search
algorithm, the maximum number of hops is k, and then the search
hit probability Pr(R) for object R is refined in

PrðRÞ ¼ kP¼
kr

N
ð2Þ

To make the standard random walk search successfully for object
R, we need to ensure that Pr(R) is equal to 1. According to Eq. (3),
it can be seen that object R can be searched successfully if the
number r of object R in P2P network is up to a certain standard:

PrðRÞ ¼ 1) r¼
N

k
ð3Þ

In an unstructured P2P network, the object popularity directly
affects search efficiency, especially for rare objects. Therefore, we
can build replication based on the object popularity. How to
obtain this object popularity will be discussed in the following
section.

3.2. Object value

Although the object popularity can be used as a basis for
replication, some rare objects in P2P networks are valueless. For
example, the node owner accidentally shares a private image, but
it has no value to other users in the network. Therefore, we do not
need to replicate this valueless object. The overhead of replication
can be reduced through the introduction of object value. Object
R’s value VR at a time ‘t’ in Eq. (4) is refined to

VRðtþ1Þ ¼ mVRðtÞþZ
RqðtÞ

NqðtÞ
� 100 ð4Þ

where 0rm,Zr1, the larger the value of m, the more important
the historical requests to VR, while the larger the value of Z, the
more important the recent requests to VR. Rq(t) is the number of
requests received for object R and Nq(t) is the total number of
requests received by the node at a time ‘t’. We can take VR as
another basis for replication.

3.3. Proactive probe

From the analysis above, we know that we can improve search
hit rate of object R through increasing its popularity. However, in
a distributed environment, each node only has the partial infor-
mation, so to obtain the object popularity is very difficult. There-
fore, it is not certain which objects should be replicated and how
many copies should be made. The existing replication strategies
for rare objects are to replicate all objects to build the same
number of replication, and although this can improve the hit rate
of search algorithms, it also brings unnecessary communication
overhead.

To address this issue, this paper presents a simple solution:
When a node joins a P2P network, the node initiates rare object
search, which will be discussed in the next section, to search its
own objects, and the search can be defined by a success probe or a
failure probe. In this paper, we call this strategy proactive probe.
Those objects whose proactive probe failed are considered rare
resources, and they need to be replicated. The node i’s proactive
probe function for object R proactiveProbe(i,R) is refined in

proactiveProbeði,RÞ ¼
1þ TTL�hops

TTL i successfully search R

�1 else

(
ð5Þ

Where TTL is the maximum hops search algorithm allowed, and
‘‘hops’’ is search steps. In hit queries, the fewer search hops, the
larger proactiveProbe value. This design is to reduce the cost of
probe, which will be introduced in the following paragraph.

The basic idea of proactive probe is this: If one fails to find the
source, the same thing may happen to the others. Although we
can know which objects are rare through proactive probe, but we
do not know how many copies should be made for those objects
which proactive probe is failed. In this paper, we take a simple
solution: the peer establishes only one copy for those objects who
fail to probe, and runs proactive probe regularly, not just in the
beginning. This strategy is not to obtain an accurate popularity of
an object, but to maintain the minimal object popularity with
which searches can be done successfully. The replication method
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is running a random walk for the rare object and replicating the
object to the last peer. This is to distribute replications evenly and
ensure the network load is balanced. The random approach is less
sensitive to peer churn and heterogeneity as well (Fu et al., 2011).
In order to ensure the minimum objects popularity with which
object can be searched successfully, each node in the network
must pass on a regular probe to maintain object popularity. The
next probe time for object R is refined in

TðxÞ ¼ g � 2l, l¼
xþy, xþy40

0 else

�
ð6Þ

Where g is a configurable interval value, x is the return value of
proactiveProbe(i, R), y is the last l value and the initial value of y is
0. Because the return value of proactive probe is large for the
objects with high popularity, probe intervals will be great for
these objects. As a result, the cost of proactive probe is mainly
caused by rare objects. Once the amount of replications of rare
objects reaches at a certain stage, probe intervals for them will
also be increased rapidly. Therefore, for an object, PR will no
longer establish replications for it as soon as its replications
reached a certain level. At the same time, proactive probe can
capture the changes in the number of objects replications. Once
the number of replications of an object reduces to below a certain
number of values for some reasons, such as the peers with this
object are offline, PR will soon restart to establish replications
for it.

By defining the above probe time, we can effectively reduce
the number of probes. In the meantime, the network maintains
the minimum popularity of objects through the joint efforts of the
network nodes. The detail cost analysis will be described in the
experimental section.

3.4. Proactive replication

We use proactive probe to determine whether an object is rare,
and take regular probe to maintain minimal object popularity
which can ensure successful search with limited number of hops.
Proactive probe only judges whether an object is rare through the
rare object search algorithm, and then a copy is established at the
terminated peer in another random walk for the object whose
probe failed. This strategy can distribute object replication into
the network in a balanced way because replication building uses
random walk as a search algorithm. Our strategy improves search
efficiency for rare objects, but will result in extra communication
overhead. To decrease communication overhead, we can just
install the reference for rare objects with large size, instead of
copying them to the goal peers. Table 1 shows the instance of
object routing table in the peer B. The objects with ‘‘own’’ type are
the resources owned by the current peer, and those with ‘‘repli-
cate’’ type are the replication reference for those rare objects from
other peers. As we can see, peer B only installs replication
reference to reduce communication overhead. In the query, the
replicated peers will guide searches to the object owner. For
example, to the query for ‘‘Zhuoma.mp3’’, peer B first looks up
its object routing table, and then forwards the query to peer E.

 
 

 

Table 1
The instance of object routing table.

Object Type Peer

Gongfu.avi Own

Dingdang.wma Own

y y y

TimeMachine.mov Replicate Peer A

Zhuoma.mp3 Replicate Peer E

y y y
The request times in Table 1 are used to compute the object value.
For very small files, such as file blocks in file sharing systems, we
can directly copy them to the target peers to increase system
robustness.

Although we use some strategies to reduce the overhead
caused by replication, the proactive replication strategy still leads
to additional communication overhead. The biggest overhead of
proactive replication comes from the regular probe. To reduce this
cost, object value can also be introduced in the regular probe of
proactive replication. However, it is very difficult to compute the
global visit frequency of an object Rq in the distributed environ-
ment. In this article, we only need the local request times of an
object because our replication strategy is done in a distributed
way, not global replication. Therefore, we can obtain Rq from the
request times in the object routing table. Since the node’s own
object value VR is 0, when it joins the network, in order to enhance
the popularity of valuable objects, the node must be allowed to
run a certain number of times before the factor of object value is
introduced into the regular probe. When the node’s running times
is greater than a predefined threshold Tp, and the object value of
VR is less than a certain threshold Vt, the probe is not triggered,
and its next probe time is set to T(2). This strategy can decrease
the overhead caused by replicating valueless objects. We still set
the next probe time for the current valueless object is to avoid
missing any value objects.

Node i’s proactive replication algorithm for object R is shown
in Algorithm 1.

Algorithm 1. Node i’s proactive replication algorithm for object R.
Procedure proactiveReplication(i,R,t)

1: if t4Tp and VRðtÞoVt then

2: After T(2), call proactiveReplication(i, R, tþT(2)) again;
3: else
4: k¼proactiveProbe(i,R);
5: if k¼�1 then
6: Launch a Randwalk;
7: Replicate R in the last peer;
8: end if
9: After T(k), call proactiveReplication(i, R, tþT(k)) again;
10: end if
3.5. Applicability of PR

In this section, we discuss on the applicability of the proposed
PR strategy. In many P2P applications, rare resources are very
valuable. For example, the peers of BitTorrent (Levin et al., 2008)
give priority to download rare blocks. This strategy is to ensure
that each file block is evenly distributed in BitTorrent systems,
and avoid the last block problem (Bharambe et al., 2006). This is
because the unavailability of the peers possessing rare objects
will lead to blocking of network downloads. However, a peer in
BitTorrent determines whether a block is rare simply based on
those peers communicating with it, which has some limitations
Current request times Accumulated request times

3 30

2 10

y y

1 3

0 2

y y
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such as some rare blocks being ignored. Therefore, the last block
problem has not been well resolved by existing researches. If
BitTorrent takes on our PR strategy, the peers possessing rare
blocks (i.e., rare objects) can proactively push rare blocks to the
other peers to build replications, thus increasing the robustness of
P2P systems. In P2P streaming systems, such as PPLive (Spoto
et al., 2009), rare resources are much more important. Unlike that
a BitTorrent client can download any of data blocks from other
peers, a PPLive client can only download data blocks in a playback
order. Therefore, PPLive cannot use the rare blocks priority
strategy of BitTorrent to balance the load of P2P networks. If the
network has a large number of rare blocks, it will cause severe
viewing problems for the audiences. Even the quantity of rare
blocks is small, it will also cause playback jitter. If the PR strategy
is used in PPLive, replications can be built for rare blocks
proactively. These replications created by PR cannot only be
chosen as the download sources for other peers, but can also be
used to playback by the host peers. Therefore, the proactive
replication strategy has a wide range of application scenarios.

 
 

 

4. Rare object search algorithm

To reduce the overhead caused by proactive replication, we
proposed a rare object search algorithm which needs less object
popularity than others such as random walk. In this section, we
will analyze search efficiency for different search strategies first,
then discuss forward probability, and finally present a rare object
search (ROS) algorithm.

4.1. Analysis of search efficiency

Random walk (RW) significantly reduces network overhead,
but the search hit rates of it are decreased. In the same hit rate,
taking high degree seeking (HDS) strategy requires a lower
popularity of objects than random walk. To analyze search
efficiency, we design some simulation experiments with different
network sizes for RW and HDS. Figure 1 depicts a diagram
for the search hit rate and object popularity using RW under diff-
erent networks, and Fig. 2 describes search efficiency of HDS.
Figures 1 and 2 show that the search hit rate of RW only reaches
about 90% under 10% objects popularity, whereas HDS only
requires 0.5% objects’ popularity in the same search hit rate. At
the same time, the correlation of the search hit rate and the
objects popularity do not change with different network sizes.
0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Se
ar

ch
in

g 
su

cc
es

s (
%

)

Object popularity (%)

network size:1k
network size:10k
network size:100k

Fig. 1. Random walk hit rate with different object popularity.
As we discussed earlier, the higher popularity objects have, the
higher hit rate the search has. In subsequent experiments, to
improve the efficiency of simulation, we only use a medium-size
network.

Since random walk is essentially a complete blind detection, it
is ideal that the object popularity is relatively high, which is not
suitable to our replication strategy characterized by maintaining
minimum object popularity. The high degree seeking search only
forwards search to neighbor nodes with relatively large degree,
because these nodes have more neighbors and are more likely to
contain the target resources. However, there is also the issue of
information gathering when P2P networks use high degree seek-
ing as search algorithm and high degree nodes may become a
routing node, which results in network bottlenecks. Furthermore,
there is the problem of fixed routing for high degree seeking. If we
always choose high degree neighbor as the forwarding node, the
search routing is fixed, which could lead to some nodes in the
network not being covered. Therefore, we need a search algorithm
that can utilize some characteristics of P2P networks such as the
degree of nodes to improve efficiency. Moreover, this search
algorithm should be able to avoid some problems arising from
itself such as the heavy load of high degree nodes.

4.2. Forward probability

In order to have a more effectively search for rare objects, this
paper proposes a search scheme which combines the degree and
the object number of neighbors to obtain a forward decision.
Experimental results show that this strategy has good search
efficiency for rare objects. Each node in the network keeps the
object number r and the degree k of its neighbors. jr and jk
represent the object number and the degree of neighbor node j,
respectively. When a node i forwards the query to neighbor j, the
forwarding probability Prij and Pkij based on the object number
and the degree of neighbor, respectively, are defined by

Prij ¼
jrP

pAK pr
, Pkij ¼

jkP
pAK pk

ð7Þ

Where K is the set of i’s neighbors, p is the node of the set K, and
pr, pk represent the object number and the degree of the node p,
respectively.

Based on the above analysis, the high degree seeking strategy
can improve search efficiency, but it will bring the load problem.
The probability Pkij defined here is similar to high degree seeking.
In order to reduce the load of high degree nodes, we introduce the
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probability Prij based on the object number of nodes. A node
cannot contain all the information of its neighbors’ resources. For
example, in some P2P applications, the node builds the index
based on terms of its documents. The index may be very big, so
the nodes cannot store it in each other. Therefore, the number of
objects, which may be the number of terms in some applications,
can be used as an important factor in guiding query route. Prij, like
Pkij, can lead the query to those power nodes which are more
likely to contain the target objects. The experiments show that
this strategy is available. Node i forwards query to neighbor j with
the forward probability defined by

Pij ¼ lPrijþð1�lÞPkij, 0olo1 ð8Þ

Where l is an adjustable parameter with the initial value of 0.5.
The parameter l can be automatically adjusted in the running
system. For example, since search success is due to the factor of
objects, we can increase the value of l. The above forwarding
strategy not only finds rare objects more effectively, but also
enables search distribution. This strategy solves the problem of
fixed routing in high degree forward and will be conducive to
explore new objects.

4.3. ROS algorithm

In a query, the peer firstly computes the forward probability
for each of its neighbors. The forward probabilities of the
neighbors with high degree and more objects will be larger.
Secondly, the peer forwards query to the neighbors according to
the forward probability. This strategy can ensure the neighbors
with larger forward probability are more likely to obtain for-
warded query, and the neighbors with lower forward probability
are also likely to obtain forwarded query. This can make query to
locate the target as quickly as possible, and distributed query into
the network to balance the search load of peers. In the rare object
search strategy, the node i’s forwarding algorithm is shown
in Algorithm 2

Algorithm 2. Node i’s forwarding algorithm.

 
 

 

Procedure Forward(i)
1: for each neighbor j in peer i do
2: Calculate Prij;
3: Calculate Pkij;
4: end for
5: for each neighbor j in peer i do
6: Calculate Pij;
7: Forward query to neighbor j according Pij;
8: end for
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Fig. 3. Distribution of node degrees in topology.
5. Experiment methodology

In this section, we introduce our experiment methodology,
including simulation methodology, network topology, objects and
queries. While our simulation experiments do not capture all
aspects of reality, we hope they capture the essential features
needed to understand the qualitative differences.

5.1. Simulation methodology

P2P networks can be of a very large scale such as millions of
nodes, which typically join and leave continuously. These proper-
ties are very challenging to deal with. Evaluating a new protocol
in a real environment, especially in its early stages of develop-
ment, is not feasible. To save time and increase efficiency, we use
PeerSim (Jelasity et al., 2007) as the simulation-driven kernel.
PeerSim has been developed to cope with the properties of P2P
networks and thus able to reach extreme scalability and support
dynamism. In addition, the simulator structure is based on
components and makes it easy to quickly prototype a protocol,
combining different pluggable building blocks, which are in fact
Java objects. PeerSim is designed to encourage modular program-
ming based on objects (building blocks). Every block is easily
replaceable by another component implementing the same inter-
face. In our experiments, we implement three PeerSim’s inter-
faces: topo, protocol and control. Based on the topology data, the
topo interface can form the topological structure we want. We
implement our strategies and other researchers’ strategies which
are then compared in the protocol interface. We distribute objects
(or files should be called) and queries into each peer through a
control interface, and the interface can provide observation
information for us as well.

In the experiments, simulation process is divided into a
number of cycles. Each peer in P2P network will run its own
protocol and control in each cycle. We can take cycle as time. In
the simulation, we set time threshold Tp to 50 cycles, value
threshold Vt¼100, m¼ Z¼ 0:5, g ¼ 5 cycles, l¼ 0:5. In our pre-
liminary research (Gao et al., 2010), we do not change the value of
these parameters for simplicity. In this extended simulation, in
order to bound the performance improvement of our scheme, we
try to use different parameters to get a better performance.
5.2. Network topology

By the network topology, we mean the graph formed by the
P2P overlay network. Each P2P member has a certain number of
‘‘neighbors’’ and the set of neighbor connections forms the P2P
overlay network. In this paper when we refer to the ‘‘network’’ we
are referring to P2P networks, not the underlying Internet. For
simplicity, we assume that P2P network topology does not change
during the simulation of our algorithms for most of experimental
scenarios. The initial topology is generated by Brite (Medina et al.,
2001) which is a topology generation tool that provides the
option of generating topologies based on the AS Model. Using
Brite, we generate an overlay topology with 10,000 nodes. In
order to better represent real-world P2P networks, the node
placement of Brite is set to ‘‘Heavy Tailed’’, which makes the
topology generated by this strategy to have power-law distribu-
tion. The topology data is loaded into PeerSim through the
interface topo which is implemented by us. Node degree informa-
tion of the topology graph is shown in Fig. 3. In this graph, we use
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a log scale to clearly describe degree distribution. As we can see,
most peers have low degrees, and only a few peers have high
degrees.
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5.3. Objects and queries

Studies have shown that Napster, Gnutella and Web queries
tend to follow Zipf-like distributions (Sripanidkulchai, 2001). In
order to reveal the real environment, the object popularity in our
experiments follows a Zipf-like distribution. This distribution
states that some personal content is highly popular and the rest
has more or less the same low popularity. In Eq. (9) the Zipf-like
probability mass function (Breslau et al., 1999) is provided, where
C denotes the number of personal content items and a is the
exponent characterizing the distribution:

PZipf -likeðxÞ ¼
x�aPC

j ¼ 1 j�a
ð9Þ

PZipf -likeðxÞ determines the probability that a personal content
object having rank x is requested, where xAf1, . . . ,Cg. Backx
et al. (2002) show, with a number of practical experiments using
popular P2P file sharing applications, that a is usually between
0.6 and 0.8.

We assume each object i is replicated on ri nodes, and the total
number of objects stored in the network is Sr:

Xm

i ¼ 1

ri ¼ Sr ð10Þ

To assign objects to each of peers in the network, we generate
5,000 distinct terms and assign each term a frequency according
to Eq. (9). We write the set of these terms as ST. In this paper, we
use ‘‘term’’ and ‘‘object’’ interchangeably. The terms in ST are
distributed into the network based on their frequency, and the
terms with high-frequency will have more copies. We allocate
20–200 terms for each peer randomly. The total number of terms’
copies of the network should be equal to Sr. As for queries, based
on the terms’ frequency, each peer obtains query keywords from
ST randomly. That is the terms with high-frequency are more
likely to be selected as the query keywords. The queries generated
by this strategy are more like those from real networks. The query
distribution is shown in Fig. 4. As we can see, the more queries
there are, the fewer the number of corresponding terms. This
implies that a term having a higher frequency is more popular
(more queries).
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6. Performance evaluation

In this section, we analyze the efficiency of proactive replica-
tion (PR) strategy and rare object search (ROS) algorithm pre-
sented in this paper through the experiments.
6.1. Effectiveness of proactive replication

To evaluate the efficiency of PR strategy, we run ROS algorithm
proposed in this paper in the network which PR strategy is
applied to as well as in the network without any replication
strategies. Figure 5 depicts the correlation of object popularity
and search hit rate in the networks in which ROS is run.
Experiments show that search efficiency of ROS has been greatly
improved as PR strategy is applied in P2P network. The object
popularity of the horizontal axis in Fig. 5 represents the system
initialization popularity of the object itself, rather than the object
popularity after using PR strategy. This is to visually show search
efficiency of rare objects. ROS algorithm forwards queries to those
power nodes, so it has high search efficiency with PR strategy
which provides the necessary popularity of objects for successful
search. Therefore, our PR strategy is available to improve search
efficiency for rare objects according to the experimental results.

Due to object probing, PR strategy produces some additional
communication overhead compared to other algorithms. In order
to analyze the overhead, we collect communication messages of
object probing and replication in P2P networks with PR strategy.
The average object number of each node is 10 in the experiments.
We take the replication strategy with probability (WP) proposed
by Ronaldo (Ferreira et al., 2005) to conduct a comparative
analysis. WP replicates g

ffiffiffi
n
p

copies for each object of node, n is
the number of network nodes. WP has the query success rate at
85% when g¼ 1. The success rate of ROS reaches 95% after using
PR strategy. To be fair, we take g as 1 in the experiments. Table 2
shows the average amount of communication messages pro-
cessed by the two kinds of replication strategies in each node in
the simulations. PR strategy proposed in this paper reduces the
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Fig. 5. ROS hit rate with pr and not replication.

Table 2
Amount of message in different replication strategies.

WP PR

Average message processed in each node 2162 1351

Factor 1 1.6
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communication traffic by a factor of 1.6 compared to the existing
WP algorithms. Obviously, the traffic of both PR and WP increases
with the increase in simulation cycles. However, if the object
probe cycle interval is properly handled, we can maintain low
communication overhead while achieving a reasonable popularity
of objects.

To analyze the performance of PR, we introduce another
replication strategy: two-hop index replication (IR) similar to
the strategy proposed in Puttaswamy et al. (2008). In IR, each
node sends its index to all of its two-hop neighbors in its routing
table. Figure 6 shows the efficiency of high degree seeking (HDS)
strategies with three different replication strategies. As we can
see, IR is the least effective, and the efficiencies of both PR and WP
for rare objects are similar. However, PR strategy generates less
communication overhead, thus the proactive replication strategy
PR is superior to the replication strategy with probability WP in
overall performance.
Fig. 8. Percent of peers installing references.
6.2. Replication level

In this set of experiments, we measure the replication level of
PR. When the object popularity is equal to 1%, we find that ROS
can reach 99% hit rate through previous experiments. We call this
popularity (1%) the minimum popularity required by ROS for
successful searching. Therefore, in a P2P network with 10,000
peers, if an object only has 10 copies (a popularity of 0.1%), PR
should establish another 90 replications for the object for search-
ing it successfully. We design some experiments to collect the
actual number of replications for the objects with different
popularity, and compare it with the theoretical minimum amount
of replications. The results are shown in Fig. 7. The X-axis
represents the objects with different popularities, and the Y-axis
shows the average amount of replications established by PR for
them. As it can be seen from Fig. 7, the number of replications
created by PR is just a little bit than the theoretical minimum
value. The objects with popularity 0.3% are the worst, but PR only
establishes 8.5% more replications for them. In general, PR only
creates 5.7% extra replications compared to the minimum number
of replications. Therefore, there is a point in which PR is no longer
to further replicate the objects in P2P networks. The extra 5.7% is
perhaps the point, which is derived from the experiments. In PR,
whether to create a replication or not depends on the result of
proactive probe. When an object’s popularity is greater than the
minimum popularity required by ROS, proactive probe for it is
usually successful. As a result, PR would not create too many
extra replications.
6.3. Replication overhead

Another parameter that we investigate in our scheme is the
percentage of peers owning an object who install references to an
object in the network. In this scenario, the popularity of an object
is varied from 0.001% to 5%. The experiment is conducted for
different replication strategies. We compare PR with WP and
Square Root presented in Cohen and Shenker (2002). Figure 8
shows, on a logarithmic scale, the percentage of object owners
who install references to an object for different replication
strategies. As for PR and WP, when almost 5% of the peers own
a copy of an object, only a very small percentage (0.0003–0.002)
of the peers owning this object install references to this object. PR
takes ROS as the search algorithm which needs less object
popularity to locate objects. Therefore, the overhead of PR is less
than that of WP. Square Root has completely different results.
When an object has low popularity, the percentage of the peers
who installed references to the object is small. However, there are
many peers replicating hot objects (the objects with high
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popularity). This is because square root establishes replication
with the square root of the number of visits for the objects.
Therefore, this strategy can only improve the search efficiency of
hot resources, but does not fit for rare objects.

In order to obtain a better replication performance, we adjust
the parameter of interval value g defined in Eq. (6). Figure 9
shows the percentage of the peers that install references to an
object for a different parameter g. We set a logarithmic scale for
y-axis as previous experiments. As we can see, the overhead of PR
will decrease with the increase of the parameter g. Although we
can obtain a better replication performance in overhead through
increasing the parameter g, this will lead to a decline in search
efficiency. When the interval value g is set to 20 cycles, shown
in Fig. 9, the percentage of peers that establish for the objects
with low popularity will obviously decrease. This will be difficult
to ensure that the rare objects have the minimal popularity with
which searches can be done successfully. Therefore, the para-
meter g should be carefully set to obtain the better performance
of replication in overhead and search.

Figure 10 shows the percentage of the peers that install
references to an object for different parameters m and Z. We set
a logarithmic scale for the y-axis as well. We found that the
results of three parameter setting are very similar. A reasonable
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explanation is that the object value has little effect on replication
in our experiments because query keywords are selected ran-
domly from the set of terms St. We trust that the adjustment of
parameters m and Z will obtain a better performance in real
networks.

6.4. Analysis of peer collaboration

In unstructured P2P networks, we do not know which objects
should be replicated and how many replications should be
established because there are no central servers. We solve these
problems through peer collaboration. Proactive probe is the signal
of collaboration for the peers which only know local information.
A peer can know whether an object is rare through proactive
probe. Once proactive probe for an object fails, the object is
considered to be rare and should be replicated. For an object,
multiple peers in the network maintain its replications collabora-
tively through proactive probe. Once proactive probe for an object
is successful, the peers owning the object no longer create
replications for it. Therefore, peer collaboration coordinated by
the proactive probe strategy is important, and such collaborations
maintain a reasonable number of object copies.

We designed an experiment to evaluate the cumulative dis-
tribution function (CDF) for peer collaboration. We count all the
peers who perform replication operation. Figure 11 shows the
results for five different popularities. As we can see, the objects
with popularity 0.1% and 0.2% show the best load balancing
result. Top 30% most contribution peers account for only about
45% of total contributions. For the objects with popularity 0.3%,
0.4% and 0.5%, it is approximately 55%. Overall, all popularities
show better load balancing results. Even for the least effective
objects with popularity 0.5%, only 12% of all peers do not
contribute to replication. On average, if an object needs PR to
establish replications, nearly 95% of the peers owning the object
will contribute their efforts. This shows that PR establishes
replications through peer collaboration.

6.5. Effective of rare object search

We can see, from Figs. 5 and 6, search efficiency of ROS
algorithm presented in this paper is similar to HDS strategy for
searching rare objects. However, HDS forward routing is fixed,
which can easily lead to information gathering. ROS uses the
probability of forwarding, which can improve the problem of load
balance posed by queries. The system with HDS strategy may lead
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the high degree nodes to become a bottleneck. To alleviate the
load of high degree nodes, we can first run random walk and HDS
after search failure to improve HDS. We call this strategy
improved HDS (IHDS). Although IHDS could solve the problem
of load, it increases latency for rare objects, and brings additional
communication overhead as well. Therefore, taking ROS as search
scheme cannot only ease network traffic load, but also lessen
search delay of rare objects. Figure 12 describes search delay of
ROS and IHDS for rare objects in P2P network with PR strategy.
The vertical axis shows the maximum number of hops for
successful search to target objects. IHDS first uses random walk
to search an object. However, random walk generally fails with
the specified TTL value for the objects with low popularity.
Therefore, IHDS has high latency overhead.

In order to carry out the load analysis, we design an experi-
ment to discuss load balance of nodes with different degrees as
follows: The network topology is generated by Brite (Medina
et al., 2001), the minimum degree of nodes is 3, the maximum
degree is 206, and the degree distribution of nodes obeys power-
law distribution. Figure 13 is the simulated results of ROS, HDS
and SCRW (Supernode-Constrained Random Walk) proposed
in Puttaswamy et al. (2008) which nodes always forward the
query to one of its randomly selected supernode neighbors. As we
can see, the load of ROS is balanced, and the load of the node with
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the greatest degree is lower than 100%. While the high load of the
HDS and SCRW is mainly concentrated at the high degree nodes,
the utilization of the nodes with small degree is relatively lower.
Therefore, ROS algorithm presented in this paper not only has a
better search efficiency, but also improves the load balance of
nodes compared to the existing algorithms.
6.6. Performance in churn

PR strategy can withstand the high rate of node dynamics.
Churn arises from continued and rapid arrival and failure (or
departure) of a large number of peers in P2P networks. We
evaluated the efficiency of PR strategy in unstructured P2P net-
works in churn. Experiment results verified the resilience of PR in
churn. In the simulation, node join and voluntary departure are
modeled by a Poisson process with a mean rate of R, which ranges
from 0.05 to 0.5. A rate of R¼0.05 corresponds to one node joining
and leaving every 20 s on average. Figure 14 plots the average
lookup path length versus the node join/leave rate. As we can see,
Search delay of PR is 4.45 hops at R¼0.5, however, WP and IR
exceed this value at R¼0.05. This is because regular probes of
peers with PR strategy ensure the objects popularity, but WP and
IR have no mechanisms to cope with network churn.
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Churn not only appears in the network, but also exists in the
content. We take another experiment to analyze the dynamicity
of the content (popularity changing over time). In the simulation,
the set of search objects varies with time periods, that is, the
popular objects in a certain time period will become unpopular in
another time period. We can adjust m in Eq. (4) to increase the
replication of popular rare objects. That is PR can detect changes
in popularity of those objects, and quickly start replication
operation for them. However, the other replication strategies
cannot adapt to such changes. PR strategy ensures high resistance
to content churn and this is evident from Fig. 15 in which the
system generates a good success rate. PR can guarantee an
average search success rate of 95% for the objects with popularity
below 0.5%. As for WP and IR, it is 85% and 75%, respectively.

 
 

 

7. Conclusion

This paper presents a new proactive replication strategy for
rare objects, as well as proposes a rare object search algorithm
which needs a smaller number of replications. Our contributions
are: First, based on the analysis of object popularity, we propose a
proactive probe strategy and an object value scheme, which are
used in proactive replication. Second, we propose forwarding
probability based on the object number, and this probability can
be used to improve high degree seeking. Through the proposed
algorithms, we can greatly improve search efficiency for rare
objects, and keep communication cost associated with search
relatively low. Experiments show that there is a significant
improvement in efficiency for rare objects after using proactive
replication strategy, and communication overhead brought by
search is lower than other replication strategies. We design
comparative experiments with other search algorithms, and the
results show that the search algorithm in this article has better
efficiency for rare objects, and ensures load balance of search. In
order to reduce unnecessary communication overhead, the repli-
cation strategy proposed in this paper only establishes the least
amount of replication, which can decide whether to create a
replication through the probe of objects. This will result in the
communication overhead of the probe. However, experiments
have shown that this type of overhead is less than what is
generated by other replication strategies. As a result, it will be
interesting to see if the communication overhead brought by
probing can be further reduced by fine-tuning the interval
between detection cycles. The dynamic adjustment for the pro-
portion of degree and objects in the rare object search algorithm
is also worth exploring. The future work will focus on the cycle of
object probing and the optimization of the search strategy. At the
same time, we also plan to use P2P trace in simulation experi-
ments to gain more insightful connection and valuable
information.
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